A Meteoroid Smashed Into the Side of a Crater on Mars and Then Started a Landslide

HiRISE image from NASA's Mars Reconnaissance Orbiter (MRO) showing an impact crater that triggered a slope streak. Credit: NASA/JPL/University of Arizona

In 2006, NASA’s Mars Reconnaissance Orbiter (MRO) established orbit around the Red Planet. Using an advanced suite of scientific instruments – which include cameras, spectrometers, and radar – this spacecraft has been analyzing landforms, geology, minerals and ice on Mars for years and assisting with other missions. While the mission was only meant to last two years, the orbiter has remained in operation for the past twelve.

In that time, the MRO has acted as a relay for other missions to send information back to Earth and provided a wealth of information of its own on the Red Planet. Most recently, it captured an image of an impact crater that caused a landslide, which left a long, dark streak along the crater wall. Such streaks are created when dry dust collapses down the edge of a Martian hill, leaving behind dark swaths.

Close up of the crater captured by the MRO’s HiRISE instrument. Credit: NASA/JPL/University of Arizona

In this respect, these avalanches are not unlike Recurring Slope Lineae (RSL), where seasonal dark streaks appear along slopes during warmer days on Mars. These are believed to be caused by either salt water flows or dry dust grains falling naturally. In this case, however, the dry dust on the slope was destabilized by the meteor’s impact, which exposed darker material beneath.

The impact that created the crater is believed to have happened about ten years ago. And while the crater itself (shown above) is only 5 meters (16.4 feet) across, the streak it resulted in is 1 kilometer (0.62 mi) long! The image also captured the faded scar of an old avalanche, which is visible to the side of the new dark streak.

The image was captured by the MRO’s High Resolution Imaging Science Experiment (HiRISE), which is operated by researchers at the Planetary Image Research Laboratory (PIRL), part of the Lunar and Planetary Laboratory (LPL) at the University of Arizona, Tucson.

Wider-angle view of the impact crater captured by the MRO’s HiRISE instrument and the resulting dark streak. Credit: NASA/JPL/University of Arizona

This is just the latest in a long-line of images and data packages sent back by the MRO. By providing daily reports on Mars’ weather and surface conditions, and studying potential landing sites, the MRO also paves the way for future spacecraft and surface missions. In the future, the orbiter will serve as a highly capable relay satellite for missions like NASA’s Mars 2020 rover, which will continue in the hunt for signs of past life on Mars.

At present, the MRO has enough propellant to keep functioning into the 2030s, and given its intrinsic value to the study of Mars, it is likely to remain in operation right up until it exhausts its fuel. Perhaps it will even be working when astronauts arrived on the Red Planet?

The Black Hole Ultimate Solar System: a Supermassive Black Hole, 9 Stars and 550 Planets

Artist's impression of the "Black Hole Ultimate Solar System". Credit: planetplanet.net

Shortly after Einstein published his Theory of General Relativity in 1915, physicists began to speculate about the existence of black holes. These regions of space-time from which nothing (not even light) can escape are what naturally occur at the end of most massive stars’ life cycle. While black holes are generally thought to be voracious eaters, some physicists have wondered if they could also support planetary systems of their own.

Looking to address this question, Dr. Sean Raymond – an American physicist currently at the University of Bourdeaux – created a hypothetical planetary system where a black hole lies at the center. Based on a series of gravitational calculations, he determined that a black hole would be capable of keeping nine individual Suns in a stable orbit around it, which would be able to support 550 planets within a habitable zone.

He named this hypothetical system “The Black Hole Ultimate Solar System“, which consists of a non-spinning black hole that is 1 million times as massive as the Sun. That is roughly one-quarter the mass of Sagittarius A*, the super-massive black hole (SMBH) that resides at the center of the Milky Way Galaxy (which contains 4.31 million Solar Masses).

Detection of an unusually bright X-Ray flare from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxy. Credit: NASA/CXC/Stanford/I. Zhuravleva et al.

As Raymond indicates, one of the immediate advantages of having this black hole at the center of a system is that it can support a large number of Suns. For the sake of his system, Raymond chose 9, thought he indicates that many more could be sustained thanks to the sheer gravitational influence of the central black hole. As he wrote on his website:

“Given how massive the black hole is, one ring could hold up to 75 Suns! But that would move the habitable zone outward pretty far and I don’t want the system to get too spread out. So I’ll use 9 Suns in the ring, which moves everything out by a factor of 3. Let’s put the ring at 0.5 AU, well outside the innermost stable circular orbit (at about 0.02 AU) but well inside the habitable zone (from about 2.7 to 5.4 AU).”

Another major advantage of having a black hole at the center of a system is that it shrinks what is known as the “Hill radius” (aka. Hill sphere, or Roche sphere). This is essentially the region around a planet where its gravity is dominant over that of the star it orbits, and can therefore attract satellites. According to Raymond, a planet’s Hill radius would be 100 times smaller around a million-sun black hole than around the Sun.

This means that a given region of space could stably fit 100 times more planets if they orbited a black hole instead of the Sun. As he explained:

“Planets can be super close to each other because the black hole’s gravity is so strong! If planets are little toy Hot wheels cars, most planetary systems are laid out like normal highways (side note: I love Hot wheels).  Each car stays in its own lane, but the cars are much much smaller than the distance between them.  Around a black hole, planetary systems can be shrunk way down to Hot wheels-sized tracks.  The Hot wheels cars — our planets — don’t change at all, but they can remain stable while being much closer together. They don’t touch (that would not be stable), they are just closer together.”

This is what allows for many planets to be placed with the system’s habitable zone. Based on the Earth’s Hill radius, Raymond estimates that about six Earth-mass planets could fit into stable orbits within the same zone around our Sun. This is based on the fact that Earth-mass planets could be spaced roughly 0.1 AU from each other and maintain a stable orbit.

Given that the Sun’s habitable zone corresponds roughly to the distances between Venus and Mars – which are 0.3 and 0.5 AU away, respectively – this means there is 0.8 AUs of room to work with. However, around a black hole with 1 million Solar Masses, the closest neighboring planet could be just 1/1000th (0.001) of an AU away and still have a stable orbit.

Doing the math, this means that roughly 550 Earths could fit in the same region orbiting the black hole and its nine Suns. There is one minor drawback to this whole scenario, which is that the black hole would have to remain at its current mass. If it were to become any larger, it would cause the Hill radii of its 550 planets to shrink down further and further.

Once the Hill radius got down to the point where it was the same size as any of the Earth-mass planets, the black hole would begin to tear them apart. But at 1 million Solar masses, the black hole is capable of supporting a massive system of planets comfortably. “With our million-Sun black hole the Earth’s Hill radius (on its current orbit) would already be down to the limit, just a bit more than twice Earth’s actual radius,” he says.

Illustration of tightly-packed orbits of Earth-mass planets in orbit around the Sun (in black) vs. around a supermassive black hole (green). Credit: Sean Raymond

Lastly, Raymond considers the implications that living in such a system would have. For one, a year on any planet within the system’s habitable zone would be much shorter, owing to the fact their orbital periods would be much faster. Basically, a year would last roughly 1.6 days for planets at the inner edge of the habitable zone and 4.6 days for planets at the outer edge of the habitable zone.

