Weekly Space Hangout – May 27, 2016: Dr. Seth Shostak

Host: Fraser Cain (@fcain)

Special Guest:
Dr. Seth Shostak is the Senior Astronomer at the SETI Institute. He also heads up the International Academy of Astronautics’ SETI Permanent Committee. In addition, Seth is keen on outreach activities: interesting the public – and especially young people – in science in general, and astrobiology in particular. He’s co-authored a college textbook on astrobiology, and has written three trade books on SETI. In addition, he’s published more than 400 popular articles on science — including regular contributions to both the Huffington Post and Discover Magazine blogs — gives many dozens of talks annually, and is the host of the SETI Institute’s weekly science radio show, “Big Picture Science.”

Guests:
Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Kimberly Cartier (@AstroKimCartier )
Jolene Creighton (fromquarkstoquasars.com / @futurism)
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)
Brian Koberlein (@briankoberlein / briankoberlein.com)

Their stories this week:
“Fresh” Lunar Craters

Faintest early-universe galaxy detected

Update on NASA’s Juno Mission

Europa’s ocean may have Earth-like chemical balance

Do Primordial Black Holes Solve Dark Matter?

India Successfully Launches Tiny Reusable Space Shuttle

30 KM Wide Asteroid Impacted Australia 3.4 Billion Years Ago

MeerKAT First Images

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Blue Origin Will Shoot Itself In The Foot On Purpose

New Shepard's crew capsule is seen descending with its parachutes deployed. The capsule's landing is cushioned by firing rockets after the parachutes have done their job. Image: Blue Origin
New Shepard's crew capsule is seen descending with its parachutes deployed. The capsule's landing is cushioned by firing rockets after the parachutes have done their job. Image: Blue Origin

Blue Origin, the builder of the New Shepard re-usable rocket, has announced plans for the fourth flight of the rocket. With a recent successful launch and landing in their pocket, the company is anticipating another similar result. But this time, something will be done differently.

This time around, New Shepard will be launched and landed normally, but the crew capsule will be tested with an intentionally failed parachute. Blue Origin is promising an “exciting demonstration,” and in an email said they will be “demonstrating our ability to safely handle that failure scenario.”

Though no date has yet been set for this gimped-parachute demonstration, we are looking forward to it.

In previous tests, the crew capsule performed maneuvers that characterized its aerodynamics and reduced what are called ‘model uncertainties.’ Greater predictability is what these test flights are designed to achieve. Obviously, too many question marks are not good.

As Jeff Bezos, head of Blue Origin, said in an email, “One of the fundamental tenets of Blue Origin is that the safest vehicle is one that is robust and well understood. Each successive mission affords us the opportunity to learn and improve our vehicles and their modeling.”

The company also shared news of the construction of additional test cells at its facility in West Texas. These cells were announced in October, and now one of the cells has been commissioned. This cell “supports the development of the pre-burner start and ignition sequence timing” according to Bezos.

A new test cell has been commissioned at the Blue Origin facility in Texas. Image: Blue Origin
A new test cell has been commissioned at the Blue Origin facility in Texas. Image: Blue Origin

Bezos also touted the benefits of privately-funded endeavours, saying “…one of the many benefits of a privately funded engine development is that we can make and implement decisions quickly. We made the decision to build these two new test cells as a team in a 10 minute discussion.” He added, “Less than three weeks later we were pouring concrete and now we have an operating pressure fed test cell 7 months later.”

It’s clear that privately-funded initiatives can have more flexibility than governmental initiatives. They don’t face the same budgetary wrangling that organizations like NASA do. But, they don’t command the same resources that NASA does.

Companies like Blue Origin an SpaceX are very innovative and are leading the way in reusable rockets. If Blue Origin can make the crew capsule survivable in a failed parachute scenario, as the next test aims to do, then commercial space flight will benefit. Private trips to space, which are one of Blue Origin’s goal, will also become more and more attainable.

The New Shepard launching from its facility in West Texas. Image: Blue Origin
The New Shepard launching from its facility in West Texas. Image: Blue Origin

Technical Glitch Postpones SpaceX Thaicom Launch/Landing to Friday May 27 – Watch Live Webcast

Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL, in this file photo. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, Fla. – Thursday’s (May 26) planned blastoff of an upgraded SpaceX Falcon 9 rocket on a lucrative commercial mission to deliver a Thai telecommunications satellite to orbit, was postponed in the final stages of the countdown after engineers discovered a technical glitch in the booster’s second stage.

Liftoff of the two stage Falcon 9 is now planned for Friday, May 27 at 5:39 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida.

Soon after liftoff, SpaceX will again execute a sea landing attempt of the first stage booster on a platform a sea following a tough reentry trajectory.

Since the launch window extends two hours, the SpaceX launch team took the time available to work the issue and tried as best they could to resolve it.

But in the end, and more than an hour into the available window, launch controllers decided it was best to stay safe and scrub for the day at about 6:40 p.m. EST and take the opportunity to thoroughly review all the data.

“Out of an abundance of caution, launch postponed until no earlier than tomorrow [May 27] for additional data review” SpaceX said via social media accounts.

Hundreds of millions of dollars are at stake on this commercial flight slated to deliver the Thaicom-8 comsat to a Geostationary Transfer Orbit (GTO) for Thaicom PLC, a leading satellite operator in Asia.

“Falcon 9 & THAICOM 8 spacecraft remain healthy,” SpaceX tweeted.

SpaceX founder and CEO Elon Mush said that the problem was traced to an engine actuator in the second stage wich is critical for delivering Thaicom-8 to its required geostationary orbit.

