Venus is the Perfect Place to Count Meteors

DALL-E illustration depicting a meteor streaking through the atmosphere of Venus.

Watching meteoroids enter the Earth’s atmosphere and streak across the sky as the visual spectacle known as meteors, it is one of the most awe-inspiring spectacles on Earth, often exhibiting multiple colors as they blaze through the atmosphere, which often reveals their mineral compositions. But what if we could detect and observe meteors streaking through the atmospheres of other planets that possess atmospheres, like Venus, and use this to better determine meteoroid compositions and sizes?

This is what a recently accepted study to Icarus hopes to address as a pair of international researchers investigate how a future Venus orbiter could be used to study meteors streaking through the planet’s thick atmosphere. This study holds the potential to help scientists better understand meteoroids throughout the solar system.

Continue reading “Venus is the Perfect Place to Count Meteors”

NASA’s VERITAS Mission Breathes New Life

Artist’s illustration of NASA’s VERITAS spacecraft in orbit around Venus. (Credit: NASA/JPL-Caltech)

In a win for planetary scientists, and planetary geologists in particular, it was announced at the recent 55th Lunar and Planetary Science Conference (LPSC) in Texas earlier this month that NASA’s VERITAS mission to the planet Venus has been reinstated into NASA’s Fiscal Year 2025 (FY25) budget with a scheduled launch date of 2031, with the unofficial announcement coming on the first day of the conference, March 11, 2024, and being officially announced just a few days later. This comes after VERITAS experienced a “soft cancellation” in March of last year when NASA revealed its FY24 budget, providing VERITAS only $1.5 million, which was preceded by the launch of VERITAS being delayed a minimum of three years due to findings from an independent review board in November 2022.

Continue reading “NASA’s VERITAS Mission Breathes New Life”

Venus’ Clouds Contain Sulfuric Acid. That’s Not a Problem for Life.

Photo of Venus (Credit: Akatsuki)

A recent study published in Astrobiology investigates the potential habitability in the clouds of Venus, specifically how amino acids, which are the building blocks of life, could survive in the sulfuric acid-rich upper atmosphere of Venus. This comes as the potential for life in Venus’ clouds has become a focal point of contention within the astrobiology community in the last few years. On Earth, concentrated sulfuric acid is known for its corrosivity towards metals and rocks and for absorbing water vapor. In Venus’ upper atmosphere, it forms from solar radiation interacting with sulfur dioxide, water vapor, and carbon dioxide.

Continue reading “Venus’ Clouds Contain Sulfuric Acid. That’s Not a Problem for Life.”

NASA Selects a Sample Return Mission to Venus

Graphic depiction of Sample Return from the Surface of Venus. Credit: Geoffrey Landis

In Dante Alighieri’s epic poem The Divine Comedy, the famous words “Abandon all hope, ye who enter here” adorn the gates of hell. Interestingly enough, Dante’s vision of hell is an apt description of what conditions are like on Venus. With an average temperature of 450 °C (842 °F), atmospheric pressures 92 times that of Earth, and clouds of sulfuric acid rain to boot, Venus is the most hostile environment in the Solar System. It is little wonder why space agencies, going all the way back to the beginning of the Space Age, have had such a hard time exploring Venus’ atmosphere.

Despite that, there are many proposals for missions that could survive Venus’ hellish environment long enough to accomplish a sample return mission. One such proposal, the Sample Return from the Surface of Venus, comes from aerospace engineer and author Geoffrey Landis and his colleagues at the NASA Glenn Research Center. Their proposed concept was selected for this year’s NASA Innovative Advanced Concepts (NIAC) program. It consists of a solar-powered aircraft that would fashion propellant directly from Venus’ atmosphere and deploy a sample-return rover to the surface.

Continue reading “NASA Selects a Sample Return Mission to Venus”

Should We Send Humans to Venus?

Artist rendition of proposed habitable airships traversing Venus’ atmosphere, which has been proposed as the High Altitude Venus Operational Concept (HAVOC) mission. (Credit: NASA)

NASA is preparing to send humans back to the Moon with the Artemis missions in the next few years as part of the agency’s Moon to Mars Architecture with the long-term goal of landing humans on the Red Planet sometime in the 2030s or 2040s. But what about sending humans to other worlds of the Solar System? And, why not Venus? It’s closer to Earth than Mars by several tens of millions of kilometers, and despite its extremely harsh surface conditions, previous studies have suggested that life could exist in its clouds. In contrast, we have yet to find any signs of life anywhere on the Red Planet or in its thin atmosphere. So, should we send humans to Venus?

Continue reading “Should We Send Humans to Venus?”

Venus Exploration

The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA
The first color pictures taken of the surface of Venus by the Venera-13 space probe. The Venera 13 probe lasted only 127 minutes before succumbing to Venus's extreme surface environment. Part of building a longer-lasting Venus lander is figuring out how to power it. Credit: NASA

[/caption]
Venus has been know to humanity since we first looked up into the sky; it’s the brightest object in the night sky after the Sun and the Moon, so it’s pretty hard to miss. But Venus exploration really began with the invention of the telescope.

Although he didn’t invent the telescope, Galileo Galilei was the first to point it at the heavens and make detailed observations of what he saw. In 1610 he discovered that Venus goes through phases, like the Moon. This is because Venus is closer to the Sun than the Earth, and so we’re seeing different amounts of the planet illuminated by the Sun. This provided more evidence that the Solar System orbits around the Sun, and not the Earth.

But even with bigger and better telescopes, astronomers weren’t able to penetrate the thick clouds that shroud Venus and see the terrain below. They imagined a warm rainforest jungle world, but astronomers eventually worked out that Venus is really covered in a thick atmosphere of carbon dioxide, and the ground below is heated to hundreds of degrees.

The first spacecraft to arrive at Venus was NASA’s Mariner 2, which flew past Venus in 1962. It was followed by spacecraft from Russia, including several that actually landed on the surface of Venus, and survived up to a few hours in the horrendous heat. NASA’s Magellan spacecraft was equipped with a radar instrument that could pierce through the atmosphere of Venus and reveal the terrain below. It showed that Venus has evidence of volcanism, and impact craters, but no plate tectonics. This helps contribute to its runaway greenhouse effect.

The most recent spacecraft sent to Venus is the European Space Agency’s Venus Express. It arrived at Venus in 2006, and has been making continuous observations of the planet ever since.

We’ve written many articles about the exploration of the planets in the Solar System. Here’s an article about the benefits of space exploration, and here’s an article about the Mars Exploration Rover.

If you’d like more information on the exploration of Venus, check out the homepage for ESA’s Venus Express, and here’s a link to the Venera Program.

We’ve also recorded an entire episode of Astronomy Cast all about Venus. Listen here, Episode 50: Venus.