In addition, on the surface of any planet in the system, the sky would be a lot more crowded! With so many planets in close orbit together, they would pass very close to one another. That essentially means that from the surface of any individual Earth, people would be able to see nearby Earths as clear as we see the Moon on some days. As Raymond illustrated:

“At closest approach (conjunction) the distance between planets is about twice the Earth-Moon distance. These planets are all Earth-sized, about 4 times larger than the Moon. This means that at conjunction each planet’s closest neighbor appears about twice the size of the full Moon in the sky. And there are two nearest neighbors, the inner and outer one. Plus, the next-nearest neighbors are twice as far away so they are still as big as the full Moon during conjunction. And four more planets that would be at least half the full Moon in size during conjunction.”

He also indicates that conjunctions would occur almost once per orbit, which would mean that every few days, there would be no shortage of giant objects passing across the sky. And of course, there would be the Sun’s themselves. Recall that scene in Star Wars where a young Luke Skywalker is watching two suns set in the desert? Well, it would a little like that, except way more cool!

According to Raymond’s calculations, the nine Suns would complete an orbit around the black hole every three hours. Every twenty minutes, one of these Suns would pass behind the black hole, taking just 49 seconds to do so. At this point, gravitational lensing would occur, where the black hole would focus the Sun’s light toward the planet and distort the apparent shape of the Sun.

To illustrate what this would look like, he provides an animation (shown above) created by – a planet modeller who develops space graphics for Kerbal and other programs – using Space Engine.

While such a system may never occur in nature, it is interesting to know that such a system would be physically possible. And who knows? Perhaps a sufficiently advanced species, with the ability to tow stars and planets from one system and place them in orbit around a black hole, could fashion this Ultimate Solar System. Something for SETI researchers to be on the lookout for, perhaps?

This hypothetical exercise was the second installment in two-part series by Raymond, titled “Black holes and planets”. In the first installment, “The Black Hole Solar System“, Raymond considered what it would be like if our system orbited around a black hole-Sun binary. As he indicated, the consequences for Earth and the other Solar planets would be interesting, to say the least!

Raymond also recently expanded on the Ultimate Solar System by proposing The Million Earth Solar System. Check them all out at his website, PlanetPlanet.net.

Further Reading: PlanetPlanet

What’s the Minimum Number of People you Should Send in a Generational Ship to Proxima Centauri?

A concept for a multi-generation ship being designed by the TU Delft Starship Team (DSTART), with support from the ESA. Credit and Copyright: Nils Faber & Angelo Vermeulen

Humanity has long dreamed about sending humans to other planets, even before crewed spaceflight became a reality. And with the discovery of thousands of exoplanets in recent decades, particularly those that orbit within neighboring star systems (like Proxima b), that dream seems closer than ever to becoming a reality. But of course, a lot of technical challenges need to be overcome before we can hope to mount such a mission.

In addition, a lot of questions need to be answered. For example, what kind of ship should we send to Proxima b or other nearby exoplanets? And how many people would we need to place aboard that ship? The latter question was the subject of a recent paper written by a team of French researchers who calculated the minimal number of people that would be needed in order to ensure that a healthy multi-generational crew could make the journey to Proxima b.

Continue reading “What’s the Minimum Number of People you Should Send in a Generational Ship to Proxima Centauri?”

One Way to Find Aliens Would be to Search for Artificial Rings of Satellites: Clarke Belts

Artistic representations of a Clarke exobelt with a portrait of Sir Arthur C. Clarke in the background. Credit: Caro Waro (@carwaro).

When it comes to the search for extra-terrestrial intelligence (SETI) in the Universe, there is the complicated matter of what to be on the lookout for. Beyond the age-old question of whether or not intelligent life exists elsewhere in the Universe (statistically speaking, it is very likely that it does), there’s also the question of whether or not we would be able to recognize it if and when we saw it.

Given that humanity is only familiar with one form of civilization (our own), we tend to look for indications of technologies we know or which seem feasible. In a recent study, a researcher from the Instituto de Astrofísica de Canarias (IAC) proposed looking for large bands of satellites in distant star systems – a concept that was proposed by the late and great Arthur C. Clarke (known as a Clarke Belt).

The study – titled “Possible Photometric Signatures of Moderately Advanced Civilizations: The Clarke Exobelt” – was conducted by Hector Socas-Navarro, an astrophysicist with the IAC and the Universidad de La Laguna. In it, he advocates using next-generation telescopes to look for signs of massive belts of geostationary communication satellites in distant star systems.

This proposal is based in part on a paper written by Arthur C. Clarke in 1945 (titled “Peacetime Uses for V2“), in which he proposed sending “artificial satellites” into geostationary orbit around Earth to create a global communications network. At present, there are about 400 such satellites in the “Clarke Belt” – a region named in honor of him that is located 36,000 km above the Earth.

This network forms the backbone of modern telecommunications and in the future, many more satellites are expected to be deployed – which will form the backbone of the global internet. Given the practicality of satellites and the fact that humanity has come to rely on them so much, Socas-Navarro considers that a belt of artificial satellites could naturally be considered “technomarkers” (the analogues of “biomarkers”, which indicate the presence of life).

As Socas-Navarro explained to Universe Today via email:

“Essentially, a technomarker is anything that we could potentially observe which would reveal the presence of technology elsewhere in the Universe. It’s the ultimate clue to find intelligent life out there. Unfortunately, interstellar distances are so great that, with our current technology, we can only hope to detect very large objects or structures, something comparable to the size of a planet.”

In this respect, a Clarke Exobelt is not dissimilar from a Dyson Sphere or other forms of megastructures that have been proposed by scientists in the past. But unlike these theoretical structures, a Clarke Exobelt is entirely feasible using present-day technology.

Graphic showing the cloud of space debris that currently surrounds the Earth. Credit: NASA’s Goddard Space Flight Center/JSC

“Other existing technomarkers are based on science fiction technology of which we know very little,” said Socas-Navarro. “We don’t know if such technologies are possible or if other alien species might be using them. The Clarke Exobelt, on the other hand, is a technomarker based on real, currently existing technology. We know we can make satellites and, if we make them, it’s reasonable to assume that other civilizations will make them too.”

According to Socas-Navarro, there is some “science fiction” when it comes to Clarke Exobelts that would actually be detectable using these instruments. As noted, humanity has about 400 operational satellites occupying Earth’s “Clarke Belt”. This is about one-third of the Earth’s existing satellites, whereas the rest are at an altitude of 2000 km (1200 mi) or less from the surface – the region known as Low Earth Orbit (LEO).

This essentially means that aliens would need to have billions more satellites within their Clarke Belt – accounting for roughly 0.01% of the belt area – in order for it to be detectable. As for humanity, we are not yet to the point where our own Belt would be detectable by an extra-terrestrial intelligence (ETI). However, this should not take long given that the number of satellites in orbit has been growing exponentially over the past 15 years.

Based on simulations conducted by Socas-Navarro, humanity will reach the threshold where its satellite band will be detectable by ETIs by 2200. Knowing that humanity will reach this threshold in the not-too-distant future makes the Clarke Belt a viable option for SETI. As Socas-Navarro explained:

“In this sense, the Clarke Exobelt is interesting because it’s the first technomarker that looks for currently existing technology. And it goes both ways too. Humanity’s Clarke Belt is probably too sparsely populated to be detectable from other stars right now (at least with technology like ours). But in the last decades we have been populating it at an exponential rate. If this trend were to continue, our Clarke Belt would be detectable from other stars by the year 2200. Do we want to be detectable? This is an interesting debate that humanity will have to resolve soon.

