Gamma ray Telescopes Might be Able to Detect the Gravitational Waves Caused by Merging Supermassive Black Holes

Gamma rays could be the new source for observing gravitational waves, according to a recent release from the Max Planck Institute for Radio Astronomy. This would make a possible third way to observe gravitational waves including laser interferometry and radio waves.

In 1916 Einstein predicted the existence of gravitational waves, ripples in space-time moving out in all directions away from massive accelerating objects. According to his theory, these waves would travel at the speed of light and would carry with them information about where they came from and would allow us to learn more about gravity.

Continue reading “Gamma ray Telescopes Might be Able to Detect the Gravitational Waves Caused by Merging Supermassive Black Holes”

Navy Researchers Put Dark Lightning to the SWORD

Dark lightning occurs within thunderstorms and flings gamma rays and antimatter into space. ([email protected] video)

Discovered “by accident” by NASA’s Fermi Gamma-ray Space Telescope in 2010, dark lightning is a surprisingly powerful — yet invisible — by-product of thunderstorms in Earth’s atmosphere. Like regular lightning, dark lightning is the result of a natural process of charged particles within storm clouds trying to cancel out opposing charges. Unlike normal lightning, though, dark lightning is invisible to our eyes and doesn’t radiate heat or light — instead, it releases bursts of gamma radiation.

What’s more, these gamma-ray outbursts originate at relatively low altitudes well within the storm clouds themselves. This means that airplane pilots and passengers flying through thunderstorms may be getting exposed to gamma rays from dark lightning, which are energetic enough to pass through the hull of an aircraft… as well as anything or anyone inside it. To find out how such exposure to dark lightning could affect air travelers, the U.S. Naval Research Laboratory (NRL) is conducting computer modeling tests using their SoftWare for the Optimization of Radiation Detectors — SWORD, for short.

Terrestrial Gamma-ray Flashes (TGFs) are extremely intense, sub-millisecond bursts of gamma rays and particle beams of matter and anti-matter. First identified in 1994, they are associated with strong thunderstorms and lightning, although scientists do not fully understand the details of the relationship to lightning. The latest theoretical models of TGFs suggest that the particle accelerator that creates the gamma rays is located deep within the atmosphere, at altitudes between six and ten miles, inside thunderclouds and within reach of civilian and military aircraft.

These models also suggest that the particle beams are intense enough to distort and collapse the electric field within thunderstorms and may, therefore, play an important role in regulating the production of visible lightning. Unlike visible lightning, TGF beams are sufficiently broad — perhaps about half a mile wide at the top of the thunderstorm — that they do not create a hot plasma channel and optical flash; hence the name, “dark lightning.”

A team of NRL Space Science Division researchers, led by Dr. J. Eric Grove of the High Energy Space Environment (HESE) Branch, is studying the radiation environment in the vicinity of thunderstorms and dark lightning flashes. Using the Calorimeter built by NRL on NASA’s Fermi Gamma-ray Space Telescope they are measuring the energy content of dark lightning and, for the first time, using gamma rays to geolocate the flashes.

As a next step, Dr. Chul Gwon of the HESE Branch is using NRL’s SoftWare for the Optimization of Radiation Detectors (SWORD) to create the first-ever simulations of a dark lightning flash striking a Boeing 737. He can calculate the radiation dosage to the passengers and crew from these Monte Carlo simulations. Previous estimates have indicated it could be as high as the equivalent of hundreds of chest X-rays, depending on the intensity of the flash and the distance to the source.

Simulation of a Boeing 737 struck by dark lightning. Green tracks show the paths of gamma rays from the dark flash as they enter the aircraft from below.   (Credit: U.S. Naval Research Laboratory)
Simulation of a Boeing 737 struck by dark lightning. Green tracks show the paths of gamma rays from the dark flash as they enter the aircraft from below.
(Credit: U.S. Naval Research Laboratory)

SWORD simulations allow researchers to study in detail the effects of variation in intensity, spectrum, and geometry of the flash. Dr. Grover’s team is now assembling detectors that will be flown on balloons and specialized aircraft into thunderstorms to measure the gamma ray flux in situ. The first balloon flights are scheduled to take place this summer.