“There was a tiny glitch in the motion of an upper stage engine actuator,” SpaceX CEO Musk tweeted.

“Probably not a flight risk, but still worth investigating.”

You can watch the launch live on Friday via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 5:19 p.m. EDT- at SpaceX.com/webcast
The two stage Falcon 9 rocket has a two-hour launch window that extends until Friday, May 27 at 7:39 p.m. EDT.

The Florida weather is much less favorable than yesterday. Air Force meteorologists are predicting only a 40 percent chance of favorable weather conditions at launch time Friday. The major concerns could be violations of the Thick Cloud Layer Rule, Cumulus Cloud Rule, and Liftoff Winds.

Up close view of payload fairing of SpaceX Falcon 9 rocket delivering Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Up close view of payload fairing of SpaceX Falcon 9 rocket delivering Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The backup launch opportunity is Saturday, May 28. The weather outlooks is somewhat better at a 50 percent chance of favorable conditions.

Watch this truly cool video showing the rocket rollout to pad 40, rocket erection and finally the short static fire test carried out on Tuesday May 24, 2016.

Video Caption: SpaceX – Thaicom 8 – Roll Out – Lift – Static Fire Test – 05-24-2016. Credit: USLaunchReport

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

The Falcon 9 launch is the 5th this year for SpaceX.

Tune in to the SpaceX webcast Thursday afternoon to catch all the exciting action !!

Watch for Ken’s on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

May 27: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, late evening

What is the Coldest Planet of Our Solar System?

Neptune photographed by Voyage. Image credit: NASA/JPL
Neptune photographed by Voyager 2. Image credit: NASA/JPL

The Solar System is pretty huge place, extending from our Sun at the center all the way out to the Kuiper Cliff – a boundary within the Kuiper Belt that is located 50 AU from the Sun. As a rule, the farther one ventures from the Sun, the colder and more mysterious things get. Whereas temperatures in the inner Solar System are enough to burn you alive or melt lead, beyond the “Frost Line“, they get cold enough to freeze volatiles like ammonia and methane.

So what is the coldest planet of our Solar System? In the past, the title for “most frigid body” went to Pluto, as it was the farthest then-designated planet from the Sun. However, due to the IAU’s decision in 2006 to reclassify Pluto as a “dwarf planet”, the title has since passed to Neptune. As the eight planet from our Sun, it is now the outermost planet in the Solar System, and hence the coldest.

Orbit and Distance:

With an average distance (semi-major axis) of 4,504,450,000 km (2,798,935,466.87 mi or 30.11 AU), Neptune is the farthest planet from the Sun. The planet has a very minor eccentricity of 0.0086, which means that its orbit around the Sun varies from a distance of 29.81 AU (4.459 x 109 km) at perihelion to 30.33 AU (4.537 x 109 km) at aphelion.

The Solar System. Credit: NASA
The Solar System. Credit: NASA

Because Neptune’s axial tilt (28.32°) is similar to that of Earth (~23°) and Mars (~25°), the planet experiences similar seasonal changes. Combined with its long orbital period, this means that the seasons last for forty Earth years. Also owing to its axial tilt being comparable to Earth’s is the fact that the variation in the length of its day over the course of the year is not any more extreme than it is on Earth.

Average Temperature:

When it comes to ascertaining the average temperature of a planet, scientists rely on temperature variations measured from the surface. As a gas/ice giant, Neptune has no surface, per se. As a result, scientists rely on temperature readings from where the atmospheric pressure is equal to 1 bar (100 kPa), the equivalent to atmospheric pressure at sea level here on Earth.

On Neptune, this area of the atmosphere is just below the upper level clouds. Pressures in this region range between 1 and 5 bars (100 – 500 kPa), and temperature reach a high of 72 K (-201.15 °C; -330 °F). At this temperature, conditions are suitable for methane to condense, and clouds of ammonia and hydrogen sulfide are thought to form (which is what gives Neptune its characteristically dark cyan coloring).

Farther into space, where pressures drop to about 0.1 bars (10 kPa), temperatures decrease to their low of around 55 K (-218 °C; -360 °F). Further into the planet, pressures increase dramatically, which also leads to a dramatic increase in temperature. At its core, Neptune reaches temperatures of up to 7273 K (7000 °C; 12632 °F), which is comparable to the surface of the Sun.

Neptune Great Dark Spot in High Resolution
Neptune Great Dark Spot in High Resolution. Credit: NASA/JPL

The huge temperature differences between Neptune’s center and its surface (along with its differential rotation) create huge wind storms, which can reach as high as 2,100 km/hour, making them the fastest in the Solar System. The first to be spotted was a massive anticyclonic storm measuring 13,000 x 6,600 km and resembling the Great Red Spot of Jupiter.

Known as the Great Dark Spot, this storm was not spotted five later (Nov. 2nd, 1994) when the Hubble Space Telescope looked for it. Instead, a new storm that was very similar in appearance was found in the planet’s northern hemisphere, suggesting that these storms have a shorter lifespan than Jupiter’s. The Scooter is another storm, a white cloud group located farther south than the Great Dark Spot.

This nickname first arose during the months leading up to the Voyager 2 encounter in 1989, when the cloud group was observed moving at speeds faster than the Great Dark Spot. The Small Dark Spot, a southern cyclonic storm, was the second-most-intense storm observed during the 1989 encounter. It was initially completely dark; but as Voyager 2 approached the planet, a bright core developed and could be seen in most of the highest-resolution images.

