Faces of the Solar System

Move over, Pluto... Disney already has dibs on Mercury as seen in this MESSENGER photo. Image credit: NASA/JHAPL/Carnegie institution of Washington

“Look, it has a tiny face on it!”

This sentiment was echoed ‘round the web recently, as an image of Pluto’s tiny moon Nix was released by the NASA New Horizons team. Sure, we’ve all been there. Lay back in a field on a lazy July summer’s day, and soon, you’ll see faces of all sorts in the puffy stratocumulus clouds holding the promise of afternoon showers.

Pluto's moon Nix as imaged by New Horizons from 590,000 kilometers distant. Image credit: NASA/JHUAPL/SWRI
Pluto’s moon Nix as imaged by New Horizons from 590,000 kilometers distant. Image credit: NASA/JHUAPL/SWRI

This predilection is so hard-wired into our brains, that often our facial recognition software sees faces where there are none. Certainly, seeing faces is a worthy survival strategy; not only is this aspect of cognition handy in recognizing the friendlies of our own tribe, but it’s also useful in the reading of facial expressions by giving us cues of the myriad ‘tells’ in the social poker game of life.

And yes, there’s a term for the illusion of seeing faces in the visual static: pareidolia. We deal lots with pareidolia in astronomy and skeptical circles. As NASA images of brave new worlds are released, an army of basement bloggers are pouring over them, seeing miniature bigfoots, flowers, and yes, lots of humanoid figures and faces. Two craters and the gash of a trench for a mouth will do.

Now that new images of Pluto and its entourage of moons are pouring in, neural circuits ‘cross the web are misfiring, seeing faces, half-buried alien skeletons and artifacts strewn across Pluto and Charon. Of course, most of these claims are simply hilarious and easily dismissed… no one, for example, thinks the Earth’s Moon is an artificial construct, though its distorted nearside visage has been gazing upon the drama of humanity for millions of years.

Do you see the 'Man in the Moon?' Image credit: Dave Dickinson
Do you see the ‘Man in the Moon?’ Image credit: Dave Dickinson

The psychology of seeing faces is such that a whole region of the occipital lobe of the brain known as the fusiform face area is dedicated to facial recognition. We each have a unique set of neurons that fire in patterns to recognize the faces of Donald Trump and Hillary Clinton, and other celebs (thanks, internet).

Damage this area at the base of the brain or mess with its circuitry, and a condition known as prosopagnosia, or face blindness can occur. Author Oliver Sacks and actor Brad Pitt are just a few famous personalities who suffer from this affliction.

The 'Snowman of Vesta,' as imaged by NASA's Dawn spacecraft. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
The ‘Snowman of Vesta,’ as imaged by NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Conversely, ‘super-recognizers’ at the other end of the spectrum have a keen sense for facial identification that verges on a super-power. True story: my wife has just such a gift, and can immediately spot second-string actors and actresses in modern movies from flicks and television shows decades old.

It would be interesting to know if there’s a correlation between face blindness, super-recognition and seeing faces in the shadows and contrast on distant worlds… to our knowledge, no such study has been conducted. Do super-recognizers see faces in the shadowy ridges and craters of the solar system more or less than everyone else?

A well-known example was the infamous ‘Face on Mars.’ Imaged by the Viking 1 orbiter in 1976, this half in shadow image looked like a human face peering back up at us from the surface of the Red Planet from the Cydonia region.

Image credit: The 'Face on Mars': HiRISE vs Viking 1 (inset): Image credit: NASA/JPL
Image credit: The ‘Face on Mars’: HiRISE vs Viking 1 (inset): Image credit: NASA/JPL

But when is a face not a face?

Now, it’s not an entirely far-fetched idea that an alien entity visiting the solar system would place something (think the monolith on the Moon from Arthur C. Clarke’s 2001: A Space Odyssey) for us to find. The idea is simple: place such an artifact so that it not only sticks out like a sore thumb, but also so it isn’t noticed until we become a space-faring society. Such a serious claim would, however, to paraphrase Carl Sagan, demand serious and rigorous evidence.