Source: NRL News

Supernovae Seed Universe With Cosmic Rays

In a wave of media releases, the latest studies performed by NASA’s Fermi Gamma-ray Space Telescope are lighting up the world of particle astrophysics with the news of how supernovae could be the progenitor of cosmic rays. These subatomic particles are mainly protons, cruising along through space at nearly the speed of light. The rest are electrons and atomic nuclei. When they meet up with a magnetic field, their paths change like a bumper car in an amusement park – but there’s nothing amusing about not knowing their origins. Now, four years of hard work done by scientists at the Kavli Institute for Particle Astrophysics and Cosmology at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory has paid off. There is evidence of how cosmic rays are born.

“The energies of these protons are far beyond what the most powerful particle colliders on Earth can produce,” said Stefan Funk, astrophysicist with the Kavli Institute and Stanford University, who led the analysis. “In the last century we’ve learned a lot about cosmic rays as they arrive here. We’ve even had strong suspicions about the source of their acceleration, but we haven’t had unambiguous evidence to back them up until recently.”

Until now, scientists weren’t clear on some particulars – such as what atomic particles could be responsible for the emissions from interstellar gas. To aid their research, they took a very close look at a pair of gamma ray emitting supernova remnants – known as IC 443 and W44. Why the discrepancy? In this case gamma rays share similar energies with cosmic ray protons and electrons. To set them apart, researchers have uncovered the neutral pion, the product of cosmic ray protons impacting normal protons. When this happens, the pion rapidly decays into a set of gamma rays, leaving a signature decline – one which provides proof in the form of protons. Created in a process known as Fermi Acceleration, the protons remain captive in the rapidly moving shock front of the supernova and aren’t affected by magnetic fields. Thanks to this property, the astronomers were able to trace them back directly to their source.

“The discovery is the smoking gun that these two supernova remnants are producing accelerated protons,” said lead researcher Stefan Funk, an astrophysicist with the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University in California. “Now we can work to better understand how they manage this feat and determine if the process is common to all remnants where we see gamma-ray emission.”

Are they little speedsters? You betcha. Every time the particle passes across the shock front, it gains about 1% more speed – eventually enough to break free as cosmic ray. “Astronauts have documented that they actually see flashes of light associated with cosmic rays,” Funk noted. “It’s one of the reasons I admire their bravery – the environment out there is really quite tough.” The next step in this research, Funk added, is to understand the exact details of the acceleration mechanism and also the maximum energies to which supernova remnants can accelerate protons.

However, the studies don’t end there. More new evidence of supernovae remnants acting like particle accelerators emerged during careful observational analysis by the Serbian astronomer Sladjana Nikolic (Max Planck Institute for Astronomy). They took a look at the composition of the light. Nikolic explains: “This is the first time we were able to take a detailed look at the microphysics in and around the shock region. We found evidence for a precursor region directly in front of the shock, which is thought to be a prerequisite of cosmic ray production. Also, the precursor region is being heated in just the way one would expect if there were protons carrying away energy from the region directly behind the shock.”

Nikolic and her colleagues employed the spectrograph VIMOS at the European Southern Observatory’s Very Large Telescope in Chile to observe and document a short section of the shock front of the supernova SN 1006. This new technique is known as integral field spectroscopy – a first-time process which allows astronomers to thoroughly examine the composition of the light from the supernova remnant. Kevin Heng of the University of Bern, one of the supervisors of Nikolic’s doctoral work, says: “We are particularly proud of the fact that we managed to use integral field spectroscopy in a rather unorthodox way, since it is usually used for the study of high-redshift galaxies. In doing so, we achieved a level of precision that far exceeds all previous studies.”

