What Was Cosmic Inflation? The Quest to Understand the Earliest Universe

Cosmic Inflation?


The Big Bang. The discovery that the Universe has been expanding for billions of years is one of the biggest revelations in the history of science. In a single moment, the entire Universe popped into existence, and has been expanding ever since.

We know this because of multiple lines of evidence: the cosmic microwave background radiation, the ratio of elements in the Universe, etc. But the most compelling one is just the simple fact that everything is expanding away from everything else. Which means, that if you run the clock backwards, the Universe was once an extremely hot dense region

A billion years after the big bang, hydrogen atoms were mysteriously torn apart into a soup of ions. Credit: NASA/ESA/A. Felid (STScI)).

Let’s go backwards in time, billions of years. The closer you get to the Big Bang, the closer everything was, and the hotter it was. When you reach about 380,000 years after the Big Bang, the entire Universe was so hot that all matter was ionized, with atomic nuclei and electrons buzzing around each other.

Keep going backwards, and the entire Universe was the temperature and density of a star, which fused together the primordial helium and other elements that we see to this day.

Continue to the beginning of time, and there was a point where everything was so hot that atoms themselves couldn’t hold together, breaking into their constituent protons and neutrons. Further back still and even atoms break apart into quarks. And before that, it’s just a big question mark. An infinitely dense Universe cosmologists called the singularity.

When you look out into the Universe in all directions, you see the cosmic microwave background radiation. That’s that point when the Universe cooled down so that light could travel freely through space.

And the temperature of this radiation is almost exactly the same in all directions that you look. There are tiny tiny variations, detectable only by the most sensitive instruments.

Cosmic microwave background seen by Planck. Credit: ESA

When two things are the same temperature, like a spoon in your coffee, it means that those two things have had an opportunity to interact. The coffee transferred heat to the spoon, and now their temperatures have equalized.

When we see this in opposite sides of the Universe, that means that at some point, in the ancient past, those two regions were touching. That spot where the light left 13.8 billion years ago on your left, was once directly touching that spot on your right that also emitted its light 13.8 billion years ago.

This is a great theory, but there’s a problem: The Universe never had time for those opposite regions to touch. For the Universe to have the uniform temperature we see today, it would have needed to spend enough time mixing together. But it didn’t have enough time, in fact, the Universe didn’t have any time to exchange temperature.

Imagine you dipped that spoon into the coffee and then pulled it out moments later before the heat could transfer, and yet the coffee and spoon are exactly the same temperature. What’s going on?

Alan H. Guth
Alan H. Guth. Credit: Betsy Devine (CC BY-SA 3.0)

To address this problem, the cosmologist Alan Guth proposed the idea of cosmic inflation in 1980. That moments after the Big Bang, the entire Universe expanded dramatically.

And by “moments”, I mean that the inflationary period started when the Universe was only 10^-36 seconds old, and ended when the Universe was 10^-32 seconds old.

And by “expanded dramatically”, I mean that it got 10^26 times larger. That’s a 1 followed by 26 zeroes.

Before inflation, the observable Universe was smaller than an atom. After inflation, it was about 0.88 millimeters. Today, those regions have been stretched 93 billion light-years apart.

This concept of inflation was further developed by cosmologists Andrei Linde, Paul Steinhardt, Andy Albrecht and others.

Inflation resolved some of the shortcomings of the Big Bang Theory.

The first is known as the flatness problem. The most sensitive satellites we have today measure the Universe as flat. Not like a piece-of-paper-flat, but flat in the sense that parallel lines will remain parallel forever as they travel through the Universe. Under the original Big Bang cosmology, you would expect the curvature of the Universe to grow with time.

The horizon problem in Big Bang cosmology. How is it that distant parts of the universe possess such similar physical properties? Credit: Addison Wesley.

The second is the horizon problem. And this is the problem I mentioned above, that two regions of the Universe shouldn’t have been able to see each other and interact long enough to be the same temperature.

The third is the monopole problem. According to the original Big Bang theory, there should be a vast number of heavy, stable “monopoles”, or a magnetic particle with only a single pole. Inflation diluted the number of monopoles in the Universe so don’t detect them today.