But instead of ‘Big NASA’ moving to cover up the ‘face,’ they did indeed re-image the region with both the Mars Reconnaissance Orbiter and Mars Global Surveyor at a much higher resolution. Though the 1.5 kilometer feature is still intriguing from a geological perspective… it’s now highly un-facelike in appearance.

A 'face' or... more fun with 'scifi spacecraft pareidolia. Image credit: NASA/JPL/Paramount Pictures
A ‘face’ or… more fun with ‘scifi spacecraft pareidolia.’ Image credit: NASA/JPL/Paramount Pictures

Of course, it won’t stop the deniers from claiming it was all a big cover-up… but if that were the case, why release such images and make them freely available online? We’ve worked in the military before, and can attest that NASA is actually the most transparent of government agencies.

We also know the click bait claims of all sorts of alleged sightings will continue to crop up across the web, with cries of ‘Wake up, Sheeople!’ (usually in all caps) as a brave band of science-writing volunteers continue to smack down astro-pareidolia on a pro bono basis in battle of darkness and light which will probably never end.

What examples of astro-pareidolia have you come across in your exploits?

Detailed Deconstruction of the “Face” and Pyramids on Mars Claims

The 'face' on Mars, a popular landform in Cydonia Region on Mars. Credit: NASA/JPL/University of Arizona.

Intrigued by the thought of alien artifacts on Mars, with structures like a Martian-built statue of a giant face surrounded by pyramids or even cities? Better check the math on that. Better yet, Stuart Robbins has already checked that math and BOOM! it doesn’t check out.

So called “Mars anomalists” like Richard Hoagland have already been debunked mightily by folks like Phil Plait, but Robbins — who hosts the “Exposing Pseudo Astronomy” podcast — takes it to a whole new level. He’s just put out a video version of his podcast about claims about the Cydonia region on Mars, some of the math behind it, an exploration of the “null hypothesis” (what the results would be if it were purely random), and draws conclusions based on the latest orbital imagery of Mars.

Hoagland and others claim some of the features in Cydonia display special geometry and numbers that are encoded within them. And, the only way those numbers and that geometry could be there is if it was created by some sort of intelligence, i.e aliens. Robbins provides detailed explanations of the mathematical simulations and the arguments against these claims.

“What the Mars anomalists do is a really good example of cherry picking/the Texas Sharpshooter fallacy,” Robbins told Universe Today. He concludes the video by basically saying, “Hey! Space exploration is still awesome and cool, and you really don’t NEED the pseudoscience to make it amazing and rewarding.”

Watch above, and check out Robbins’ excellent podcast.

Humanoid Shape Spotted on Mercury

This elevated rise on Mercury resembles a vaguely humanoid shape

You’ve all heard of the “face on Mars” and the “man in the Moon” — well I guess this would be the “man on Mercury!” And I feel like I’ve seen him somewhere before…

"Oh, they've encased him in carbonite. He should be quite well protected."
“Oh, they’ve encased him in carbonite. He should be quite well protected.”

In yet another instance of the phenomenon known as pareidolia, it’s hard not to see the vaguely human shape in this image of Mercury’s surface, acquired by the MESSENGER spacecraft in July 2011. But what looks like a person with upraised arms (resembling, the team suggests, a certain carbonite-encased space smuggler) is really an ancient block of surface crust that juts from the floor of Mercury’s vast Caloris basin — likely the remnants of harder material predating the basin-forming impact 3.9 billion years ago. The low angle of sunlight from the west helps to highlight the surface shapes.

The image above shows an area 96 km (59.7 mi.) across.