An exoplanet transiting across the face of its star, demonstrating one of the methods used to find planets beyond our solar system. Credit: ESA/C. Carreau

As for when we might be able to start looking for Exobelts, Socas-Navarro indicates that this will be possible within the next decade. Using instruments like the James Webb Space Telescope (JWST), the Giant Magellan Telescope (GMT), the European Extremely Large Telescope (E-ELT), and the Thirty Meter Telescope (TMT), scientists will have ground-based and space-based telescopes with the necessary resolution to spot these bands around exoplanets.

As for how these belts would be detected, that would come down to the most popular and effective means for finding exoplanets to date – the Transit Method (aka. Transit Photometry). For this method, astronomers monitor distant stars for periodic dips in brightness, which are indications of an exoplanet passing in front of the star. Using next-generation telescopes, astronomers may also be able to detect reflected light from a dense band of satellites in orbit.

“However, before we point our supertelescopes to a planet we need to identify good candidates,” said Socas-Navarro. “There are too many stars to check and we can’t go one by one. We need to rely on exoplanet search projects, such as the recently launched satellite TESS, to spot interesting candidates. Then we can do follow-up observations with supertelescopes to confirm or refute those candidates.”

In this respect, telescopes like the Kepler Space Telescope and the Transiting Exoplanet Survey Telescope (TESS) will still serve an important function in searching for technomarkers. Whereas the former telescope is due to retire soon, the latter is scheduled to launch in 2018.

Artist’s impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research Center

While these space-telescopes would search for rocky planets that are located within the habitable zones of thousands of stars, next-generation telescopes could search for signs of Clarke Exobelts and other technomarkers that would be otherwise hard to spot. However, as Socas-Navarro indicated, astronomers could also find evidence of Exobands by sifting through existing data as well.

“In doing SETI, we have no idea what we are looking for because we don’t know what the aliens are doing,” he said. “So we have to investigate all the possibilities that we can think of. Looking for Clarke Exobelts is a new way of searching, it seems at least reasonably plausible and, most importantly, it’s free. We can look for signatures of Clarke Exobelts in currently existing missions that search for exoplanets, exorings or exomoons. We don’t need to build costly new telescopes or satellites. We simply need to keep our eyes open to see if we can spot the signatures presented in the simulation in the flow of data from all of those projects.”

Humanity has been actively searching for signs of extra-terrestrial intelligence for decades. To know that our technology and methods are becoming more refined, and that more sophisticated searches could begin within a decade, is certainly encouraging. Knowing that we won’t be visible to any ETIs that are out there for another two centuries, that’s also encouraging!

And be sure to check out this cool video by our friend, Jean Michael Godier, where he explains the concept of a Clarke Exobelt:

Further Reading: IAC, The Astrophysical Journal

What Comes After James Webb and WFIRST? Four Amazing Future Space Telescopes

Artist's concept of the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) space telescope. Credits: NASA/GSFC
Artist's concept of the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) space telescope. Credits: NASA/GSFC

The Hubble Space Telescope has been in space for 28 years, producing some of the most beautiful and scientifically important images of the cosmos that humanity has ever taken. But let’s face it, Hubble is getting old, and it probably won’t be with us for too much longer.

NASA’s James Webb Space Telescope is in the final stages of testing, and WFIRST is waiting in the wings. You’ll be glad to know there are even more space telescopes in the works, a set of four powerful instruments in design right now, which will be part of the next Decadal Survey, and helping to answer the most fundamental questions about the cosmos.

The James Webb Space Telescope inside a cleanroom at NASA’s Johnson Space Center in Houston. Credit: NASA/JSC

I know, I know, the James Webb Space Telescope hasn’t even reached space yet, and there could still be more delays as it goes through its current round of tests. At the time I’m recording this video, it’s looking like May 2020, but come on, you know there’ll be delays.

And then there’s WFIRST, the wide angle infrared space telescope that’s actually made of an old Hubble class telescope that the National Reconnaissance Office didn’t need any more. The White House wants to cancel it, Congress saved it, and now NASA is getting parts of it constructed. Assuming it doesn’t run into more delays, we’re looking at a launch in the mid-2020s.

NASA's Wide Field Infrared Survey Telescope (WFIRST) will capture Hubble-quality images covering swaths of sky 100 times larger than Hubble does, enabling cosmic evolution studies. Its Coronagraph Instrument will directly image exoplanets and study their atmospheres. Credits: NASA/GSFC/Conceptual Image Lab
NASA’s Wide Field Infrared Survey Telescope (WFIRST) will capture Hubble-quality images covering swaths of sky 100 times larger than Hubble does. These enormous images will allow astronomers to study the evolution of the cosmos. Its Coronagraph Instrument will directly image exoplanets and study their atmospheres.
Credits: NASA/GSFC/Conceptual Image Lab

I’ve actually done an episode about supertelescopes, and talked about James Webb and WFIRST, so if you want to learn more about those observatories, check that out first.

Today we’re going to go further into the future, to look at the next next generation telescopes. The ones that could be launched after the telescope that gets launched after the telescope that comes next.

Before I dig into these missions, I need to talk about the Decadal Survey. This is a report created by the US National Academy of Sciences for Congress and NASA. It’s essentially a wishlist from scientists to NASA, defining the biggest questions they have in their field of science.

This allows Congress to assign budgets and NASA to develop mission ideas that will help fulfill as many of these science goals as possible.

These surveys are done once every decade, bringing together committees in Earth science, planetary science, and astrophysics. They pitch ideas, argue, vote and eventually agree on a set of recommendations which will define science priorities over the next decade.

We’re currently in the 2013-2022 Decadal Survey period, so in just a few years, the next survey will be due, and define the missions from 2023-2032. I know, that really sounds like the distant future, but time’s actually running out to get the band back together.

If you’re interested, I’ll put a link to the last Decadal Survey, it’s a fascinating document and you’ll get a better sense of how missions come together.

We’re still a few years away from the final document, but serious proposals are in the planning stages for next generation space telescopes, and they are awesome. Let’s talk about them.

HabEx

The first mission we’ll look at is HabEx, or the Habitable Exoplanet Imaging Mission. This is a spacecraft that will directly photograph planets orbiting other stars. It’ll be targeting all kinds of planets, from hot Jupiters to super Earths, but its primary target will be to photograph Earth-like exoplanets and measure their atmospheres.

Wavelengths of light that can help suggest biospheres. Credit: NASA/JPL
Wavelengths of light that can help suggest biospheres. Credit: NASA/JPL

In other words, HabEx is going to try and detect signals of life in planets orbiting other stars.

In order to get this done, HabEx needs to block the light from the star, so that much fainter planets nearby can be revealed. It’ll have one and maybe two ways to do this.

The first is using a coronagraph. This is a tiny dot that sits inside the telescope itself, which is positioned in front of the star and blocks its light. The remaining light passing through the telescope comes from fainter objects around the star and can be imaged by the instrument’s sensor.

The telescope has a special deformable mirror that can be tweaked and tuned until the fainter planets come into view.

Here’s an example of a coronagraph in use, on the European Southern Observatory’s Very Large Telescope. The central star is hidden, revealing the dimmer dust disk around it. Here’s a direct image of a brown dwarf orbiting a star.

This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus. It was one of the first produced by the SPHERE instrument soon after it was installed on ESO’s Very Large Telescope in May 2014. It shows not only the ring itself with great clarity, but also reveals the power of SPHERE to reduce the glare from the very bright star — the key to finding and studying exoplanets in future.
This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus. It was one of the first produced by the SPHERE instrument soon after it was installed on ESO’s Very Large Telescope in May 2014. It shows not only the ring itself with great clarity, but also reveals the power of SPHERE to reduce the glare from the very bright star — the key to finding and studying exoplanets in future.