It really is an intriguing time to be taking closer looks at supernovae remnants – especially in respect to cosmic rays. As Nikolic explains: “This was a pilot project. The emissions we observed from the supernova remnant are very, very faint compared to the usual target objects for this type of instrument. Now that we know what’s possible, it’s really exciting to think about follow-up projects.” Glenn van de Ven of the Max Planck Institute for Astronomy, Nikolic’s other co-supervisor and an expert in integral field spectroscopy, adds: “This kind of novel observational approach could well be the key to solving the puzzle of how cosmic rays are produced in supernova remnants.”

Kavli Institute Director Roger Blandford, who participated in the Fermi analysis, said, “It’s fitting that such a clear demonstration showing supernova remnants accelerate cosmic rays came as we celebrated the 100th anniversary of their discovery. It brings home how quickly our capabilities for discovery are advancing.”

Original Story Sources and Further Reading: Novel approach in hunt for cosmic particle accelerator, NASA’s Fermi Proves Supernova Remnants Produce Cosmic Rays, and Proof: Cosmic Rays Come from Exploding Stars.

Finding Out What Dark Matter Is – And Isn’t

This dwarf spheroidal galaxy is a satellite of our Milky Way and is one of 10 used in Fermi's dark matter search. (Credit: ESO/Digital Sky Survey 2)

Astronomers using NASA’s Fermi Gamma-Ray Space Telescope have been looking for evidence of suspected types of dark matter particles within faint dwarf galaxies near the Milky Way — relatively “boring” galaxies that have little activity but are known to contain large amounts of dark matter. The results?

These aren’t the particles we’re looking for.

80% of the material in the physical Universe is thought to be made of dark matter — matter that has mass and gravity but does not emit electromagnetic energy (and is thus invisible). Its gravitational effects can be seen, particularly in clouds surrounding galaxies where it is suspected to reside in large amounts. Dark matter can affect the motions of stars, galaxies and even entire clusters of galaxies… but when it all comes down to it, scientists still don’t really know exactly what dark matter is.

Possible candidates for dark matter are subatomic particles called WIMPs (Weakly Interacting Massive Particles). WIMPs don’t absorb or emit light and don’t interact with other particles, but whenever they interact with each other they annihilate and emit gamma rays.

If dark matter is composed of WIMPs, and the dwarf galaxies orbiting the Milky Way do contain large amounts of dark matter, then any gamma rays the WIMPs might emit could be detected by NASA’s Fermi Gamma-Ray Space Telescope.

After all, that’s what Fermi does.

Ten such galaxies — called dwarf spheroids — were observed by Fermi’s Large-Area Telescope (LAT) over a two-year period. The international team saw no gamma rays within the range expected from annihilating WIMPs were discovered, thus narrowing down the possibilities of what dark matter is.

“In effect, the Fermi LAT analysis compresses the theoretical box where these particles can hide,” said Jennifer Siegal-Gaskins, a physicist at the California Institute of Technology in Pasadena and a member of the Fermi LAT Collaboration.


So rather than a “failed experiment”, such non-detection means that for the first time researchers can be scientifically sure that WIMP candidates within a specific range of masses and interaction rates cannot be dark matter.

(Sometimes science is about knowing what not to look for.)

A paper detailing the team’s results appeared in the Dec. 9, 2011, issue of Physical Review Letters. Read more on the Fermi mission page here.

To The Extreme… NASA’s Fermi Gamma-Ray Telescope Gathers In High Energy

This all-sky Fermi view includes only sources with energies greater than 10 GeV. From some of these sources, Fermi's LAT detects only one gamma-ray photon every four months. Brighter colors indicate brighter gamma-ray sources. Credit: NASA/DOE/Fermi LAT Collaboration


It scans the entire visible sky every three hours. Its job is to gather light – but not just any light. What’s visible to our eyes averages about 2 and 3 electron volts, but NASA’s Fermi Gamma-Ray Space Telescope is taking a deep look into a higher realm… the electromagnetic range. Here the energy doesn’t need a boost. It slams out gamma-rays with energies ranging from 20 million to more than 300 billion electron volts (GeV). After three years of space time, the Fermi Large Area Telescope (LAT) has produced its first census of these extreme energy sources.