If Jabba really wanted to keep his favorite wall decoration safe, perhaps he should have put it on Mercury…

Read more on the MESSENGER site here.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Face-to-Face With Some Shattered Lunar Boulders

The remains of crumbled boulders in Schiller crater (NASA/GSFC/Arizona State University)


Breaking up may be hard to do, but these two lunar boulders seem to have succeeded extremely well! Imaged by the Lunar Reconnaissance Orbiter Camera (LROC) in October of 2009, this crumbled couple was recently identified by Moon Zoo team member Dr. Anthony Cook and brought to the attention of the project’s forum moderator.

The tracks left in the regolith — lunar soil — behind the boulders tell of their past rolling journeys down the slope of the elongated Schiller crater, in which they reside. Rolling boulders have been spotted before on the Moon, but what made these two split apart? And…why does that one on the lower right look so much like half a face?

Several things can cause lunar boulders to come loose and take the nearest downhill course. Meteorite impacts can shake the ground locally, giving the rocks enough of a nudge to set them on a roll. And moonquakes — the lunar version of earthquakes, as the name implies (although not due to tectonic plate shifts but rather to more mysterious internal lunar forces) — can also dislodge large boulders.

The low gravity on the Moon can make large rocks take a bounding path, evidenced by the dotted-line appearance of some of the trails.

Could all that bounding and bouncing have made the two boulders above shatter apart? Or was something else the cause of their crumbling?

Dr. Cook suggested that the boulders could have fractured before they began rolling, and then the added stress of their trip down the crater’s slope (uphill is to the right) made them break apart at the end of their trip… possibly due to further weathering and the extreme temperature variations of lunar days and nights.

Although a sound idea, Dr. Cook added, “I’m a bit puzzled though why the one on the top left has rock debris so far away from the centre. The boulder that looks like a skull rock on the bottom right has debris a lot closer to it, that could simply be explained by bits falling off as one would expect from the explanation above.”

This is one rock that's not happy about its breakup!

Another idea is that the boulders were struck by meteorites, but it seems extremely improbable that two would have been hit right next to each other. Still, not impossible, especially given the geologic time spans in play.

And as far as the “skull rock” boulder is concerned… that’s a little something called pareidolia, the tendency for our brains to interpret random shapes as something particularly significant. In this case it’s a human face, one of the most popular forms of pareidolia (perhaps best known by the famous “Face on Mars”, which, as we all now know, has been since shown to be just another Martian mesa.)

It does look like a face though, and not a particularly happy one!

Find out more about rolling boulders and Schiller crater on the LROC site hosted by Arizona State University here, and take a look at the full image scan of the region yourself… you may find more of these broken-up rolling rocks!

LROC WAC global 100-meter mosaic image of the 180-km long, 70-km wide Schiller crater. Overlaid onto a laser altimetry elevation model. (NASA/GSFC/Arizona State University)

Extreme Close-Up of the Face on Mars

The 'face' on Mars, a popular landform in Cydonia Region on Mars. Credit: NASA/JPL/University of Arizona

Here’s a picture you probably won’t see in the tabloid racks while waiting in line at the grocery store. This is the famous “Face on Mars,” and is the closest image ever of this landform, taken by the best Mars camera ever, HiRISE on the Mars Reconnaissance Orbiter. And it certainly looks like …. the top of mesa, which is exactly what it is.

This feature in the Cydonia region of Mars is most likely a lava dome that has created an isolated mesa or butte-like structure, i.e., a hill. Compare this image to the original image from the Viking orbiter from 1976 image, below, which created such a furor, including a whole new culture of conspiracy theories, books, late-night radio talk show discussion and even a full-length feature film. Alas, its just a hill.

Original 1976 'Face on Mar' image from the Viking Orbiter. Credit: NASA

Viking had much lower spatial resolution than HiRISE, and at the time the picture was taken, a different lighting geometry, which made it look like a face. Yes, it does look like a face in this image. But things aren’t always as they appear, especially in low resolution and bad light. These newer and better images, starting with the Mars Orbiter Camera on the Mars Global Surveyor (which took images of the Cydonia region in 1998 and 2001) and now HiRISE — which shows incredible detail from 300 kilometers above the surface — have certainly set the record straight. Unfortunately, some people still cling to the notion of a face on Mars.