And this is one of the most dramatic videos I think I’ve ever seen, with 4 Jupiter-sized worlds orbiting around the star HR 8799. It’s a bit of a trick, the researchers animated the motion of the planets in between observations, but still, wow.

The second method of blocking the light will be to use a Starshade. This is a completely separate spacecraft that looks like a pinwheel. It flies tens of thousands of kilometers away from the telescope, and when it’s positioned perfectly, it blocks the light from the central star, while allowing light from the planets to leak around the edges.

The trick with a Starshade is those petals, which create a softer edge so the light waves from the fainter planet is less bent. This creates a very dark shadow that should have the best chance at revealing planets.

Artist's concept of the prototype starshade, a giant structure designed to block the glare of stars so that future space telescopes can take pictures of planets. Credit: NASA/JPL
Artist’s concept of the prototype starshade, a giant structure designed to block the glare of stars so that future space telescopes can take pictures of planets. Credit: NASA/JPL

Unlike most missions, Starshades like this can be used with any observatory in space. So, Hubble, James Webb or any other observatory could take advantage of this instrument.
We’ve always complained about how we can only see a fraction of the planets out there using the transit or radial velocity method because of how things line up. But with a mission like HabEx, planets can be seen direction, in any configuration.

In addition to this primary mission, HabEx will also be used for a variety of astrophysics, like observing the early Universe, and studying the chemicals of the biggest stars before and after they explode as supernovae.

Lynx

Next up, Lynx, which will be NASA’s next generation X-ray telescope. Surprisingly, it’s not an acronym, it’s just named after the animal. In various cultures Lynxes were thought to have the supernatural ability to see the true nature of things.

X-rays are at the higher end of the electromagnetic spectrum, and they’re blocked by the Earth’s atmosphere, so you need a space telescope to be able to see them. Right now, NASA has its Chandra X-ray Observatory, and ESA is working on its ATHENA mission, due for launch in 2028.

Lynx Mission Concept. Credit: NASA
Lynx Mission Concept. Credit: NASA

Lynx will act as a partner to the James Webb Space Telescope, peering out to the edge of the observable Universe, revealing the first generations of supermassive black holes, and helping to chart their formation and mergers over time. It’ll see radiation coming from the hot gas from the early cosmic web, as the first galaxies were coming together.

And then it’ll be used to examine the kinds of objects Chandra, XMM Newton and other X-ray observatories focus on: pulsars, galaxy collisions, collapsars, supernovae, black holes, and more. Even normal stars can give off X-ray flares that tell us more about them.

The vast majority of the Universe’s matter is located in clouds of gas as hot as a million Kelvin. If you want to see the Universe as it truly is, you want to look at it in X-rays.

X-ray telescopes are different from visible light observatories like Hubble. You can’t just have a mirror that bounces X-rays. Instead, you use grazing-incidence mirrors which can slightly redirect photons that hit them, funneling them down to a detector.

Artist illustration of the Chandra X-ray Observatory. Chandra is the most sensitive X-ray telescope ever built. Credit: NASA/CXC/NGST
Artist illustration of the Chandra X-ray Observatory. Chandra is the most sensitive X-ray telescope ever built. Credit: NASA/CXC/NGST

With a 3 meter outer mirror, the starting part of the funnel, it’ll provide 50-100 times the sensitivity with 16 times the field of view, gathering photons at 800 times the speed of Chandra.

I’m not sure what else to say. It’ll be a monster X-ray observatory. Trust me, astronomers think this is a very good idea.

Origins Space Telescope

Next, the Origins Space Telescope or OST. Like James Webb, and the Spitzer Space Telescope, OST is going to be an infrared telescope, designed to observe some of the coolest objects in the Universe. But it’s going to be even bigger. While James Webb has a primary mirror 6.5 meters across, the OST mirror will be 9.1 meters across.

Imagine a telescope almost as big as the largest ground telescopes on Earth, but out in space. In space.

Artist's concept of the  the Origins Space Telescope (OST). Credits: NASA/GSFC
Artist’s concept of the the Origins Space Telescope (OST). Credits: NASA/GSFC

It won’t just be big, it’ll be cold.

NASA was able to cool down Spitzer to just 5 Kelvin – that’s 5 degrees above absolute zero, and just a little warmer than the background temperature of the Universe. They’re planning to get Origins down to 4 Kelvin. It doesn’t sound like much, but it’s a huge engineering challenge.

Instead of just cooling the spacecraft with liquid helium like they did with Spitzer, they’ll need to take the heat out in stages, with reflectors, radiators, and finally a cryocooler around the instruments themselves.

With a huge, cold infrared telescope, Origins will push beyond James Webb’s view of the formation of the first galaxies. It’ll look to the era when the first stars were forming, a time that astronomers call the Dark Ages.

It’ll see the formation of planetary systems, dust disks and directly observe the atmospheres of other planets looking for biosignatures, evidence of life out there.

Three exciting missions, that’ll push our knowledge of the Universe forward. But I’ve saved the biggest, most ambitious telescope for last

LUVOIR

LUVOIR, or the Large UV/Optical/IR Surveyor. James Webb is going to be a powerful telescope, but it’s an infrared instrument designed to look at cooler objects in the Universe, like red-shifted galaxies at the beginning of time, or newly forming planetary systems. The Origins Space Telescope will be a better version of James Webb.

LUVOIR will be the true successor to the Hubble Space Telescope. It’ll be a huge instrument capable of seeing in infrared, visible light and ultraviolet.

Artist's concept of the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) space telescope. Credits: NASA/GSFC
Artist’s concept of the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) space telescope. Credits: NASA/GSFC

There are two designs in the works. One which is 8-meters across and could launch on a heavy-lift vehicle like the Falcon Heavy. And another design that would use the Space Launch System that measures 15-meters across. That’s 50% bigger than the biggest Earth-based telescope. Remember, Hubble is only 2.6 meters.

It’ll have a wide field of view and a suite of filters and instruments that astronomers can use to observe whatever they want. It’ll be equipped with a coronograph like we talked about earlier, to directly observe planets and obscure their stars, a spectrograph to figure out what chemicals are present in exoplanet atmospheres, and more.

LUVOIR will be a general purpose instrument, which astronomers will use to make discoveries across the fields of astrophysics and planetary science. But some of its capabilities will include: directly observing exoplanets and searching for biosignatures, categorizing all the different kinds of exoplanets out there, from hot Jupiters to super Earths.

It’ll be able to observe objects within the Solar System better than anything else – if we don’t have a spacecraft there, LUVOIR will be a pretty good view. For example, here’s a view of Enceladus from Hubble, compared to the view from LUVOIR.

Enceladus seen from Hubble and LUVOIR. Credit: NASA
Enceladus seen from Hubble and LUVOIR. Credit: NASA

It will be able to look out anywhere in the Universe, to see much smaller structures than Hubble. It’ll see the first galaxies, first stars, and help measure the concentrations of dark matter across the Universe.

Astronomers still don’t fully understand what happens when stars gather enough mass to ignite. LUVOIR will look into star forming regions, peer through the gas and dust and see the earliest moments of star formation as well as the planets orbiting them.

Have I got you totally and completely excited about the future of astronomy? Good. But here’s comes the bad news. There’s almost no chance reality will match this fantasy.

Earlier this month NASA announced that mission planners working on these space telescopes will need to limit their budgets to between three and five billion dollars. Until now, planners didn’t have any guidelines, they were to just design instruments that could get the science done.

