Faster Supercomputer! NASA Announces the High Performance Fast Computing Challenge

Looking to the future of space exploration, NASA and TopCoder have launched the "High Performance Fast Computing Challenge" to improve the performance of their Pleiades supercomputer. Credit: NASA/MSFC

For decades, NASA’s Aeronautics Research Mission Directorate (ARMD) has been responsible for developing the technologies that put satellites into orbit, astronauts on the Moon, and sent robotic missions to other planets. Unfortunately, after many years of supporting NASA missions, some of their machinery is getting on in years and is in need of an upgrade.

Consider the Pleiades supercomputer, the distributed-memory machine that is responsible for conducting modeling and simulations for NASA missions. Despite being one of the fastest supercomputers in the world, Pleiades will need to be upgraded in order to stay up to task in the years ahead. Hence why NASA has come together with TopCoder (and with the support of HeroX) to launch the High Performance Fast Computing Challenge (HPFCC).

With a prize purse of $55,000, NASA and TopCoder are seeking programmers and computer specialists to help them upgrade Pleiades so it can perform computations faster. Specifically, they want to improve its FUN3D software so that flow analysis which previously took months can now be done in days or hours. In short, they want to speed up their supercomputers by a factor of 10 to 1000 while relying on its existing hardware, and without any decreases in accuracy.

The addition of Haswell processors in 2015 increased the theoretical peak processing capability of Pleiades from 4.5 petaflops to 5.3 petaflops. Credit: NASA

Those hoping to enter need to be familiar with FUN3D software, which is used to calculate the nonlinear partial differential equations (aka. Navier-Stokes equations) that are used for steady and unsteady flow computations. These include large eddy simulations in computational fluid dynamics (CFD), which are of particular importance when it comes to supersonic aircraft, space flight, and the development launch vehicles and planetary reentry systems.

NASA has partnered to launch this challenge with TopCoder, the world’s largest online community of designers, developers and data scientists. Since it was founded in 2001, this company has hosted countless online competitions (known as “single round matches”, or SRMs) designed to foster better programming. They also host weekly competitions to stimulate developments in graphic design.

Overall, the HPFSCC will consist of two challenges – the Ideation Challenge and the Architecture Challenge. For the Ideation Challenge (hosted by NASA), competitors must propose ideas that can help optimize the Pleiades source code. As they state, may include (but is not limited to) “exploiting algorithmic developments in such areas as grid adaptation, higher-order methods and efficient solution techniques for high performance computing hardware.”

The computation of fluid dynamics is of particular importance when plotting space launches and reentry. Credit: NASA/JPL-Caltech

The Architecture Challenge (hosted by TopCoder), is focused less on strategy and more on measurable improvements. As such, participants will be tasked with showing how to optimize processing in order to reduce the overall time and increase the efficiency of computing models. Ideally, says TopCoder, this would include “algorithm optimization of the existing code base, inter-node dispatch optimization, or a combination of the two.”

NASA is providing $20,000 in prizes for the Ideation challenge, with $10,000 awarded for first place, and two runner-up awards of $5000 each. TopCoder, meanwhile, is offering $35,000 for the Architecture challenge – a top prize of $15,000 for first place, $10,000 for second place, with $10,000 set aside for the Qualified Improvement Candidate Prize Pool.

The competition will remain open to submissions until June 29th, 2017, at which point, the judging will commence. This will wrap up on August 7th, and the winners of both competitions will be announced on August 9th. So if you are a coder, computer engineer, or someone familiar with FUN3D software, be sure to head on over to HeroX and accept the challenge!

Human space exploration continues to advance, with missions planned for the Moon, Mars, and beyond. With an ever-expanding presence in space and new challenges awaiting us, it is necessary that we have the right tools to make it all happen. By leveraging improvements in computer programming, we can ensure that one of the most important aspects of mission planning remains up to task!

Further Reading: HeroX, TopCoder

The Awesome Complexity of Hypersonic Flight

Stanford professor Parviz Moin shows a simulation of temperature fluctuations from a scramjet exhaust.

Researchers at Stanford University are working on solutions to the inherent difficulties of hypersonic flight — speeds of over Mach 5, or 3,000 mph (4828 km/h) — and they’ve created one amazing computer model illustrating the dynamics of air temperature variations created at those intense speeds.


According to a news article from Stanford University, “Real-world laboratories can only go so far in reproducing such conditions, and test vehicles are rendered extraordinarily vulnerable. Of the U.S. government’s three most recent tests, two ended in vehicle failure.”

The video above shows some of the research team’s animation model — one of if not the largest engineering calculation ever created, it ran on 163,000 processors simultaneously and took 4 days to complete! And it’s utterly mesmerizing… not to mention invaluable to researchers.

“It’s something you could never have created unless you put computer scientists, mathematicians, mechanical engineers and aerospace engineers together in the same room,” said Juan Alonso, associate  professor of aeronautics and astronautics at Stanford. “Do it, though, and you can produce some really magical results.”

In a (very tiny) nutshell, the behavior of air through an hypersonic engine — called a scramjet (for supersonic combustion ramjet) — changes at extremely high speeds. In order for aircraft to travel and maneuver reliably the scramjets have to be engineered to account for the way the air will respond.

“If you put too much fuel in the engine when you try to start it, you get a phenomenon called ‘thermal choking,’ where shock waves propagate back through the engine,” explained Parviz Moin, the Franklin P. and Caroline M. Johnson Professor in the School of Engineering. “Essentially, the engine doesn’t get enough oxygen and it dies. It’s like trying to light a match in a hurricane.”

“Understanding and being able to predict this phenomena has been one of the big challenges. It’s not one number or two numbers that come out of it at the end of the day… it is all of these structures that you see back there, the richness of it. It is understanding that allows you to control.”
– Parvis Moin, Stanford University professor

Thanks to this study, made possible by a 5-year $20 million grant from the U.S. Department of Energy, we may one day have aircraft that can travel up to 15 times the speed of sound. But the team’s groundbreaking computations aren’t just reserved for aeronautic aspirations.

“These same technologies can be used to quantify flow of air around wind farms, for example, or for complex global climate models,” said Alonso.

Read more on the Stanford University News here.

Video by Steve Fyffe and Linda Cicero. Source: Stanford University.