Although the cosmic microwave background radiation appears mostly even across the sky, there could still be evidence of that inflationary period baked into it.

The Big Bang and primordial gravitational waves. Credit: bicepkeck.org

In order to do this, astronomers have been focusing on searching for primordial gravitational waves. These are different from the gravitational waves generated through the collision of massive objects. Primordial gravitational waves are the echoes from that inflationary period which should be theoretically detectable through the polarization, or orientation, of light in the cosmic microwave background radiation.

A collaboration of scientists used an instrument known as the Background Imaging of Cosmic Extragalactic Polarization (or BICEP2) to search for this polarization, and in 2014, they announced that maybe, just maybe, they had detected it, proving the theory of cosmic inflation was correct.

Unfortunately, another team working with the space-based Planck telescope posted evidence that the fluctuations they saw could be fully explained by intervening dust in the Milky Way.

Planck’s view of its nine frequencies. Credit: ESA and the Planck Collaboration

The problem is that BICEP2 and Planck are designed to search for different frequencies. In order to really get to the bottom of this question, more searches need to be done, scanning a series of overlapping frequencies. And that’s in the works now.

BICEP2 and Planck and the newly developed South Pole Telescope as well as some observatories in Chile are all scanning the skies at different frequencies at the same time. Distortion from various types of foreground objects, like dust or radiation should be brighter or dimmer in the different frequencies, while the light from the cosmic microwave background radiation should remain constant throughout.

There are more telescopes, searching more wavelengths of light, searching more of the sky. We could know the answer to this question with more certainty shortly.

One of the most interesting implications of cosmic inflation, if proven, is that our Universe is actually just one in a vast multiverse. While the Universe was undergoing that dramatic expansion, it could have created bubbles of spacetime that spawned other universes, with different laws of physics.

Multiverse Theory
Artist concept of the multiverse. Credit: Florida State University

In fact, the father of inflation, Alan Guth, said, “It’s hard to build models of inflation that don’t lead to a multiverse.”

And so, if inflation does eventually get confirmed, then we’ll have a whole multiverse to search for in the cosmic microwave background radiation.

The Big Bang was one of the greatest theories in the history of science. Although it did have a few problems, cosmic inflation was developed to address them. Although there have been a few false starts, astronomers are now performing a sensitive enough search that they might find evidence of this amazing inflationary period. And then it’ll be Nobel Prizes all around.

How Are Galaxies Moving Away Faster Than Light?

So, how can galaxies be traveling faster than the speed of light when nothing can travel faster than light?

I’m a little world of contradictions. “Not even light itself can escape a black hole”, and then, “black holes and they are the brightest objects in the Universe”. I’ve also said “nothing can travel faster than the speed of light”. And then I’ll say something like, “ galaxies are moving away from us faster than the speed of light.” There’s more than a few items on this list, and it’s confusing at best. Thanks Universe!

So, how can galaxies be traveling faster than the speed of light when nothing can travel faster than light? Warp speed galaxies come up when I talk about the expansion of the Universe. Perhaps it’s dark energy acceleration, or the earliest inflationary period of the Universe when EVERYTHING expanded faster than the speed of light.

Imagine our expanding Universe. It’s not an explosion from a specific place, with galaxies hurtling out like cosmic jetsam. It’s an expansion of space. There’s no center, and the Universe isn’t expanding into anything.

I’d suggested that this is a terribly oversimplified model for our Universe expanding. Unfortunately, it’s also terribly convenient. I can steal it from my children whenever I want.

Imagine you’re this node here, and as the toy expands, you see all these other nodes moving away from you. And if you were to move to any other node, you’d see all the other nodes moving away from you.

Here’s the interesting part, these nodes over here, twice as far away as the closer ones, appear to move more quickly away from you. The further out the node is, the faster it appears to be moving away from you.

This is our freaky friend, the Hubble Constant, the idea that for every megaparsec of distance between us and a distant galaxy, the speed separating them increases by about 71 kilometers per second.