Engineers had been working on mission plans that could easily cross $5 billion for HabEx, Lynx and OST, and were considering a much larger $20 billion for LUVOIR.

Even though Congress has been pushing for surprisingly big budgets for NASA, the space agency wants its planners to be conservative. And when you consider just how over budget and late James Webb has become, it’s not entirely surprising.

James Webb was originally supposed to cost between one and three point five billion dollars and launch between 2007 and 2011. Now it looks like 2020 for a launch, the costs have broken past a Congress mandated $8.8 billion budget, and it’s clear there’s still a lot of work to be done.

In a recent shake test, engineers found washers and screws that had shaken out of the telescope. This isn’t like an IKEA shelf with leftover parts. These pieces are important.

Even though it’s been saved from the chopping block, the WFIRST Telescope is estimated to be $3.9 billion, up from its original $2 billion budget.

One, two or maybe even all of these telescopes will eventually get built. This is what the scientists think are most important to make the next discoveries in astronomy, but get ready for budget battles, cost overruns and stretching timelines. We’ll know better when all the studies come together in 2019.

It would take some kind of engineering miracle to have all four telescopes come together, on time and on budget, to blast to space together in 2035. I’ll keep you updated.

A Powerful Dust Storm Has Darkened the Skies Over Opportunity on Mars

This global map of Mars shows a growing dust storm as of June 6, 2018. The map was produced by the Mars Color Imager (MARCI) camera on NASA's Mars Reconnaissance Orbiter spacecraft. The blue dot indicates the approximate location of Opportunity. Image Credit: NASA/JPL-Caltech/MSSS

NASA’s Opportunity mission can rightly be called the rover that just won’t quit. Originally, this robotic rover was only meant to operate on Mars for 90 Martian days (or sols), which works out to a little over 90 Earth days. However, since it made its landing on January 25th, 2004, it has remained in operation for 14 years, 4 months, and 18 days – exceeding its operating plan by a factor of 50!

However, a few weeks ago, NASA received disturbing news that potentially posed a threat to the “little rover that could”. A Martian storm, which has since grown to occupy an area larger than North America – 18 million km² (7 million mi²) – was blowing in over rover’s position in the Perseverance Valley. Luckily, NASA has since made contact with the rover, which is encouraging sign.

NASA’s Mars Reconnaissance Orbiter first detected the storm on Friday, June 1st, and immediately notified the Opportunity team to begin preparing contingency plans. The storm quickly grew over the next few days and resulted in dust clouds that raised the atmosphere’s opacity, which blocked out most of the sunlight from reaching the surface. This is bad news for the rover since it relies on solar panels for power and to recharge its batteries.

Artist’s conception of a Mars Exploration Rover, which included Opportunity and Spirit. Credit: NASA

By Wednesday, June 6th, Opportunity’s power levels had dropped significantly and the rover was required to shift to minimal operations. But beyond merely limiting the rover’s operations, a prolonged dust storm also means that the rover might not be able to keep its energy-intensive survival heaters running – which protect its batteries from the extreme cold of Mars’ atmosphere.

The Martian cold is believed to be what resulted in the loss of the Spirit rover in 2010, Opportunity’s counterpart in the Mars Exploration Rover mission. Much like Opportunity, Spirit‘s mission as only meant to last for 90 days, but the rover managed to remain in operation for 2269 days (2208 sols) from start to finish. It’s also important to note that Opportunity has dealt with long-term storms before and emerged unscathed.

Back in 2007, a much larger storm covered the planet, which led to two weeks of minimal operations and no communications. However, the current storm has intensified as of Sunday morning (June 10th), creating a perpetual state of night over the rover’s location in Perseverance Valley and leading to a level of atmospheric opacity that is much worse than the 2007 storm.

Whereas the previous storm had an opacity level (tau) of about 5.5, this new storm has an estimated tau of 10.8. Luckily, NASA engineers received a transmission from the rover on Sunday, which was a positive indication since it proved that the rover still has enough battery charge to communicate with controllers at NASA’s Jet Propulsion Laboratory. This latest transmission also showed that the rover’s temperature had reached about -29 °C (-20 °F).

This 30-day time-lapse of the Martian atmosphere was capture by Opportunity during the 2007 dust storm. That storm blocked out 99% of the Sun's energy, limiting the effectiveness of the rover's solar panels, and putting the mission in jeopardy. Image: Public Domain, https://commons.wikimedia.org/w/index.php?curid=2475872
This 30-day time-lapse of the Martian atmosphere was capture by Opportunity during the 2007 dust storm. Credit: NASA/JPL-Caltech/Cornell

Full dust storms like this and the one that took place in 2007 are rare, but not surprising. They occur during summer in the southern hemisphere, when sunlight warms dust particles and lifts them higher into the atmosphere, creating more wind. That wind kicks up yet more dust, creating a feedback loop that NASA scientists are still trying to understand. While they can begin suddenly, they tend to last on the order of weeks or even months.

A saving grace about these storms is that they limit the extreme temperature swings, and the dust they kick up can also absorb solar radiation, thus raising ambient temperatures around Opportunity. In the coming weeks, engineers at the JPL will continue to monitor the rover’s power levels and ensure that it maintains the proper balance to keep its batteries in working order.

In the meantime, Opportunity’s science operations remain suspended and the Opportunity team has requested additional communications coverage from NASA’s Deep Space Network – the global system of antennas that communicates with all of the agency’s deep space missions. And if there’s one thing Opportunity has proven, it is that it’s capable of enduring!

Fingers crossed the storm subsides as soon as possible and the little rover that could once again emerges unscathed. At this rate, it could have many more years of life left in it!

Further News: NASA

It Might Not be Planet 9 Causing Disruptions in the Kuiper Belt, Just the Collective Gravity of Everything Out There

Artist's concept of the hypothetical "Planet Nine." Could it have moons? Credit: NASA/JPL-Caltech/Robert Hurt

In January of 2016, astronomers Mike Brown and Konstantin Batygin published the first evidence that there might be another planet in our Solar System. Known as “Planet 9” (or “Planet X”, to those who contest the controversial 2006 Resolution by the IAU), this hypothetical body was believed to orbit at an extreme distance from our Sun, as evidenced by the fact that certain Trans-Neptunian Objects (TNOs) all seem to be pointing in the same direction.

Since that time, other lines of evidence have emerged that have bolstered the existence of Planet 9/Planet X. However, a team of researchers from CU Boulder recently proposed an alternative explanation. According to their research, it could be interactions between Kuiper Belt Objects (KBOs) themselves that might explain the strange dynamics of “detached objects” at the edge of the Solar System.

The researchers presented their findings at the 232nd meeting of the American Astronomical Society, which ran from June 3-7 in Denver, Colorado. The presentation took place on June 4th during a press conference titled “Minor Planets, Dwarf Planets & Exoplanets”. The research was led Jacob Fleisig, an undergraduate studying astrophysics at CU Boulder, and included Ann-Marie Madigan and Alexander Zderic – an assistant professor and a graduate student at CU Boulder, respectively.

Artist’s conception of Sedna, a dwarf planet in the Solar System that only gets within 76 astronomical units (AUs) of our Sun. Credit: NASA/JPL-Caltech

For the sake of their study, the team focused on icy bodies like Sedna, a minor planet that orbits the Sun at a distance ranging from 76 AU at perihelion to 936 AU at aphelion. Along with a handful of other objects at this distance, such as Eris, Sedna appears to be separated from the rest of the Solar System – something which astronomers have struggled to explain ever since it was discovered.