Temperature Anomalies:

Despite being 50% further from the Sun than Uranus – which orbits the Sun at an average distance of 2,875,040,000 km (1,786,467,032.5 mi or 19.2184 AU) – Neptune receives only 40% of the solar radiation that Uranus does. In spite of that, the two planets’ surface temperatures are surprisingly close, with Uranus experiencing an average “surface” temperature of 76 K (-197.2 °C)

Four images of Neptune taken a few hours apart by the Hubble Space Telescope on June 25-26, 2011. Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)
Four images of Neptune taken a few hours apart by the Hubble Space Telescope on June 25-26, 2011. Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)

And while temperatures similarly increase the further one ventures into the core, the discrepancy is larger. Uranus only radiates 1.1 times as much energy as it receives from the Sun, whereas Neptune radiates about 2.61 times as much. Neptune is the farthest planet from the Sun, yet its internal energy is sufficient to drive the fastest planetary winds seen in the Solar System.

One would expect Neptune to be much colder than Uranus, and the mechanism for this remains unknown. However, astronomers have theorized that  Neptune’s higher internal temperature (and the exchange of heat between the core and outer layers) might be the reason for why Neptune isn’t significantly colder than Uranus.

As already noted, Pluto’s surface temperatures do get to being lower than Neptune’s. Between its greater distance from the Sun, and the fact that it is not a gas/ice giant (so therefore doesn’t have extreme temperatures at its core) means that it experiences temperatures between a high of 55 K (-218 °C; -360 °F)and a low of 33 K (-240 °C; -400 °F). However, since it is no longer classified as a planet (but a dwarf planet, TNO, KBO, plutoid, etc.) it is no longer in the running. Sorry, Pluto!

We’ve written many articles about Neptune here at Universe Today. Here’s Who Discovered Neptune?, What is the Surface Temperature of Neptune?, What is the Surface of Neptune Like?, 10 Interesting Facts about Neptune, The Rings of Neptune, How Many Moons Does Neptune Have?

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We’ve also recorded an entire episode of Astronomy Cast all about Neptune. Listen here, Episode 63: Neptune.

10 Interesting Facts About Earth

This view of Earth comes from NASA's Moderate Resolution Imaging Spectroradiometer aboard the Terra satellite.

Planet Earth. That shiny blue marble that has fascinated humanity since they first began to walk across its surface. And why shouldn’t it fascinate us? In addition to being our home and the place where life as we know it originated, it remains the only planet we know of where life thrives. And over the course of the past few centuries, we have learned much about Earth, which has only deepened our fascination with it.

But how much does the average person really know about the planet Earth? You’ve lived on Planet Earth all of your life, but how much do you really know about the ground underneath your feet? You probably have lots of interesting facts rattling around in your brain, but here are 10 more interesting facts about Earth that you may, or may not know.

1. Plate Tectonics Keep the Planet Comfortable:

Earth is the only planet in the Solar System with plate tectonics. Basically, the outer crust of the Earth is broken up into regions known as tectonic plates. These are floating on top of the magma interior of the Earth and can move against one another. When two plates collide, one plate will subduct (go underneath another), and where they pull apart, they will allow fresh crust to form.

The Earth's Tectonic Plates. Credit: msnucleus.org
The Earth’s Tectonic Plates. Credit: msnucleus.org

This process is very important, and for a number of reasons. Not only does it lead to tectonic resurfacing and geological activity (i.e. earthquakes, volcanic eruptions, mountain-building, and oceanic trench formation), it is also intrinsic to the carbon cycle. When microscopic plants in the ocean die, they fall to the bottom of the ocean.

Over long periods of time, the remnants of this life, rich in carbon, are carried back into the interior of the Earth and recycled. This pulls carbon out of the atmosphere, which makes sure we don’t suffer a runaway greenhouse effect, which is what happened on Venus. Without the action of plate tectonics, there would be no way to recycle this carbon, and the Earth would become an overheated, hellish place.

2. Earth is Almost a Sphere:

Many people tend to think that the Earth is a sphere. In fact, between the 6th cenury BCE and the modern era, this remained the scientific consensus. But thanks to modern astronomy and space travel, scientists have since come to understand that the Earth is actually shaped like a flattened sphere (aka. an oblate spheroid).

This shape is similar to a sphere, but where the poles are flattened and the equator bulges. In the case of the Earth, this bulge is due to our planet’s rotation. This means that the measurement from pole to pole is about 43 km less than the diameter of Earth across the equator. Even though the tallest mountain on Earth is Mount Everest, the feature that’s furthest from the center of the Earth is actually Mount Chimborazo in Ecuador.

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com
The Earth’s layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

3. Earth is Mostly Iron, Oxygen and Silicon:

If you could separate the Earth out into piles of material, you’d get 32.1 % iron, 30.1% oxygen, 15.1% silicon, and 13.9% magnesium. Of course, most of this iron is actually located at the core of the Earth. If you could actually get down and sample the core, it would be 88% iron. And if you sampled the Earth’s crust, you’d find that 47% of it is oxygen.

4. 70% of the Earth’s Surface is Covered in Water:

When astronauts first went into the space, they looked back at the Earth with human eyes for the first time. Based on their observations, the Earth acquired the nickname the “Blue Planet:. And it’s no surprise, seeing as how 70% of our planet is covered with oceans. The remaining 30% is the solid crust that is located above sea level, hence why it is called the “continental crust”.