Galaxies separated by 2 parsecs will increase their speed by 142 kilometers every second. If you run the mathatron, once you get out to 4,200 megaparsecs away, two galaxies will see each other traveling away faster than the speed of light. How big Is that, is it larger than the Universe?

The first light ever, the cosmic microwave background radiation, is 46 billion light-years away from us in all directions. I did the math and 4,200 megaparsecs is a little over 13.7 billion light-years.There’s mountains of room for objects to be more than 4,200 megaparsecs away from each other. Thanks Universe?!?

Most of the Universe we can see is already racing away at faster than the speed of light. So how it’s possible to see the light from any galaxies moving faster than the speed of light. How can we even see the Cosmic Microwave Background Radiation? Thanks Universe.

WMAP data of the Cosmic Microwave Background. Credit: NASA
WMAP data of the Cosmic Microwave Background. Credit: NASA

Light emitted by the galaxies is moving towards us, while the galaxy itself is traveling away from us, so the photons emitted by all the stars can still reach us. These wavelengths of light get all stretched out, and duckslide further into the red end of the spectrum, off to infrared, microwave, and even radio waves. Given time, the photons will be stretched so far that we won’t be able to detect the galaxy at all.

In the distant future, all galaxies and radiation we see today will have faded away to be completely undetectable. Future astronomers will have no idea that there was ever a Big Bang, or that there are other galaxies outside the Milky Way. Thanks Universe.

I stand with Einstein when I say that nothing can move faster than light through space, but objects embedded in space can appear to expand faster than the speed of light depending on your perspective.

What aspects about cosmology still give you headaches? Give us some ideas for topics in the comments below.

Is the Universe Dying?

Is our 13.8 billion year old universe actually in its death throes?

Poor Universe, its demise announced right in it’s prime. At only 13.8 billion years old, when you peer across the multiverse it’s barely middle age. And yet, it sadly dwindles here in hospice.

Is it a Galactus infestation? The Unicronabetes? Time to let go, move on and find a new Universe, because this one is all but dead and gone and but a shell of its former self.

The news of imminent demise was recently broadcast in mid 2015. Based on research looking at the light coming from over 200,000 galaxies, they found that the galaxies are putting out half as much light as they were 2 billion years ago. So if our math is right, less light equals more death.

So tell it to me straight, Doctor Spaceman(SPAH-CHEM-AN), how long have we got? Astronomers have known for a long time that the Universe was much more active in the distant past, when everything was closer and denser, and better. Back then, more of it was the primordial hydrogen left over from the Big Bang, supplying galaxies for star formation. Currently, there are only 1 to 3 new stars formed in the Milky Way every year. Which is pretty slow by Milky Way standards.

Not even at the busiest time of star formation, our Sun formed 5 billion years ago. 5 billion years before that, just a short 4 billion after the Big Bang, star formation peaked out. There were 30 times more stars forming then, than we see today.

When stars were formed actually makes a difference. For example, the fact that it took so long for our Sun to form is a good thing. The heavier elements in the Solar System, really anything higher up the periodic table from hydrogen and helium, had to be formed inside other stars. Main sequence stars like our own Sun spew out heavier elements from their solar winds, while supernovae created the heaviest elements in a moment of catastrophic collapse. Astronomers are pretty sure we needed a few generations of stars to build up enough of the heavier elements that life depends on, and probably wouldn’t be here without it.

Even if life did form here on Earth billions of years ago, when the Universe was really cranking, it would wish it was never born. With 30 times as much star formation going on, there would be intense radiation blasting away from all these newly forming stars and their subsequent supernovae detonations. So be glad life formed when it did. Sometimes a little quiet is better.

So, how long has the Universe got? It appears that it’s not going to crash together in the future, it’s just going to keep on expanding, and expanding, forever and ever.

Our eyes would never see the Crab Nebula as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)
Our eyes would never see the Crab Nebula as this Hubble image shows it. Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

In a few billion years, star formation will be a fraction of what it is today. In a few trillion, only the longest lived, lowest mass red dwarfs will still be pushing out their feeble light. Then, one by one, galaxies will see their last star flicker and fade away into the darkness. Then there’ll only be dead stars and dead planets, cooling down to the background temperature of the Universe as their galaxies accelerate from one another into the expanding void.