Sedna was also discovered by Michael Brown who, along with Chad Trujillo of the Gemini Observatory and David Rabinowitz of Yale University, spotted it on November 14th, 2003, while conducting a survey of the Kuiper Belt. In addition to orbiting our Sun with a period of over 11,000 years, this minor planet and other detached objects has a huge, elliptical orbit.

What’s more, this orbit does not take them Sedna or these other objects anywhere near to Neptune or any other gas giant. Unlike Pluto and other Trans-Neptunian Objects (TNOs), it is therefore a mystery how they achieved their current orbits. The possible existence of a as-yet-undiscovered planet (Planet 9/Planet X), which would be about 10 times the size of Earth, is one hypothetical explanation.

After years of searching for this planet and attempting to determine where its orbit would take it, astronomers have yet to find Planet 9/Planet X. However, as Prof. Madigan explained in a recent CU Boulder press release, there is another possible explanation for the gravitational weirdness going on out there:

“There are so many of these bodies out there. What does their collective gravity do? We can solve a lot of these problems by just taking into account that question… Once you get further away from Neptune, things don’t make any sense, which is really exciting.”

While Madigan and her team did not originally set out to find another explanation for the orbits of “detached objects”, they ended up pursuing the possibility thanks to Jacob Fleisig’s computer modelling. While developing simulations to explore the dynamics of the detached objects, he noticed something very interesting about the region of space they occupy.

Having calculated the orbits of icy objects beyond Neptune, Fleisig and the rest of the team noticed that different objects behave much like the different hands on a clock. Whereas asteroids move like the minute hand (relatively fast and in tandem), larger objects like Sedna move more slowly like the hour hand. Eventually, the hands intersect.  As Fleisig explained:

“You see a pileup of the orbits of smaller objects to one side of the sun. These orbits crash into the bigger body, and what happens is those interactions will change its orbit from an oval shape to a more circular shape.”

What Fleisig’s computer model showed was that Sedna’s orbit goes from normal to detached as a result of those small-scale interactions. It also showed that the larger the detached object, the farther it gets away from the Sun – something which agrees with previous research and observations. In addition to explaining why Sedna and similar bodies behave the way they do, these findings may provide clues to another major event in Earth’s history.

Artistic rendition of the Chicxulub impactor striking ancient Earth, which is believed to have caused the Cretaceous–Paleogene extinction event. Credit: NASA

This would be what caused the extinction of the dinosaurs. Astronomers have understood for a long time that the dynamics of the outer Solar System often end up sending comets towards the inner Solar System on a predictable timescale. This is the result of icy objects interacting with each other, which causes their orbits to tighten and widen in a repeating cycle.

And while the team is not able to say that this pattern was responsible for the impact that caused the Cretaceous–Paleogene extinction event (which resulted in the extinction of the dinosaurs 66 million years ago), it is a fascinating possibility. In the meantime, the research has shown just how fascinating the outer Solar System is, and how much remains to be learned about it.

“The picture we draw of the outer solar system in textbooks may have to change,” said Madigan. “There’s a lot more stuff out there than we once thought, which is really cool.”

The research was made possible thanks to the support of the NASA Solar System Workings and the Rocky Mountain Advanced Computing Consortium Summit Supercomputer.

Further Reading: University of Colorado Boulder

Does Climate Change Explain Why We Don’t See Any Aliens Out There?

A case study of the inhabitants of Easter Island served in part as the basis for a mathematical model showing the ways a technologically advanced population and its planet might develop or collapse together. Credit: University of Rochester illustration / Michael Osadciw

In the 1950s, famed physicist Enrico Fermi posed the question that encapsulated one of the toughest questions in the Search for Extra-Terrestrial Intelligence (SETI): “Where the heck is everybody?” What he meant was, given the age of the Universe (13.8 billion years), the sheer number of galaxies (between 1 and 2 trillion), and the overall number of planets, why has humanity still not found evidence of extra-terrestrial intelligence?

This question, which has come to be known as the “Fermi Paradox”, is something scientists continue to ponder. In a new study, a team from the University of Rochester considered that perhaps Climate Change is the reason. Using a mathematical model based on the Anthropocene, they considered how civilizations and planet systems co-evolve and whether or not intelligent species are capable of living sustainability with their environment.

The study, titled “The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback“, recently appeared in the scientific journal Astrobiology. The study was led by Adam Frank, a professor of physics and astronomy at the University of Rochester, with the assistance of Jonathan Carroll-Nellenback (a senior computational scientist at Rochester) Marina Alberti of the University of Washington, and Axel Kleidon of the Max Planck Institute for Biogeochemistry.

Today, Climate Change is one of the most pressing issues facing humanity. Thanks to changes that have taken place in the past few centuries – i.e. the industrial revolution, population growth, the growth of urban centers and reliance on fossil fuels – humans have had a significant impact on the planet. In fact, many geologists refer to the current era as the “Anthropocene” because humanity has become the single greatest factor affecting planetary evolution.

In the future, populations are expected to grow even further, reaching about 10 billion by mid-century and over 11 billion by 2100. In that time, the number of people who live within urban centers will also increase dramatically, increasing from 54% to 66% by mid-century. As such, the quesiton of how billions of people can live sustainably has become an increasingly important one.

Prof. Frank, who is also the author of the new book Light of the Stars: Alien Worlds and the Fate of the Earth (which draws on this study), conducted this study with his colleagues in order to address the issue Climate Change in an astrobiological context. As he explained in a University of Rochester press release:

“Astrobiology is the study of life and its possibilities in a planetary context. That includes ‘exo-civilizations’ or what we usually call aliens. If we’re not the universe’s first civilization, that means there are likely to be rules for how the fate of a young civilization like our own progresses.”

Using the Anthropocene as an example, one can see how civilization-planet systems co-evolve, and how a civilization can endanger itself through growth and expansion – in what is known as a “progress trap“. Basically, as civilizations grow, they consume more of the planet’s resources, which causes changes in the planet’s conditions. In this sense, the fate of a civilization comes down to how they use their planet’s resources.

In order to illustrate this process Frank and his collaborators developed a mathematical model that considers civilizations and planets as a whole. As Prof. Frank explained:

“The point is to recognize that driving climate change may be something generic. The laws of physics demand that any young population, building an energy-intensive civilization like ours, is going to have feedback on its planet. Seeing climate change in this cosmic context may give us better insight into what’s happening to us now and how to deal with it.”

The model was also based on case studies of extinct civilizations, which included the famous example of what became of the inhabitants of Rapa Nui (aka. Easter Island). According to archaeological studies, the people of the South Pacific began colonizing this island between 400 and 700 CE and its population peaked at 10,000 sometime between 1200 and 1500 CE.

Professor Adam Frank, who led the study in how civilization-planet systems evolve. Credit: University of Rochester photo / J. Adam Fenster

By the 18th century, however, the inhabitants had depleted their resources and the population declined to just 2000. This example raises the important concept known as “carrying capacity”, which is the maximum number of species an environment can support. As Frank explained, Climate Change is essentially how the Earth responds to the expansion of our civilization:

“If you go through really strong climate change, then your carrying capacity may drop, because, for example, large-scale agriculture might be strongly disrupted. Imagine if climate change caused rain to stop falling in the Midwest. We wouldn’t be able to grow food, and our population would diminish.”