5. The Earth’s Atmosphere Extends to a Distance of 10,000 km:

Earth’s atmosphere is thickest within the first 50 km from the surface or so, but it actually reaches out to about 10,000 km into space. It is made up of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. As a rule, air pressure and density decrease the higher one goes into the atmosphere and the farther one is from the surface.

Winter Solstice
Earth, as viewed from the cabin of the Apollo 11 spacecraft. Credit: NASA

The bulk of the Earth’s atmosphere is down near the Earth itself. In fact, 75% of the Earth’s atmosphere is contained within the first 11 km above the planet’s surface. However, the outermost layer (the Exosphere) is the largest, extending from the exobase – located at the top of the thermosphere at an altitude of about 700 km above sea level – to about 10,000 km (6,200 mi). The exosphere merges with the emptiness of outer space, where there is no atmosphere.

The exosphere is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules – including nitrogen, oxygen and carbon dioxide. The atoms and molecules are so far apart that the exosphere no longer behaves like a gas, and the particles constantly escape into space. These free-moving particles follow ballistic trajectories and may migrate in and out of the magnetosphere or with the solar wind.

Want more planet Earth facts? We’re halfway through. Here come 5 more!

6. The Earth’s Molten Iron Core Creates a Magnetic Field:

The Earth is like a great big magnet, with poles at the top and bottom near to the actual geographic poles. The magnetic field it creates extends thousands of kilometers out from the surface of the Earth – forming a region called the “magnetosphere“. Scientists think that this magnetic field is generated by the molten outer core of the Earth, where heat creates convection motions of conducting materials to generate electric currents.

The magnetic field and electric currents in and around Earth generate complex forces that have immeasurable impact on every day life. The field can be thought of as a huge bubble, protecting us from cosmic radiation and charged particles that bombard Earth in solar winds. It's shaped by winds of particles blowing from the sun called the solar wind, the reason it's flattened on the "sun-side" and swept out into a long tail on the opposite side of the Earth. Credit: ESA/ATG medialab
Artist’s impression of the Earth’s protective magnetic field and the dynamo effect in its core that gives rise to it. Credit: ESA/ATG medialab

Be grateful for the magnetosphere. Without it, particles from the Sun’s solar wind would hit the Earth directly, exposing the surface of the planet to significant amounts of radiation. Instead, the magnetosphere channels the solar wind around the Earth, protecting us from harm. Scientists have also theorized that Mars’ thin atmosphere is due to it having a weak magnetosphere compared to Earth’s, which allowed solar wind to slowly strip it away.

7. Earth Doesn’t Take 24 Hours to Rotate on its Axis:

It actually takes 23 hours, 56 minutes and 4 seconds for the Earth to rotate once completely on its axis, which astronomers refer to as a Sidereal Day. Now wait a second, doesn’t that mean that a day is 4 minutes shorter than we think it is? You’d think that this time would add up, day by day, and within a few months, day would be night, and night would be day.

But remember that the Earth orbits around the Sun. Every day, the Sun moves compared to the background stars by about 1° – about the size of the Moon in the sky. And so, if you add up that little motion from the Sun that we see because the Earth is orbiting around it, as well as the rotation on its axis, you get a total of 24 hours.

This is what is known as a Solar Day, which – contrary to a Sidereal Day – is the amount of time it takes the Sun to return to the same place in the sky. Knowing the difference between the two is to know the difference between how long it takes the stars to show up in the same spot in the sky, and the it takes for the sun to rise and set once.

8. A year on Earth isn’t 365 days:

It’s actually 365.2564 days. It’s this extra .2564 days that creates the need for a Leap Year once ever four years. That’s why we tack on an extra day in February every four years – 2004, 2008, 2012, etc. The exceptions to this rule is if the year in question is divisible by 100 (1900, 2100, etc), unless it divisible by 400 (1600, 2000, etc).

9. Earth has 1 Moon and 2 Co-Orbital Satellites:

As you’re probably aware, Earth has 1 moon (aka. The Moon). Plenty is known about this body and we have written many articles about it, so we won’t go into much detail there. But did you know there are 2 additional asteroids locked into a co-orbital orbits with Earth? They’re called 3753 Cruithne and 2002 AA29, which are part of a larger population of asteroids known as Near-Earth Objects (NEOs).

The asteroid known as 3753 Cruithne measures 5 km across, and is sometimes called “Earth’s second moon”. It doesn’t actually orbit the Earth, but has a synchronized orbit with our home planet. It also has an orbit that makes it look like it’s following the Earth in orbit, but it’s actually following its own, distinct path around the Sun.

Meanwhile, 2002 AA29 is only 60 meters across and makes a horseshoe orbit around the Earth that brings it close to the planet every 95 years. In about 600 years, it will appear to circle Earth in a quasi-satellite orbit. Scientists have suggested that it might make a good target for a space exploration mission.

10. Earth is the Only Planet Known to Have Life:

We’ve discovered past evidence of water and organic molecules on Mars, and the building blocks of life on Saturn’s moon Titan. We can see amino acids in nebulae in deep space. And scientists have speculated about the possible existence of life beneath the icy crust of Jupiter’s moon Europa and Saturn’s moon Titan. But Earth is the only place life has actually been discovered.

But if there is life on other planets, scientists are building the experiments that will help find it. For instance, NASA just announced the creation of the Nexus for Exoplanet System Science (NExSS), which will spend the coming years going through the data sent back by the Kepler space telescope (and other missions that have yet to be launched) for signs of life on extra-solar planets.