Over its current operating time, Fermi has continued to paint an ever-deepening portrait of the gamma-ray sky. Even with the huge amount of data which pours in over its 180 minute window, high energy events are not common. When it comes to sources above 10 GeV, even Fermi’s LAT detects only one source about three times a year.

“Before Fermi, we knew of only four discrete sources above 10 GeV, all of them pulsars,” said David Thompson, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “With the LAT, we’ve found hundreds, and we’re showing for the first time just how diverse the sky is at these high energies.”

Just what exactly is out there which can produce such a powerful process? When it comes to gamma-rays, more than half of Fermi’s nearly 500 findings are active galaxies where matter falling into their central supermassive black holes produces intense jets spewing out at close to light speed. A small portion – around 10% – of the census belongs to sources within the Milky Way. These are pulsars, supernova debris and a handful of binary systems which house massive stars. What’s really interesting is the portion of totally unidentifiable sources that constitute about a third of the findings. They simply don’t have any spectroscopic counterparts and astronomers are hoping that these higher energy sources will give them new material to compare their findings against.

New sources emerge and old sources fade as the LAT's view extends into higher energies. Credit: NASA/DOE/Fermi LAT Collaboration and A. Neronov et al.

When it comes to light – obey the rules. Just as we understand that sources of infra-red light fade away when viewed in the ultra-violet, gamma-ray sources above 1 GeV can disappear without a trace when viewed at higher, or “harder,” energies. “One example is the well-known radio galaxy NGC 1275, which is a bright, isolated source below 10 GeV.” says the Fermi team. ” At higher energies it fades appreciably and another nearby source begins to appear. Above 100 GeV, NGC 1275 becomes undetectable by Fermi, while the new source, the radio galaxy IC 310, shines brightly.” The Fermi hard-source list is the product of an international team led by Pascal Fortin at the Ecole Polytechnique’s Laboratoire Leprince-Ringuet in Palaiseau, France, and David Paneque at the Max Planck Institute for Physics in Munich.

More than half of the sources above 10 GeV are black-hole-powered active galaxies. More than a third of the sources are completely unknown, having no identified counterpart detected in other parts of the spectrum. Credit: NASA's Goddard Space Flight Center

The new Fermi census will be a unique source of comparative information to assist ground-based facilities called Atmospheric Cherenkov Telescopes. These sources have confirmed 130 gamma-ray sources with energies above 100 GeV. They include the Major Atmospheric Gamma Imaging Cherenkov telescope (MAGIC) on La Palma in the Canary Islands, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) in Arizona, and the High Energy Stereoscopic System (H.E.S.S.) in Namibia.

“Our catalog will have a significant impact on ground-based facilities’ work by pointing them to the most likely places to find gamma-ray sources emitting above 100 GeV,” Paneque said.

But big ground-based telescopes have big limitations. In this case, their field of view is very constricted and they can’t operate during daylight hours, full Moon or bad weather. But don’t count them out.

“As Fermi’s exposure constantly improves our view of hard sources, ground-based telescopes are becoming more sensitive to lower-energy gamma rays, allowing us to bridge these two energy regimes,” Fortin added.

Original Story Source: NASA Fermi News Release. For Further Reading: Major Atmospheric Gamma Imaging Cherenkov telescope (MAGIC) on La Palma in the Canary Islands, Very Energetic Radiation Imaging Telescope Array System (VERITAS) in Arizona and High Energy Stereoscopic System (H.E.S.S.) in Namibia. For Further Images: Fermi Images.

Cygnus X – A Cosmic-ray Cocoon

Cygnus X hosts many young stellar groupings, including the OB2 and OB9 associations and the cluster NGC 6910. The combined outflows and ultraviolet radiation from the region's numerous massive stars have heated and pushed gas away from the clusters, producing cavities of hot, lower-density gas. In this 8-micron infrared image, ridges of denser gas mark the boundaries of the cavities. Bright spots within these ridges show where stars are forming today. Credit: NASA/IPAC/MSX


Situated about 4,500 light-years away in the constellation of Cygnus is a veritable star factory called Cygnus X… one estimated to have enough “raw materials” to create as many as two million suns. Caught in the womb are stellar clusters and OB associations. Of particular interest is one labeled Cygnus OB2 which is home to 65 of the hottest, largest and meanest O-type stars known – and close to 500 B members. The O boys blast out holes in the dust clouds in intense outflows, disrupting cosmic rays. Now, a study using data from NASA’s Fermi Gamma-ray Space Telescope is showing us this disturbance can be traced back to its source.