Using their mathematical model, the team identified four potential scenarios that might occur on a planet. These include the Die-Off scenario, the Sustainability scenario, the Collapse Without Resource Change scenario, and the Collapse With Resource Change scenario. In the Die-Off scenario, the population and the planet’s state (for example, average temperatures) rise very quickly.

This would eventually lead to a population peak and then a rapid decline as changing planetary conditions make it harder for the majority of the population to survive. Eventually, a steady population level would be achieved, but it would only be a fraction of what the peak population was. This scenario occurs when civilizations are unwilling or unable to change from high-impact resources (i.e. oil, coal, clear-cutting) to sustainable ones (renewable energy).

Four scenarios for the fate of civilizations and their planets, based on mathematical models developed by Adam Frank and his collaborators. Credit: University of Rochester illustration / Michael Osadciw

In the Sustainability scenario, the population and planetary conditions both rise, but eventually come to together with steady values, thus avoiding any catastrophic effects. This scenario occurs when civilizations recognize that environmental changes threaten their existence and successfully make the transition from high-impact resources to sustainable ones.

The final two scenarios  – Collapse Without Resource Change and Collapse With Resource Change – differ in one key respect. In the former, the population and temperature both rise rapidly until the population reaches a peak and begins to drop rapidly – though it is not clear if the species itself survives. In the latter, the population and temperature rise rapidly, but the populations recognizes the danger and makes the transition. Unfortunately, the change comes too late and the population collapses anyway.

At present, scientists cannot say with any confidence which of these fates will be the one humanity faces. Perhaps we will make the transition before it is too late, perhaps not. But in the meantime, Frank and his colleagues hope to use more detailed models to predict how planets will respond to civilizations and the different ways they consume energy and resources in order to grow.

From this, scientists may be able to refine their predictions of what awaits us in this century and the next. It is during this time that crucial changes will be taking place, which include the aforementioned population growth, and the steady rise in temperatures. For instance, based on two scenarios that measured CO2 increases by the year 2100, NASA indicated that global temperatures could rise by either 2.5 °C (4.5 °F) or  4.4 °C (8 °F).

In the former scenario, where CO2 levels reached 550 ppm by 2100, the changes would be sustainable. But in the latter scenario, where CO2 levels reached 800 ppm, the changes would cause widespread disruption to systems that billions of humans depends upon for their livelihood and survival. Worse than that, life would become untenable in certain areas of the world, leading to massive displacement and humanitarian crises.

In addition to offering a possible resolution for the Fermi Paradox, this study offers some helpful advice for human beings. By thinking of civilizations and planets as a whole – be they Earth or exoplanets – researchers will be able to better predict what changes will be necessary for human civilization to survive. As Frank warned, it is absolutely essential that humanity mobilize now to ensure that the worst-case scenario does not occur here on Earth:

“If you change the earth’s climate enough, you might not be able to change it back. Even if you backed off and started to use solar or other less impactful resources, it could be too late, because the planet has already been changing. These models show we can’t just think about a population evolving on its own. We have to think about our planets and civilizations co-evolving.”

And be sure to enjoy this video that addresses Prof. Frank and his team’s research, courtesy of the University of Rochester:

Further Reading: University of Rochester, Astrobiology

There are Strange Objects Near the Center of the Galaxy. They Look Like Gas, but Behave Like Stars

The galactic core, observed using infrared light and X-ray light. Credit: NASA, ESA, SSC, CXC, and STScI

During the 1970s, astronomer became aware of a massive radio source at the center of our galaxy that they later realized was a Supermassive Black Hole (SMBH) – which has since been named Sagittarius A*. And in a recent survey conducted by NASA’s Chandra X-ray Observatory, astronomers discovered evidence for hundreds or even thousands of black holes located in the same vicinity of the Milky Way.

But, as it turns out, the center of our galaxy has more mysteries that are just waiting to be discovered. For instance, a team of astronomers recently detected a number of “mystery objects” that appeared to be moving around the SMBH at Galactic Center. Using 12 years of data taken from the W.M. Keck Observatory in Hawaii, the astronomers found objects that looked like dust clouds but behaved like stars.

The research was conducted through a collaboration between Randy Campbell at the W.M. Keck Observatory, members of the Galactic Center Group at UCLA (Anna Ciurlo, Mark Morris, and Andrea Ghez) and Rainer Schoedel of the Instituto de Astrofisica de Andalucia (CSIC) in Granada, Spain. The results of this study were presented at the 232nd American Astronomical Society Meeting during a press conference titled “The Milky Way & Active Galactic Nuclei”.

Pictured here are members of GCOI in front of Keck Observatory on Maunakea, Hawaii, during a visit last year. Credit: W.M. Keck Observatory

As Ciurlo explained in a recent W.M. Keck press release:

“These compact dusty stellar objects move extremely fast and close to our Galaxy’s supermassive black hole. It is fascinating to watch them move from year to year. How did they get there? And what will they become? They must have an interesting story to tell.”

The researchers made their discovery using 12 years of spectroscopic measurements obtained by the Keck Observatory’s OH-Suppressing Infrared Imaging Spectrograph (OSIRIS). These objects – which were designed as G3, G4, and G5 – were found while examining the gas dynamics of the center of our galaxy, and were distinguished from background emissions because of their movements.

“We started this project thinking that if we looked carefully at the complicated structure of gas and dust near the supermassive black hole, we might detect some subtle changes to the shape and velocity,” explained Randy Campbell. “It was quite surprising to detect several objects that have very distinct movement and characteristics that place them in the G-object class, or dusty stellar objects.”

Astronomers first discovered G-objects in proximity to Sagittarius A* more than a decade ago – G1 was discovered in 2004 and G2 in 2012. Initially, both were thought to be gas clouds until they made their closest approach to the supermassive black hole and survived. Ordinarily, the SMBHs gravitational pull would shred gas clouds apart, but this did not happen with G1 and G2.

3-D spectro-imaging data cube produced using software called OSIRIS-Volume Display ( OsrsVol) to separate G3, G4, and G5 from the background emission. Credit: W.M. Keck Observatory

Because these newly discovered infrared sources (G3, G4, and G5) shared the physical characteristics of G1 and G2, the team concluded that they could potentially be G-objects. What makes G-objects unusual is their “puffiness”, where they appear to be cloaked in a layer of dust and gas that makes them difficult to detect. Unlike other stars, astronomers only see a glowing envelope of dust when looking at G-objects.

To see these objects clearly through their obscuring envelope of dust and gas, Campbell developed a tool called the OSIRIS-Volume Display (OsrsVol). As Campbell described it:

“OsrsVol allowed us to isolate these G-objects from the background emission and analyze the spectral data in three dimensions: two spatial dimensions, and the wavelength dimension that provides velocity information. Once we were able to distinguish the objects in a 3-D data cube, we could then track their motion over time relative to the black hole.”

UCLA Astronomy Professor Mark Morris, a co-principal investigator and fellow member of UCLA’s Galactic Center Orbits Initiative (GCOI), was also involved in the study. As he indicated:

“If they were gas clouds, G1 and G2 would not have been able to stay intact. Our view of the G-objects is that they are bloated stars – stars that have become so large that the tidal forces exerted by the central black hole can pull matter off of their stellar atmospheres when the stars get close enough, but have a stellar core with enough mass to remain intact. The question is then, why are they so large?