Europa's cracked, icy surface imaged by NASA's Galileo spacecraft in 1998. Credit: NASA/JPL-Caltech/SETI Institute.
Europa’s cracked, icy surface imaged by NASA’s Galileo spacecraft in 1998. Credit: NASA/JPL-Caltech/SETI Institute.

Giant radio dishes are currently scan distant stars, listening for the characteristic signals of intelligent life reaching out across interstellar space. And newer space telescopes, such as NASA’s James Webb Telescope, the Transiting Exoplanet Survey Satellite (TESS), and the European Space Agency’s Darwin mission might just be powerful enough to sense the presence of life on other worlds.

But for now, Earth remains the only place we know of where there’s life. Now that is an interesting fact!

We have written many interesting articles about planet Earth here on Universe Today. Here’s What is the Highest Place on Earth?, What is the Diameter of the Earth?, What is the Closest Planet to Earth?, What is the Surface Temperature of Earth? and The Rotation of the Earth?

Other articles include how fast the Earth rotates, and here’s an article about the closest star to Earth. If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

And there’s even an Astronomy Cast episode on the subject of planet Earth.

Can Stars Be Cold?

Can Stars Be Cold?

If you’ve heard me say “oot and aboot”, you know I’m a Canadian. And we Canadians are accustomed to a little cold. Okay, a LOT of cold. It’s not so bad here on the West Coast, but folks from Winnepeg can endure temperatures colder than the surface of Mars.  Seriously, who lives like that?

And on one of those cold days, even on a clear sunny day, the Sun is pointless and worthless. As the bone chilling cold numbs your fingers and toes, it’s as if the Sun itself has gone cold, sapping away all the joy and happiness in the world. And don’t get me started about the rain. Clearly, I need to take more tropical vacations.

But we know the Sun isn’t cold at all, it’s just that the atmosphere around you feels cold. The surface of the Sun is always the same balmy 5,500 degrees Celsius. Just to give you perspective, that’s hot enough to melt iron, nickel. Even carbon melts at 2500 C. So, no question, the Sun is hot.

The Sun – It’s pretty hot. Credit: NASA/SDO.

And you know that the Sun is hot because it’s bright. There are actually photons streaming from the Sun at various wavelengths, from radio, infrared, through the visible spectrum, and into the ultraviolet. There are even X-ray photons blasting off the Sun.

If the Sun was cooler, it would look redder, just like a cooler red dwarf star, and if the Sun was hotter, it would appear more blue. But could you have a star that’s cooler, or even downright cold?

The answer is yes, you just have to be willing to expand your definition of what a star is.

Under the normal definition, a star is a collection of hydrogen, helium and other elements that came together by mutual gravity. The intense gravitational pressure of all that mass raised temperatures at the core of the star to the point that hydrogen could be fused into helium. This reaction releases more energy than it takes, which causes the Sun to emit energy.

The coolest possible red dwarf star, one with only 7.5% the mass of the Sun, will still have a temperature of about 2,300 C, a little less than the melting point of carbon.

But if a star doesn’t have enough mass to ignite fusion, it becomes a brown dwarf. It’s heated by the mechanical action of all that mass compressing inward, but it’s cooler. Average brown dwarfs will be about 1,700 C, which actually, is still really hot. Like, molten rock hot.

This artist’s conception illustrates the brown dwarf named 2MASSJ22282889-431026. Credit: NASA/JPL-Caltech

Brown dwarfs can actually get a lot cooler, a new class of these “stars” were discovered by the WISE Space Observatory that start at 300 degrees, and go all the way down to about 27 degrees, or room temperature. This means there are stars out there that you could touch.

Except you couldn’t, because they’d still have more than a dozen times the mass of Jupiter, and would tear your arm off with their intense gravity. And anyway, they don’t a solid surface. No, you can’t actually touch them.

That’s about as cold as stars get, today, in the Universe.

But if you’re willing to be very very patient, then it’s a different story. Our own Sun will eventually run out of fuel, die and become a white dwarf. It’ll start out hot, but over the eons, it’ll cool down, eventually becoming the same temperature as the background level of the Universe – just a few degrees above absolute zero. Astronomers call these black dwarfs.

We’re talking a long long time, though, in fact, in the 13.8 billion years that the Universe has been around, no white dwarfs have had enough time to cool down significantly. In fact, it would take about a quadrillion years to get within a few degrees of the cosmic microwave background radiation temperature.

The House Makes NASA A Counteroffer It Probably Can’t Refuse

NASA's new budget could mean the end of their Asteroid Redirect Mission. Image: NASA (Artist's illustration)
NASA's new budget could mean the end of their Asteroid Redirect Mission. Image: NASA (Artist's illustration)

It looks like mostly good news in NASA’s budget for 2017. The Commerce, Justice, and Science sub-committee is the House of Representatives body that oversees NASA finances, and they have released details on how they would like to fund NASA in 2017. According to their plan, NASA’s budget would be $19.5 billion. That amount is $500 million more than President Obama had asked for, and $200 million above what the Senate had proposed.

If the bill is approved by the House of Representatives, then this budget would be NASA’s largest in 6 years (adjusted for inflation.)

While it is good news overall, some projects that were in NASA’s plans will not be funded, according to this bill.

On the chopping block is the Asteroid Re-Direct Mission (ARM). ARM is an ambitious robotic mission to visit a large asteroid near Earth, collect a boulder weighing several tons from its surface, and put it into a stable orbit around a Moon. Once the boulder was in a stable orbit, astronauts would visit it to explore and collect samples for return to Earth. NASA had touted this mission as an important step to advancing the technologies needed for a human mission to Mars.