Discovered some 60 years ago in radio frequencies, the Cygnus X region has long been of interest, but dust-veiled at optical wavelengths. By employing NASA’s Fermi Gamma-ray Space Telescope, scientists are now able to peer behind the obscuration and take a look at the heart through gamma ray observations. In regions of star formation like Cygnus X, subatomic particles are produced and these cosmic rays shoot across our galaxy at light speed. When they collide with interstellar gas, they scatter – making it impossible to trace them to their point of origin. However, this same collision produces a gamma ray source… one that can be detected and pinpointed.

“The galaxy’s best candidate sites for cosmic-ray acceleration are the rapidly expanding shells of ionized gas and magnetic field associated with supernova explosions.” says the FERMI team. “For stars, mass is destiny, and the most massive ones — known as types O and B — live fast and die young.”

Because these star types aren’t very common, regions like Cygnus X become important star laboratories. Its intense outflows and huge amount of mass fills the prescription for study. Within its hollowed-out walls, stars reside in layers of thin, hot gas enveloped in ribbons of cool, dense gas. It is this specific area in which Fermi’s LAT instrumentation excels – detecting an incredible amount of gamma rays.

“We are seeing young cosmic rays, with energies comparable to those produced by the most powerful particle accelerators on Earth. They have just started their galactic voyage, zig-zagging away from their accelerator and producing gamma rays when striking gas or starlight in the cavities,” said co-author Luigi Tibaldo, a physicist at Padova University and the Italian National Institute of Nuclear Physics.

Clocked at up to 100 billion electron volts by the LAT, these highly accelerated particles are revealing the extreme origin of gamma-ray emission. For example, visible light is only two to three electron volts! But why is Cygnus X so special? It entangles its sources in complex magnetic fields and keeps the majority of them from escaping. All thanks to those high mass stars…

“These shockwaves stir the gas and twist and tangle the magnetic field in a cosmic-scale jacuzzi so the young cosmic rays, freshly ejected from their accelerators, remain trapped in this turmoil until they can leak into quieter interstellar regions, where they can stream more freely,” said co-author Isabelle Grenier, an astrophysicist at Paris Diderot University and the Atomic Energy Commission in Saclay, France.

However, there’s more to the story. The Gamma Cygni supernova remnant is also nearby and may impact the findings as well. At this point, the Fermi team considers it may have created the initial “cocoon” which holds the cosmic rays in place, but they also concede the accelerated particles may have originated through multiple interactions with stellar winds.

“Whether the particles further gain or lose energy inside this cocoon needs to be investigated, but its existence shows that cosmic-ray history is much more eventful than a random walk away from their sources,” Tibaldo added.

Original Story Source: NASA Fermi News.

Positron Signaling For Dark Matter Inconclusive

The Fermi Gamma-ray Space Telescope (formerly called GLAST). Credit: NASA


A couple of years ago, the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics, PAMELA, sent us back some curious information… an overload of anti-matter in the Milky Way. Why does this member of the cosmic ray spectrum have interesting implications to the scientific community? It could mean the proof needed to confirm the existence of dark matter.

By employing the Fermi Large Area Telescope, researchers with the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University were able to verify the results of PAMELA’s findings. What’s more, by being in the high energy end of the spectrum, these abundances seem to verify current thinking on dark matter behavior and how it might produce positrons.

“There are various theories, but the basic idea is that if a dark matter particle were to meet its anti-particle, both would be annihilated. And that process of annihilation would generate new particles, including positrons.” says Stephan Funk, an assistant professor at Stanford and member of KIPAC. “When the PAMELA experiment looked at the spectrum of positrons, which means sampling positrons across a range of energy levels, it found more than would be expected from already understood astrophysics processes. The reason PAMELA generated such excitement is that it’s at least possible the excess positrons are coming from annihilation of dark matter particles.”