Eventually everything will be black holes, or milling about waiting to be trapped in black holes. And these black holes themselves will take an incomprehensible mighty pile of years to evaporate away to nothing.

So yes, our Universe is dying. Just like in a cheery Sartre play, it started dying the moment it began its existence. According to astronomers, the Universe will never truly die. It’ll just reach a distant future when there’s so little usable energy, it’ll be mostly dead. Dead enough? Dead inside.

As Miracle Max knows, mostly dead is still slightly alive. Who knows what future civilizations will figure out in the googol years between then and now.

Too sad? Let’s wildly speculate on futuristic technologies advanced civilizations will use to outlast the heat death of the Universe or flat out cheat death and re-spark it into a whole new cycle of Universal renewal.

How Can Space Travel Faster Than The Speed Of Light?

Cosmologists are intellectual time travelers. Looking back over billions of years, these scientists are able to trace the evolution of our Universe in astonishing detail. 13.8 billion years ago, the Big Bang occurred. Fractions of a second later, the fledgling Universe expanded exponentially during an incredibly brief period of time called inflation. Over the ensuing eons, our cosmos has grown to such an enormous size that we can no longer see the other side of it.

But how can this be? If light’s velocity marks a cosmic speed limit, how can there possibly be regions of spacetime whose photons are forever out of our reach? And even if there are, how do we know that they exist at all?

The Expanding Universe

Like everything else in physics, our Universe strives to exist in the lowest possible energy state possible. But around 10-36 seconds after the Big Bang, inflationary cosmologists believe that the cosmos found itself resting instead at a “false vacuum energy” – a low-point that wasn’t really a low-point. Seeking the true nadir of vacuum energy, over a minute fraction of a moment, the Universe is thought to have ballooned by a factor of 1050.

Since that time, our Universe has continued to expand, but at a much slower pace. We see evidence of this expansion in the light from distant objects. As photons emitted by a star or galaxy propagate across the Universe, the stretching of space causes them to lose energy. Once the photons reach us, their wavelengths have been redshifted in accordance with the distance they have traveled.

Two sources of redshift: Doppler and cosmological expansion; modeled after Koupelis & Kuhn. Credit: Brews Ohare.
Two sources of redshift: Doppler and cosmological expansion; modeled after Koupelis & Kuhn. Bottom: Detectors catch the light that is emitted by a central star. This light is stretched, or redshifted, as space expands in between. Credit: Brews Ohare.

This is why cosmologists speak of redshift as a function of distance in both space and time. The light from these distant objects has been traveling for so long that, when we finally see it, we are seeing the objects as they were billions of years ago.

The Hubble Volume

Redshifted light allows us to see objects like galaxies as they existed in the distant past; but we cannot see all events that occurred in our Universe during its history. Because our cosmos is expanding, the light from some objects is simply too far away for us ever to see.

The physics of that boundary rely, in part, on a chunk of surrounding spacetime called the Hubble volume. Here on Earth, we define the Hubble volume by measuring something called the Hubble parameter (H0), a value that relates the apparent recession speed of distant objects to their redshift. It was first calculated in 1929, when Edwin Hubble discovered that faraway galaxies appeared to be moving away from us at a rate that was proportional to the redshift of their light.

Fit of redshift velocities to Hubble's law. Credit: Brews Ohare
Fit of redshift velocities to Hubble’s law. Credit: Brews Ohare

Dividing the speed of light by H0, we get the Hubble volume. This spherical bubble encloses a region where all objects move away from a central observer at speeds less than the speed of light. Correspondingly, all objects outside of the Hubble volume move away from the center faster than the speed of light.

Yes, “faster than the speed of light.” How is this possible?