ARM was an intriguing and ambitious mission, but it looks like it will be unfunded. The sub-committee explained that decision by saying “The Committee believes that neither a robotic nor a crewed mission to an asteroid appreciably contribute to the overarching mission to Mars,” adding that “…the long-term costs of launching a robotic craft to the asteroid, followed by a crewed mission, are unknown and will divert scarce resources away from developing technology and equipment necessary for missions to Mars.”

Another area seeing its funding cut is the Earth Science division. That division would lose $231 million compared to 2016.

There are winners in this bill, though. The Planetary Science division would receive a $215 million boost in 2017, compared to 2016. This means a 2022 mission to Europa is still on the books, and NASA can select two more Discovery class missions.

Beyond the numbers, the Commerce, Justice, and Science sub-committee also signalled its support for a human presence on the Moon. The sub-committee stated that “NASA is encouraged to develop plans to return to the Moon to test capabilities that will be needed for Mars, including habitation modules, lunar prospecting, and landing and ascent vehicles.” This is fantastic news.

The Space Launch System (SLS) and the Orion program will also continue to receive healthy funding. These two programs are key to NASA’s long term plans, so their stable funding is good news.

There are some groovy technologies that will receive seed funding in this proposed budget.

One of these is a tiny helicopter that would work in conjunction with a rover on the surface of Mars. This solar-powered unit would fly ahead of a rover, acting as a scout to locate hazards and places of interest. This project would receive $15 million.

With a body the size of a tissue box, this helicopter would partner with a Martian rover, and help the rover cover more ground in a day. Image: NASA
With a body the size of a tissue box, this helicopter would partner with a Martian rover, and help the rover cover more ground in a day. Image: NASA

Another new technology receiving seed money is the Starshade. The Starshade would augment the Wide Field Infrared Survey Telescope (WFIRST). WFIRST is a space telescope designed to study dark energy, exoplanets, and infrared astrophysics. The Starshade would be separate from the WFIRST, and by blocking the light from a distant star, would allow WFIRST to image planets orbiting that star. The goal would be to detect the presence of oxygen, methane, and other chemicals associated with life, in the atmosphere of exoplanets.

An artist's illustration of the Starshade deployed near its companion telescope. Image: NASA
An artist’s illustration of the Starshade deployed near its companion telescope. Image: NASA

The funding bill also directs NASA to consider forms of propulsion that could propel a craft at 10% of the speed of light. This includes Bussard ramjets, matter-antimatter reactors, beamed energy systems, and anti-matter catalyzed fusion reaction. The bill asks that within a year of being passed, NASA creates a draft reporting addressing interstellar propulsion, and that a roadmap be put in place for further development of these systems. The hope is that one of these systems will be in place for a trip to Alpha Centauri in 2069, which will be the 100 year anniversary of the Apollo Moon landing.

It should be noted that these numbers are not approved yet. Some of these numbers go back and forth between the levels of government before they are finalized. It would take a lesson on governance structure to explain how that all works, but suffice it to say that although they’re not finalized, yet, things look good overall for NASA.

A Lord of Rings: Saturn at Opposition 2016

Saturn 2016
Saturn in early May 2016. Image credit: Efrain Morales.

They’re back. After a wintertime largely devoid of evening worlds, the planets are once again in the evening sky. First Jupiter, then Mars have crossed opposition over the past few months, and now Saturn is set to take center stage later next week, reaching opposition at 7:00 Universal Time (UT) on the night of June 2/3rd. This places the ringed world in a position of favorable evening viewing, rising in the east as the Sun sets in the west, and riding highest near local midnight across the meridian.

Opposition 2016 sees the planet Saturn looping through the southern realm of the constellation Ophiuchus, making a retrograde run this summer at the Scorpius border before looping back and resuming eastward motion. That’s right: Saturn currently occupies the dreaded ‘13th house,’ of Ophiuchus, for all you Snake-Bearers out there. Saturn is currently at bright as it can be, at magnitude +0.04.

Saturn rising on the night of June 2nd. Image credit: Starry Night Education Software.
Saturn rising on the night of June 2nd. Image credit: Starry Night Education Software.

Saturn reaches opposition once every 378 days, as it orbits the Sun at a leisurely pace every 29.5 years. 2016 and the next few oppositions sees Saturn ‘bottoming out,’ sitting around -20 degrees south. Saturn won’t peek northward across the celestial equator again until March 2026. This places the 2016 appearance of Saturn high in the sky south of the equator, transiting about 30 degrees above the southern horizon around midnight for folks observing around 40 degrees north latitude. Saturn also begins looping towards the star-rich region of the galactic equator for a crossing it late next year in December 2017. Saturn sits 9 Astronomical Units (AU) or 1.4 billion kilometers distant on June 3rd, a slightly larger distance than usual, owing to the fact that the planet is headed towards aphelion on April 17th, 2018.

The waxing gibbous Moon passes 3.2 degrees north from Saturn on Sunday, June 19th, just a day before reaching Full.

Watch for a sudden brightening of the planet in early June, known as an ‘opposition surge’ due to what is known as the Seeliger effect. This is a coherent back-scattering of light, focusing it similar to highway retro-reflectors shining your headlights back at you at night. In this case, the Sun is the ‘headlight,’ and the millions of snowball moonlets hiding their shadows from view reaching 100% illumination are the highway retro-reflectors. The effect is subtle, to be sure, but serves to raise the brightness of the planet by about half a magnitude. This should be apparent in an animation sequence shot before, during and after over the span of a about a week. Any takers?