But there has been a glitch in what might have been a smooth solution. Current thinking has the positron signal dropping off when it reaches a specific level – a finding which wasn’t verified and led the researchers to feel the results were inconclusive. But the research just didn’t end there. The team consisting of Funk, Justin Vandenbroucke, a postdoc and Kavli Fellow and avli-supported graduate student Warit Mitthumsiri, came up with some creative solutions. While the Fermi Gamma-ray Space Telescope can’t distinguish between negatively charged electrons and positively charged positrons without a magnet – the group came up with their needs just a few hundred miles away.

Earth’s own magnetic field…

This illustration shows how the electron-positron sky appears to the Large Area Telescope. The purple region contains positrons while electrons are blocked by the Earth's bulk, the orange region contains electrons but is inaccessible to positrons, and the green region is completely out of the Earth's shadow for both positrons and electrons. Image courtesy Justin Vandenbroucke, Fermi-LAT collaboration.
That’s right. Our very own planet is capable of bending the paths of these highly charged particles. Now it was time for the research team to start a study on geophysics maps and figure out precisely how the Earth was sifting out the previously detected particles. It was a new way of filtering findings, but could it work?

“The thing that was most fun about this analysis for me is its interdisciplinary nature. We absolutely could not have made the measurement without this detailed map of the Earth’s magnetic field, which was provided by an international team of geophysicists. So to make this measurement, we had to understand the Earth’s magnetic field, which meant poring over work published for entirely different reasons by scientists in another discipline altogether.” said Vandenbroucke. “The big takeaway here is how valuable it is to measure and understand the world around us in as many ways as possible. Once you have this basic scientific knowledge, it’s often surprising how that knowledge can be useful.”

Oddly enough, they still came up with more than the expected amount of antimatter positrons as previously reported in Nature. But again, the findings didn’t show the theoretical drop-off that was to be expected if dark matter were involved. Despite these inconclusive results, it’s still a unique way of looking at difficult studies and making the most of what’s at hand.

“I find it to be fascinating to try to get the most out of an astrophysical instrument and I think we did that with this measurement. It was very satisfying that our approach, novel as it was, seemed to work so well. Also, you really have to go where the science takes you.” says Funk. “Our motivation was to confirm the PAMELA results because they are so exciting and unexpected. And as far as understanding what the Universe is actually trying to tell us here, I think it was important that PAMELA results were confirmed by a completely different instrument and technique.”

Original Story Source: Kavli Foundation News Release. For Further Reading: Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope.

Crab Nebula Erupts in a Superflare

NASA's Chandra X-ray Observatory reveals the complex X-ray-emitting central region of the Crab Nebula. This image is 9.8 light-years across. Chandra observations were not compatible with the study of the nebula's X-ray variations. Credit: NASA/CXC/SAO/F. Seward et al.


From a NASA press release:

The famous Crab Nebula supernova remnant has erupted in an enormous flare five times more powerful than any flare previously seen from the object. On April 12, NASA’s Fermi Gamma-ray Space Telescope first detected the outburst, which lasted six days. Several other satellites also made observations, which has astonished astronomers by revealing unexpected changes in X-ray emission the Crab, once thought to be the steadiest high-energy source in the sky.

The nebula is the wreckage of an exploded star that emitted light which reached Earth in the year 1054. It is located 6,500 light-years away in the constellation Taurus. At the heart of an expanding gas cloud lies what is left of the original star’s core, a superdense neutron star that spins 30 times a second. With each rotation, the star swings intense beams of radiation toward Earth, creating the pulsed emission characteristic of spinning neutron stars (also known as pulsars).

Apart from these pulses, astrophysicists believed the Crab Nebula was a virtually constant source of high-energy radiation. But in January, scientists associated with several orbiting observatories, including NASA’s Fermi, Swift and Rossi X-ray Timing Explorer, reported long-term brightness changes at X-ray energies.