Chandra data (above, graph) on J0806 show that its X-rays vary with a period of 321.5 seconds, or slightly more than five minutes. This implies that the X-ray source is a binary star system where two white dwarf stars are orbiting each other (above, illustration) only 50,000 miles apart, making it one of the smallest known binary orbits in the Galaxy. According to Einstein's General Theory of Relativity, such a system should produce gravitational waves - ripples in space-time - that carry energy away from the system and cause the stars to move closer together. X-ray and optical observations indicate that the orbital period of this system is decreasing by 1.2 milliseconds every year, which means that the stars are moving closer at a rate of 2 feet per year.
A binary star system potentially on the verge of a stellar collision. Credit: Chandra

After examining the objects, the team noticed that there was a great deal of energy was emanating from them, more than what would be expected from typical stars. As a result, they theorized that these G-objects are the result of stellar mergers, which occur when two stars that orbit each other (aka. binaries) crash into each other. This would have been caused by the long-term gravitational influence of the SMBH.

The resulting single object would be distended (i.e. swell up) over the course of millions of years before it finally settled down and appeared like a normal-sized star. The combined objects that resulted from these violent mergers could explain where the excess energy came from and why they behave like stars do. As Andrea Ghez, the founder and director of GCOI, explained:

“This is what I find most exciting. If these objects are indeed binary star systems that have been driven to merge through their interaction with the central supermassive black hole, this may provide us with insight into a process which may be responsible for the recently discovered stellar mass black hole mergers that have been detected through gravitational waves.”

Looking ahead, the team plans to continue following the size and shape of the G-objects’ orbits in the hopes of determining how they formed. They will be paying especially close attention when these stellar objects make their closest approach to Sagittarius A*, since this will allow them to further observe their behavior and see if they remain intact (as G1 and G2 did).

This will take a few decades, with G3 making its closest pass in 20 years and G4 and G5 taking decades longer. In the meantime, the team hopes to learn more about these “puffy” star-like objects by following their dynamical evolution using Keck’s OSIRIS instrument. As Ciurlo stated:

“Understanding G-objects can teach us a lot about the Galactic Center’s fascinating and still mysterious environment. There are so many things going on that every localized process can help explain how this extreme, exotic environment works.”

And be sure to check out this video of the presentation, which takes place from 18:30 until 30:20:

Further Reading: Keck Observatory

And NASA’s Big Announcement is: Ancient Organic Molecules Found on Mars!

This low-angle self-portrait of NASA's Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called "Buckskin" on lower Mount Sharp. Credits: NASA/JPL-Caltech/MSSS

Ever since Curiosity landed on Mars in 2012, the rover has made numerous groundbreaking discoveries about the Red Planet. These include confirming how Mars once had flowing water and lakes on its surface, evidence of how it lost its ancient atmosphere, and the discovery of methane and organic molecules. All of these discoveries have bolstered the theory that Mars may have once supported life.

The latest discovery came on Thursday, May 7th, when NASA announced that the Curiosity rover had once again discovered organic molecules. This time, however, the molecules were found in three-billion-year-old sedimentary rocks located near the surface of lower Mount Sharp. This evidence, along with new atmospheric evidence, are another indication that ancient life may have once existed on the Red Planet.

The new findings appear in two new studies – titled “Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars” and “Background levels of methane in Mars’ atmosphere show strong seasonal variations” – that were published in the June 8th issue of Science. As these studies indicate, these molecules – while not evidence of life in and of itself – have bolstered the search for evidence of past life.

MRO image of Gale Crater illustrating the landing location and trek of the Rover Curiosity since it landed in 2012. Credits: NASA/JPL, illustration, T.Reyes

As Thomas Zurbuchen, the associate administrator for the Science Mission Directorate at NASA Headquarters, explained in a recent NASA press release:

“With these new findings, Mars is telling us to stay the course and keep searching for evidence of life. I’m confident that our ongoing and planned missions will unlock even more breathtaking discoveries on the Red Planet.”

In the first paper, the authors indicate how Curiosity’s Sample Analysis at Mars (SAM) suite detected traces of methane in drill samples it took from Martian rocks. Once these rocks were heated, they released an array of organics and volatiles similar to how organic-rich sedimentary rocks do on Earth. On Earth, such deposits are indications of fossilized organic life, which may or may not be the case with the samples examined by Curiosity.

However, this evidence is bolstered by the fact that Curiosity has also found evidence that the Gale Crater was once an ancient lakebed. In addition to water, this lakebed contained all the chemical building blocks and energy sources that are necessary for life. As Jen Eigenbrode of NASA’s Goddard Space Flight Center, and the lead author of the first study, explained:

“Curiosity has not determined the source of the organic molecules. Whether it holds a record of ancient life, was food for life, or has existed in the absence of life, organic matter in materials holds chemical clues to planetary conditions and processes… The Martian surface is exposed to radiation from space. Both radiation and harsh chemicals break down organic matter. Finding ancient organic molecules in the top five centimeters of rock that was deposited when Mars may have been habitable, bodes well for us to learn the story of organic molecules on Mars with future missions that will drill deeper.”

This image illustrates possible ways methane might get into Mars’ atmosphere and also be removed from it. Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan

In the second paper, the team described how Curiosity’s SAM suite also detected seasonal variations in methane in the Martian atmosphere. These results were obtained over the course of nearly three years on Mars, which works out to almost six Earth years. While the team admits that water-rock chemistry could have generated the methane, they cannot rule out the possibility that it was biological in origin.

In the past, methane and organic molecules have been detected in Mars’ atmosphere and in drill samples, the former of which appeared to spike unpredictably. However, these new results indicate that within the Gale Crater, low levels of methane peak during the warm summer months and drop in the winter months every year. As Chris Webster, a researcher from NASA’s Jet Propulsion Laboratory (JPL) and the lead author of the second paper, explained:

“This is the first time we’ve seen something repeatable in the methane story, so it offers us a handle in understanding it. This is all possible because of Curiosity’s longevity. The long duration has allowed us to see the patterns in this seasonal ‘breathing.'”

To find this organic material, Curiosity drilled into sedimentary rocks (known as mudstone) in four areas in the Gale Crater. These rocks formed over the course of billions of years as sediments were deposited at the bottom of the ancient lake by flowing water. The drill samples were then analyzed by SAM, which used its oven to heat the samples to over 500 °C (900 °F) to release organic molecules from the powdered rock.

Simulated view of Gale Crater Lake on Mars. This illustration depicts a lake of water partially filling Mars’ Gale Crater, receiving runoff from snow melting on the crater’s northern rim. Credit: NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS

These results indicate that some of the drill samples contained sulfur (which could have preserved the organic molecules) as well as thiophenes, benzene, toluene, and small carbon chains – such as propane or butene. They also indicated organic carbon concentrations of about 10 parts per million or more, which is consistent with carbon concentrations observed in Martian meteorites and about 100 times what has been previously detected on Mars’ surface.

While this does not constitute evidence of past life on Mars, these latest findings have increased confidence that future missions will find more organics, both on the surface and slightly beneath the surface. But above all, they have bolstered confidence that Mars may have once had life of its own. As Michael Meyer, the lead scientist for NASA’s Mars Exploration Program, summarized:

“Are there signs of life on Mars? We don’t know, but these results tell us we are on the right track.”

In the coming years, additional missions will also be searching for signs of past life, including NASA’s Mars 2020 rover and the European Space Agency’s ExoMars rover.The Mars 2020 rover will also leave samples behind in a cache that could be retrieved by a future crewed mission for sample-return analysis. So if there was life on Mars (or, fingers crossed, still is) we are sure to find it soon enough!

And be sure to check out this video of this latest discovery by Curiosity, courtesy of NASA’s Jet Propulsion Laboratory:

Further Reading: NASA