Astronomers Just Found 72 Stellar Explosions, but Don’t Know What’s Causing Them

A supernova is one of the most impressive natural phenomena in the Universe. Unfortunately, such events are often brief and transient, temporarily becoming as bright as an entire galaxy and then fading away. But given what these bright explosions – which occur when a star reaches the end of its life cycle – can teach us about the Universe, scientists are naturally very interested in studying them.

Using data from the Dark Energy Survey Supernova (DES-SN) program, a team of astronomers recently detected 72 supernovae, the largest number of events discovered to date. These supernovae were not only very bright, but also very brief – a finding which the team is still struggling to explain. The results of their study were presented on Tuesday, April 3rd, at the European Week of Astronomy and Space Science in Liverpool.

The team was led by Miika Pursiainen, a PhD researcher from the University of Southampton. For the sake of their study, the team relied on data from the 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). This telescope is part of the Dark Energy Survey, a global effort to map hundreds of millions of galaxies and thousands of supernovae in to find patterns int he cosmic structure that will reveal the nature of dark energy.

This image shows the incredibly distant and ancient supernova DES16C2nm. The supernova was discovered by the Dark Energy Survey. Image: Mat Smith and DES collaboration.

As Pursiainen commented in a recent Southampton news release:

“The DES-SN survey is there to help us understand dark energy, itself entirely unexplained. That survey then also reveals many more unexplained transients than seen before. If nothing else, our work confirms that astrophysics and cosmology are still sciences with a lot of unanswered questions!”

As noted, these events were very peculiar in that they had a similar maximum brightness compared to different types of supernove, they were visible for far less time. Whereas supernova typically last for several months or more, these transient supernovae were visible for about a week to a month. The events also appeared to be very hot, with temperatures ranging from 10,000 to 30,000 °C (18,000 to 54,000 °F).

They also vary considerably in size, ranging from being several times the distance between the Earth and the Sun – 150 million km, 93 million mi (or 1 AU) – to hundreds of times. However, they also appear to be expanding and cooling over time, which is what is expected from an event like a supernova. Because of this, there is much debate about the origin of these transient supernovae.

Artistic impression of a star going supernova, casting its chemically enriched contents into the universe. Credit: NASA/Swift/Skyworks Digital/Dana Berry

A possible explanation is that these stars shed a lot of material before they exploded, and that this could have shrouded them in matter. This material may then have been heated by the supernovae themselves, causing it to rise to very high temperatures. This would mean that in these cases, the team was seeing the hot clouds rather than the exploding stars themselves.

This certainly would explain the observations made by Pursiainen and his team, though a lot more data will be needed to confirm this. In the future, the team hopes to examine more transients and see how often they occur compared to more common supernovae. The study of this powerful and mysterious phenomenon will also benefit from the use of next-generation telescopes.

When the James Webb Space Telescope is deployed in 2020, it will study the most distant supernovae in the Universe. This information, as well as studies performed by ground-based observatories, is expected to not only shed light on the life cycle of stars and dark energy, but also on the formation of black holes and gravitational waves.

Further Reading: University of Southampton

Supernova

[/caption]
A supernova is the explosion of a star. In an instant, a star with many times the mass of our own Sun can detonate with the energy of a billion suns. And then, within just a few hours or days, it dims down again. Some explode into a spray of gas and dust, while others become exotic objects like neutron stars or black holes.

Astronomers have classified supernovae into two broad classifications: Type I and Type II. Type I supernovae occur in binary systems, where one star pulls off mass from a second star until it reaches a certain amount of mass. This causes it to explode as a supernova. Type II supernovae are the explosions of massive stars which have reached the end of their lives.

All of the elements heavier than iron were created in supernova explosions. As a massive star runs out of hydrogen fuel, it starts to fuse together heavier and heavier elements. Helium into carbon and oxygen. And then oxygen into heavier elements. It goes up the periodic table this way, fusing heavier elements until it reaches iron. Once a star reaches iron, it’s no longer able to extract energy from the fusion process. The core collapses down into a black hole, and the material around it is fused together into the elements heavier than iron. If you’re wearing any gold jewelry, that was created in a supernova.

In 1054 Chinese astronomers saw a supernova explosion that was so bright it was visible in the middle of the day. The explosion of gas and dust is now visible as the Crab Nebula (that’s the picture at the top of this article). The most recent powerful supernova explosion occurred in 1987, when a star exploded in the Large Magellanic Cloud.

Astronomers use Type I supernovae to judge distances in the Universe. This is because they always explode with approximately the same amount of energy. When a white dwarf star collected approximately 1.4 times the mass of the Sun, it can’t support its mass and collapses. This amount is called the Chandrasekhar Limit. When an astronomer sees a Type I supernova, they know how bright it is, and so they can measure how far away it is.

We’ve written many articles about supernovae for Universe Today. Here’s an article about a slow motion supernova, and here’s an article about a theoretical supernova that was actually found to exist.

If you’d like to see a gallery of supernova photographs, check out this section of the Hubble Space Telescope site, and here’s NASA’s Photo Gallery of Nebulae.

We’ve also recorded several episodes of Astronomy Cast about supernovas. Check out this one, Episode 14: We’re All Made of Supernovae.

References:
http://www.cfa.harvard.edu/supernova//newdata/supernovae.html
http://en.wikipedia.org/wiki/Chandrasekhar_limit