Almost there... the widening tilt of Saturn's rings. image credit and copyright: Andrew Symes (@failedprotostar).
Almost there… the widening tilt of Saturn’s rings. image credit and copyright: Andrew Symes (@failedprotostar).

And speaking of the rings, here’s another reason to check out Saturn this opposition 2016 season. The tilt of rings is about 26 degrees wide as seen from our Earthly perspective… about as wide as they can be. Saturn’s rings were last edge on in 2009, and reach a maximum width of 27 degrees on October 16th, 2017 before slowly heading towards edge on again in 2025.

The path of Saturn through the last half of 2016. Image credit: Starry Night Education software.
The path of Saturn through the last half of 2016. Image credit: Starry Night Education software.

At the eyepiece, Saturn shows a yellowish disk 18” extended to 43” across if you count the rings. Crank up the magnification to over 100x under good seeing, and the black thread of the Cassini division jumps into view. Saturn has 62 moons in all, with +9th magnitude Titan being the brightest. You’re looking at the most distant surface outpost of humanity, the site of the 2005 landing of the European Space Agency’s Huygens lander. Six moons are readily visible in a small telescope, while the fainter moons Hyperion and Phoebe present a challenge to owners of extreme light buckets. Also, as Saturn heads past opposition and towards eastern quadrature 90 degrees from the Sun on September 2nd, 2016, watch for the shadow of the bulk of the planet, cast back across the rings.

A sampling of the Moons of Saturn. Image credit: Stellarium.
A sampling of the Moons of Saturn. Image credit: Stellarium.

We never miss a chance to observe Saturn if it’s above the horizon. Saturn is a sure-fire crowd-pleaser for any sidewalk astronomy session, and no one forgets their first glimpse of the glorious ringed world. You can just imagine how much consternation this bizarre-looking planet must have caused Galileo. You can tell just how primitive his first telescope was, as his sketches show off Saturn as more of a two-handled ‘coffee cup’ in appearance. Christaan Huygens first deduced something of the true nature of Saturn’s rings in 1655, correctly claiming that they are physically separated from the disk.

Don’t miss Saturn at opposition next week!

SpaceX Targets Thursday May 26 for Thai Comsat Launch and Tough Sea Landing – Watch Live

SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo.  Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer

CAPE CANAVERAL AIR FORCE STATION, Fla. – Just three weeks after SpaceX’s last launch from their Florida launch base, the growing and influential aerospace firm is deep into commencing their next space spectacular – targeting this Thursday, May 26, for launch of a Thai comsat followed moments later by a sea landing attempt of the booster on a tough trajectory.

SpaceX is slated to launch the Thaicom-8 telecommunications satellite atop an upgraded version of the SpaceX Falcon 9 on Thursday at 5:40 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida.

SpaceX is rapidly picking up the pace of rocket launches for their wide ranging base of commercial, government and military customers that is continuously expanding and reaping contracts and profits for the Hawthorne, Calif. based company.

This commercial mission involves lofting Thaicom-8 to a Geostationary Transfer Orbit (GTO) for Thaicom PLC, a leading satellite operator in Asia.

This also counts as the second straight GTO launch and the second straight attempt to land a rocket on a sea based platform from the highly demanding GTO launch trajectory.

Will this mission make for 3 successful Falcon 9 1st stage booster landings in a row? Tune in and find out !!

Engineers have a two-hour window to launch the Falcon 9 and deliver Thaicom to orbit.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

The Falcon 9 launch is the 5th this year for SpaceX.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 5:20 a.m. EDT at SpaceX.com/webcast

The two stage Falcon 9 rocket has a two-hour launch window that extends until Thursday, May 26 at 7:40 p.m. EDT.

Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016.  The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016.  Credit: Orbital ATK
Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016. The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016. Credit: Orbital ATK

The path to liftoff was cleared late last night the company completed the customary pre-launch static fire test of the rocket’s first stage upgraded Merlin 1D engines for several seconds at pad 40.

The nine engines on the 229 foot tall Falcon 9 rocket generate approximately 1.5 million pounds of thrust.

Engineers monitored the test and after analyzing results declared the Falcon 9 was fit to launch Thursday afternoon.

The weather currently looks very good. Air Force meteorologists are predicting a 90 percent chance of favorable weather conditions at launch time Thursday morning with a minor concern for ground winds.

The backup launch opportunity is Friday, May 27. The weather outlooks is somewhat less promising at a 70 percent chance of favorable conditions.

After the Falcon 9 rocket delivers the satellite into its targeted geosynchronous transfer orbit it will enter a 30-day testing phase, says Orbital ATK.

Following in-orbit activation and after reaching its final orbital slot, Orbital ATK will then turn over control of the satellite to Thaicom to begin normal operations.

THAICOM 8’s orbital location will be positioned at 78.5 degrees east longitude and the satellite is designed to operate for more than 15 years.

Thaicom-8 is a Ku-band satellite that offers 24 active transponders that will deliver broadcast and data services to customers in Thailand, Southeast Asia, India and Africa.

Thaicom-8 has a mass of approximately 6,800 pounds (3,100 kilograms). It is based on Orbital ATK’s flight-proven GEOStar-2TM platform.

“We built and delivered this high-quality communications satellite for Thaicom PLC two months ahead of schedule, demonstrating our ability to manufacture reliable, affordable and innovative products that exceed expectations for our customer,” said Amer Khouri, Vice President of the Commercial Satellite Business at Orbital ATK.

“As one of Asia’s leading satellite operators, we are grateful for Thaicom’s continued confidence and look forward to more successful partnerships in the future.”