The Magic of Relativity

The answer has to do with the difference between special relativity and general relativity. Special relativity requires what is called an “inertial reference frame” – more simply, a backdrop. According to this theory, the speed of light is the same when compared in all inertial reference frames. Whether an observer is sitting still on a park bench on planet Earth or zooming past Neptune in a futuristic high-velocity rocketship, the speed of light is always the same. A photon always travels away from the observer at 300,000,000 meters per second, and he or she will never catch up.

General relativity, however, describes the fabric of spacetime itself. In this theory, there is no inertial reference frame. Spacetime is not expanding with respect to anything outside of itself, so the the speed of light as a limit on its velocity doesn’t apply. Yes, galaxies outside of our Hubble sphere are receding from us faster than the speed of light. But the galaxies themselves aren’t breaking any cosmic speed limits. To an observer within one of those galaxies, nothing violates special relativity at all. It is the space in between us and those galaxies that is rapidly proliferating and stretching exponentially.

The Observable Universe

Now for the next bombshell: The Hubble volume is not the same thing as the observable Universe.

To understand this, consider that as the Universe gets older, distant light has more time to reach our detectors here on Earth. We can see objects that have accelerated beyond our current Hubble volume because the light we see today was emitted when they were within it.

Strictly speaking, our observable Universe coincides with something called the particle horizon. The particle horizon marks the distance to the farthest light that we can possibly see at this moment in time – photons that have had enough time to either remain within, or catch up to, our gently expanding Hubble sphere.

And just what is this distance? A little more than 46 billion light years in every direction – giving our observable Universe a diameter of approximately 93 billion light years, or more than 500 billion trillion miles.

The observable - or inferrable universe. This may just be a small component of the whole ball game.
The observable universe, more technically known as the particle horizon.

(A quick note: the particle horizon is not the same thing as the cosmological event horizon. The particle horizon encompasses all the events in the past that we can currently see. The cosmological event horizon, on the other hand, defines a distance within which a future observer will be able to see the then-ancient light our little corner of spacetime is emitting today.

In other words, the particle horizon deals with the distance to past objects whose ancient light that we can see today; the cosmological event horizon deals with the distance that our present-day light that will be able to travel as faraway regions of the Universe accelerate away from us.)

Dark Energy

Thanks to the expansion of the Universe, there are regions of the cosmos that we will never see, even if we could wait an infinite amount of time for their light to reach us. But what about those areas just beyond the reaches of our present-day Hubble volume? If that sphere is also expanding, will we ever be able to see those boundary objects?

This depends on which region is expanding faster – the Hubble volume or the parts of the Universe just outside of it. And the answer to that question depends on two things: 1) whether H0 is increasing or decreasing, and 2) whether the Universe is accelerating or decelerating. These two rates are intimately related, but they are not the same.

In fact, cosmologists believe that we are actually living at a time when His decreasing; but because of dark energy, the velocity of the Universe’s expansion is increasing.

That may sound counterintuitive, but as long as Hdecreases at a slower rate than that at which the Universe’s expansion velocity is increasing, the overall movement of galaxies away from us still occurs at an accelerated pace. And at this moment in time, cosmologists believe that the Universe’s expansion will outpace the more modest growth of the Hubble volume.

So even though our Hubble volume is expanding, the influence of dark energy appears to provide a hard limit to the ever-increasing observable Universe.

Our Earthly Limitations

cosmology tapestry

Cosmologists seem to have a good handle on deep questions like what our observable Universe will someday look like and how the expansion of the cosmos will change. But ultimately, scientists can only theorize the answers to questions about the future based on their present-day understanding of the Universe. Cosmological timescales are so unimaginably long that it is impossible to say much of anything concrete about how the Universe will behave in the future. Today’s models fit the current data remarkably well, but the truth is that none of us will live long enough to see whether the predictions truly match all of the outcomes.

Disappointing? Sure. But totally worth the effort to help our puny brains consider such mind-bloggling science – a reality that, as usual, is just plain stranger than fiction.

Where Did the Big Bang Happen?

Imagine the Big Bang, and you’re imagining an explosion. There must be come place we could travel in the Universe and see the wreckage left over from the Big Bang. So, where is it?