X-ray data from NASA's Fermi, RXTE, and Swift satellites and the European Space Agency's International Gamma-Ray Astrophysics Laboratory (INTEGRAL) confirm that the Crab Nebula's output has declined about 7 percent in two years at energies from 15,000 to 50,000 electron volts. They also show that the Crab has brightened or faded by as much as 3.5 percent a year since 1999. Fermi's Large Area Telescope (LAT) has detected powerful gamma-ray flares (magenta lines) as well. (Image credit: NASA's Goddard Space Flight Center)

“The Crab Nebula hosts high-energy variability that we’re only now fully appreciating,” said Rolf Buehler, a member of the Fermi Large Area Telescope (LAT) team at the Kavli Institute for Particle Astrophysics and Cosmology, a facility jointly located at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University.

Since 2009, Fermi and the Italian Space Agency’s AGILE satellite have detected several short-lived gamma-ray flares at energies greater than 100 million electron volts (eV) — hundreds of times higher than the nebula’s observed X-ray variations. For comparison, visible light has energies between 2 and 3 eV.

On April 12, Fermi’s LAT, and later AGILE, detected a flare that grew about 30 times more energetic than the nebula’s normal gamma-ray output and about five times more powerful than previous outbursts. On April 16, an even brighter flare erupted, but within a couple of days, the unusual activity completely faded out.

“These superflares are the most intense outbursts we’ve seen to date, and they are all extremely puzzling events,” said Alice Harding at NASA’s Goddard Space Flight Center in Greenbelt, Md. “We think they are caused by sudden rearrangements of the magnetic field not far from the neutron star, but exactly where that’s happening remains a mystery.”

The Crab’s high-energy emissions are thought to be the result of physical processes that tap into the neutron star’s rapid spin. Theorists generally agree the flares must arise within about one-third of a light-year from the neutron star, but efforts to locate them more precisely have proven unsuccessful so far.

Since September 2010, NASA’s Chandra X-ray Observatory routinely has monitored the nebula in an effort to identify X-ray emission associated with the outbursts. When Fermi scientists alerted astronomers to the onset of a new flare, Martin Weisskopf and Allyn Tennant at NASA’s Marshall Space Flight Center in Huntsville, Ala., triggered a set of pre-planned observations using Chandra.

It was also observed by NASA’s Rossi X-Ray Timing Explorer (RXTE) and Swift satellites and the European Space Agency’s International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The results confirm a real intensity decline of about 7 percent at energies between 15,000 to 50,000 eV over two years. They also show that the Crab has brightened and faded by as much as 3.5 percent a year since 1999.

“Thanks to the Fermi alert, we were fortunate that our planned observations actually occurred when the flares were brightest in gamma rays,” Weisskopf said. “Despite Chandra’s excellent resolution, we detected no obvious changes in the X-ray structures in the nebula and surrounding the pulsar that could be clearly associated with the flare.”

Scientists think the flares occur as the intense magnetic field near the pulsar undergoes sudden restructuring. Such changes can accelerate particles like electrons to velocities near the speed of light. As these high-speed electrons interact with the magnetic field, they emit gamma rays.

To account for the observed emission, scientists say the electrons must have energies 100 times greater than can be achieved in any particle accelerator on Earth. This makes them the highest-energy electrons known to be associated with any galactic source. Based on the rise and fall of gamma rays during the April outbursts, scientists estimate that the size of the emitting region must be comparable in size to the solar system.

Top Ten Gamma Ray Sources from the Fermi Telescope

This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. Credit: NASA/DOE/Fermi LAT Collaboration


The Fermi Telescope is seeing a Universe ablaze with Gamma Rays! A new map combining nearly three months of data from the Fermi Gamma-ray Space Telescope is giving astronomers an unprecedented look at the high-energy cosmos.

“Fermi has given us a deeper and better-resolved view of the gamma-ray sky than any previous space mission,” said Peter Michelson, the lead scientist for the spacecraft’s Large Area Telescope (LAT) at Stanford University. “We’re watching flares from supermassive black holes in distant galaxies and seeing pulsars, high-mass binary systems, and even a globular cluster in our own.”