Side by side: a Viking 1 photo from 1976, a Mars Global Surveyor (MGS) image from 1998, and an MGS image from 2001. Credit: NASA

Here’s another look at the ‘face,’ a 3D perspective view of the Face on Mars landform, created from an image from MOC, which shows a side view of the feature,

3D persepective view. Credit: NASA/Jim Garvin (NASA) and Jim Frawley (Herring Bay Geophysics).

Here’s the HiRISE image in black and white:

HiRISE image from 2007 of the 'face' on Mars. Credit: NASA/JPL/University of Arizona

And here’s one of my favorites. Jim Garvin, currently the chief scientist of the Sciences and Exploration Directorate Office at NASA’s Goddard Space Flight Center created a potential hiking map of the “face,” with a great description: “Hike length is approximately 5.5 km or 3.6 miles one way, with a total elevation gain of nearly a thousand feet. Rating…. easy at start and midsection, with some very steep sections. Take plenty of water and oxygen.”

Potential hiking map of the mesa, previously known as the Face on Mars. Credit: NASA/Jim Garvin

And still, if you need more convincing, here’s an animation created from actual images of the ‘face’ by ESA’s Mars Express spacecraft which provides a full trip around the hill.

For more, including high-res versions of the color image on top and a “Hi-Flyer” of the image, check out this page on the HiRISE website.

Sources: HiRISE, Science@NASA, ESA

Pyramids On Mars

D&M pyramid on mars. Credit: NASA

The Pyramids on Mars are hills or mountains on the surface of Mars that, from a low resolution image, have near-perfect symmetry resembling that of the Egyptian pyramids. These formations are found in the Martian region known as Cydonia, an albedo feature that gained celebrity-like attention in the 1970s.

Some of the images captured of the Martian surface by the Viking Missions in the 70’s showed a formation that closely resembled a humanoid face. E.T. aficionados immediately interpreted this as a structure built by intelligent lifeforms like ours. More photographs of the region (Cydonia) revealed pyramid-like structures.

One of them, the D&M pyramid had a near-perfect symmetry. Since the pyramids were located near the “Face on Mars”, speculations regarding its alien origins gained more followers. According to advocates of the theory, the Face on Mars may have been constructed by inhabitants of the nearby city a.k.a. the Pyramids on Mars.

They even pointed out the peculiar smoothness of the wide region beside the Pyramids on Mars, which may have been a vast body of water such as an ocean. The proximity of the ‘city’ to a large body of water is typical of most inhabitants who would naturally want to be near a huge source of natural resources and a medium for travel.

This fascinating theory or story later on subsided when much higher resolution photos from later expeditions, one in April 5, 1998 and another in April 8, 2001, revealed the Face on Mars as nothing more than a mesa, an elevated piece of land with a flat top and steep sides. Mesas can be found in the southwestern region of the US.

You can also find them in South Africa, Arabia, India, Australia, and of course, Spain. The term ‘mesa’ is actually derived from the Spanish word that means ‘table’. Mesas look pretty much like giant tables rising above a surrounding plain.

The sharper images showed that the top of the mesa did not resemble a face at all. As for the Pyramids on Mars, such geological formations can be found here on Earth. They’re usually formed through the action of ice in glaciation or frost weathering.

Some good examples of such formations here on Earth are Switzerland’s Matterhorn, USA’s Mount Thielsen, Scotland’s Buachaille Etive Mòr, and Canada’s Mount Assiniboine.

We have some related articles here that may interest you:

There’s more about it at NASA. Here are a couple of sources there:

Here are two episodes at Astronomy Cast that you might want to check out as well:

NASA: Unmasking the Face of Mars
NASA Mars Exploration