Thaicom-8 will join Thaicom-6 already in orbit. It was also designed, manufactured, integrated and tested by Orbital ATK. at the firm’s state-of-the-art satellite manufacturing facility in Dulles, Virginia.

Thaicom PLC commissioned Thaicom-8 in 2014, shortly after SpaceX launched the THAICOM 6 satellite into orbit in January 2014.

Thaicom-8 mission patch artwork.  Credit: SpaceX
Thaicom-8 mission patch artwork. Credit: SpaceX

The secondary test objective of SpaceX is to land the Falcon 9 rockets first stage on an ocean going barge several hundred miles offshore in the Atlantic Ocean.

The Autonomous Spaceport Drone Ship (ASDS) barge is named “Of Course I Still Love You.”

However with this mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating and a successful landing will be difficult.

Having said that and despite those hurdles, the last GTO mission landing attempt did succeed brilliantly following the May 6 JCSAT-14 launch.

Tune in to the SpaceX webcast Thursday afternoon to catch all the exciting action !!

Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace.  Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX.  Composite:  Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer

Watch for Ken’s on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

May 25/26: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Jun 2 to 5: “ULA, NRO, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

The Bigelow Expandable Module Is About To Blow Up

This computer rendering shows the Bigelow Expanded Activity Module in its fully expanded configuration. Image: NASA
This computer rendering shows the Bigelow Expanded Activity Module in its fully expanded configuration. Image: NASA

Update:

The Bigelow Expandable Activity Module did not fully expand today, May 26th, as planned. Engineers are meeting to try to understand why the module didn’t fully expand. They are evaluating data from the expansion to determine what has happened. If the data says its okay to resume expansion, that could happen as early as tomorrow, May 27th.

A previously scheduled teleconference has been postponed, and NASA will update when a decision on expansion is made.

People who aren’t particularly enthusiastic about space science and space exploration often accuse those of us who are, of “living in a bubble.” There are so many seemingly intractable problems here on Earth, so they say, that it’s foolish to spend so much money and time on space exploration. But if all goes well with the Bigelow Expandable Activity Module (BEAM) at the ISS this week, astronauts may well end up living in a sort of bubble.

Expandable, inflatable habitats could bring about a quiet revolution in space exploration, and the BEAM is leading that revolution. Because it’s much more compact and much lighter than rigid steel and aluminum structures, the cost of building them and launching them into space is much lower. The benefits of lower costs for building them and launching them are obvious.

NASA first announced plans to test the BEAM back in 2013. They awarded a $17.8 million contract to Bigelow Aerospace to provide the expandable module, with the idea of testing it for a two-year period.

NASA Deputy Administrator Lori Garver and Bigelow Aerospace founder Robert Bigelow stand in front of the BEAM in January, 2013. Image: NASA/Bill Ingalls
NASA Deputy Administrator Lori Garver and Bigelow Aerospace founder Robert Bigelow stand in front of the BEAM in January, 2013. Image: NASA/Bill Ingalls

When the contract was announced, NASA Deputy Administrator Lori Garver said, “The International Space Station is a unique laboratory that enables important discoveries that benefit humanity and vastly increase understanding of how humans can live and work in space for long periods. This partnership agreement for the use of expandable habitats represents a step forward in cutting-edge technology that can allow humans to thrive in space safely and affordably, and heralds important progress in U.S. commercial space innovation.”

Though no astronauts will be living in the module, it will be tested to see how it withstands the rigours of space. ISS astronauts will enter the module periodically, but for the most part, the module will be monitored remotely. Of particular interest to NASA is the module’s ability to withstand solar radiation, debris impact, and temperature extremes.

The BEAM was launched in April aboard a SpaceX Dragon Capsule, itself carried aloft by a SpaceX Falcon rocket. Personnel aboard the ISS used the station’s robotic arm to unpack the BEAM and attach it to the station. That procedure went well, and now the BEAM is ready for inflation.

This sped-up animation shows the ISS's robotic arm removing the uninflated BEAM from the Dragon capsule and attaching it to the station. Credit: NASA
This sped-up animation shows the ISS’s robotic arm removing the uninflated BEAM from the Dragon capsule and attaching it to the station. Credit: NASA

How exactly the BEAM will behave while it’s being inflated is uncertain. The procedure will be done slowly and methodically, with the team exercising great caution during inflation.

Once inflated, the BEAM will expand to almost five times its travelling size. While packed inside the Dragon capsule, the module is 8 ft. in diameter by 7 ft. in length. After inflation, it will measure 10 ft. in diameter and 13 ft. in length, and provide 16 cubic meters (565 cubic ft.) of habitable volume. That’s about as large as a bedroom.

After inflation, the BEAM will sit for about a week before any astronauts enter it. After that, the plan is to visit the module 2 or 3 times per year to check conditions inside. During those visits, astronauts will also get sensor data from equipment inside the BEAM.

Some, including Bigelow CEO Robert Bigelow, are hopeful that after the first six months or so, the timeline can be accelerated a little. If NASA approves it, the BEAM could be used for science experiments at that time.

As for Bigelow itself, they are already working on the B330, a much larger expandable habitat that promises even greater impact durability and radiation protection than the BEAM. Bigelow hopes that the B330 could be used on the surface of the Moon and Mars, as well as in orbit.

The BEAM will never attract the attention that rocket launches and Mars rovers do. But their impact on space exploration will be hard to deny. And when naysayers accuse us of living in a bubble, we can smile and say, “We’re working on it.”