The sources of these gamma rays come from within our solar system to galaxies billions of light-years away. To show the variety of the objects the LAT is seeing, the Fermi team created a “top ten” list comprising five sources within the Milky Way and five beyond our galaxy.

The top five sources within our galaxy are:

The Sun. Now near the minimum of its activity cycle, the sun would not be a particularly notable source except for one thing: It’s the only one that moves across the sky. The sun’s annual motion against the background sky is a reflection of Earth’s orbit around the sun.

“The gamma rays Fermi now sees from the sun actually come from high-speed particles colliding with the sun’s gas and light,” Thompson notes. “The sun is only a gamma-ray source when there’s a solar flare.” During the next few years, as solar activity increases, scientists expect the sun to produce growing numbers of high-energy flares, and no other instrument will be able to observe them in the LAT’s energy range.

LSI +61 303. This is a high-mass X-ray binary located 6,500 light-years away in Cassiopeia. This unusual system contains a hot B-type star and a neutron star and produces radio outbursts that recur every 26.5 days. Astronomers cannot yet account for the energy that powers these emissions.

PSR J1836+5925. This is a pulsar — a type of spinning neutron star that emits beams of radiation — located in the constellation Draco. It’s one of the new breed of pulsars discovered by Fermi that pulse only in gamma rays.

47 Tucanae. Also known as NGC 104, this is a sphere of ancient stars called a globular cluster. It lies 15,000 light-years away in the southern constellation Tucana.

The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. Credit: NASA/Goddard Space Flight Center Conceptual Image Lab
The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. Credit: NASA/Goddard Space Flight Center Conceptual Image Lab

Click here to view an animation of the LAT

Unidentified. More than 30 of the brightest gamma-ray sources Fermi sees have no obvious counterparts at other wavelengths. This one, designated 0FGL J1813.5-1248, was not seen by previous missions, and Fermi’s LAT sees it as variable. The source lies near the plane of the Milky Way in the constellation Serpens Cauda. As a result, it’s likely within our galaxy — but right now, astronomers don’t know much more than that.

The top five sources beyond our galaxy are:

NGC 1275. Also known as Perseus A, this galaxy at the heart of the Perseus Galaxy Cluster is known for its intense radio emissions. It lies 233 million light-years away.

Hubble Space Telescope image of a blazar galaxy.  Credit: NASA
Hubble Space Telescope image of a blazar galaxy. Credit: NASA

3C 454.3. This is a type of active galaxy called a “blazar.” Like many active galaxies, a blazar emits oppositely directed jets of particles traveling near the speed of light as matter falls into a central supermassive black hole. For blazars, the galaxy happens to be oriented so that one jet is aimed right at us. Over the time period represented in this image, 3C 454.3 was the brightest blazar in the gamma-ray sky. It flares and fades, but for Fermi it’s never out of sight. The galaxy lies 7.2 billion light-years away in the constellation Pegasus.

PKS 1502+106. This blazar is located 10.1 billion light-years away in the constellation Boötes. It appeared suddenly, briefly outshone 3C 454.3, and then faded away.

PKS 0727-115. This object’s location in the plane of the Milky Way would lead one to expect that it’s a member of our galaxy, but it isn’t. Astronomers believe this source is a type of active galaxy called a quasar. It’s located 9.6 billion light-years away in the constellation Puppis.

Unidentified. This source, located in the southern constellation Columba, is designated 0FGL J0614.3-3330 and probably lies outside the Milky Way. “It was seen by the EGRET instrument on NASA’s earlier Compton Gamma Ray Observatory, which operated throughout the 1990s, but the nature of this source remains a mystery,” Thompson says.

The LAT scans the entire sky every three hours when operating in survey mode, which is occupying most of the telescope’s observing time during Fermi’s first year of operations. These snapshots let scientists monitor rapidly changing sources.

The all-sky image released today shows us how the cosmos would look if our eyes could detect radiation 150 million times more energetic than visible light. The view merges LAT observations spanning 87 days, from August 4 to October 30, 2008.

Source: NASA