Close your eyes and imagine the Big Bang. That first moment, where all the energy, matter and light came into existence. It’s an explosion right? Fire, debris, sinks, marmots and anvils flying past the camera in an ever expanding cloud of hot gas.

And like any explosion, there must be an aftermath, right? Some place we could travel in the Universe and see the exact spot that everything began; the exact location where the Big Bang happened and ideally a huge crater in spacetime where the Universe began.

I expect you’re imagining our little scene in your mind. Complete with space-time indentations and orbital detritus. I hope you’re also getting the unsettling feeling of dread that I’m about to smash up beloved sci-fi tropes for my own amusement. And here it is…

There’s no exact spot that the Big Bang happened. In fact, the Big Bang happened everywhere in the Universe. The problem generally comes from the term “Big Bang”. It brings to mind explosions, detonations, balloons being popped, and everything being blown out to chickenbasket hades. It’s too bad for us regular folk, this isn’t a good descriptive term for what the Big Bang was.

So I’m going to propose a new term, and just use it from here on out, and pretend like it was always this way. So, from here on out, I’m going to call it the Big Stretch, and by that I mean I’ve always called it the Big Stretch, and for those of you familiar with this type of retconning, the chocolate ration is being increased from 40 grams to 25 grams.

Imagine a balloon covered in dots, then inflate the balloon. Also, for the purposes of this illustration, you’re a 2-dimensional creature living at one of those dots and watching all the other dots. From your perspective, everything will smell like that weird damp spit and rubber balloon scent.

You’ll also see all other other dots moving away from you. You might even think you’re at the center of the expansion of the balloon. And then if you jumped to any other dot, you’d see the same thing. Just smelly dots, all racing away from you.

Expansion of the Universe. Image credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb.
Expansion of the Universe. Image credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb.

Now a lesser being would get all caught up thinking about the fact that the balloon is a three-dimensional object, and the center of the expansion is actually at the middle of the balloon. But you’re a 2D creature. You can’t comprehend anything but the surface of the balloon. That and the funky smell.

Now take that concept and scale it up one more dimension. As a three-dimensional creature trapped within a three-dimensional Universe witnessing it stretching out three dimensions. Every galaxy is moving away from you. But if you travel to any other galaxy, it looks like all the other galaxies are moving away from them.

Could a four-dimensional being find the center of the expansion, the place where the Big Bang happened? Probably. 4D beings are cool like that. But then, a 5D being would probably laugh at their simplistic 4D view of the Universe, with their quaint Klein bottles and rustic hypercubes. Suck it 4D jerks, they’d say, and then they’d trap them in their 5D lockers for the entirety of recess until the janitor heard the banging and let them out.

And don’t get me started on those 11D jerks. Those guys are awful, and they really think they’re better than everyone else. They’re like Greg Marmand from Omega House but with 8 more dimensions of nose to look down at you across.

So, where did the Big Bang happen? It happened everywhere. All places formed in the Big Bang – I mean – Big Stretch, and they’ve been moving away from each other for 13.8 billion years. There’s no one place you can point to and say: the Big Bang happened there.But you can be totally obnoxious and point to anywhere, and say the Big Bang happened there. Since the Big Bang happened everywhere, it happened in your hometown. Tell us where you’re from in the comments below.

How Fast is the Universe Expanding?

The Universe is expanding, but how quickly is it expanding? How far away is everything getting from everything else? And how do we know any of this anyway?

When astronomers talk about the expansion of the Universe, they usually express it in terms of the Hubble parameter. First introduced by Edwin Hubble when he demonstrated that more distant galaxies are moving away from us faster than closer ones.The best measurements for this parameter gives a value of about 68 km/s per megaparsec.

Let’s recap. Hubble. Universe. Galaxies. Leaving. Further means faster. And then I said something that sounded like “blah blah Lando blah blah Kessel Run 68 km/s per megaparsec”. Which translates to if you have a galaxy 1 megaparsec away, that’s 3.3 million light years for those of you who haven’t seen Star Wars, it would be expanding away from us at a speed of 68 km/s. So, 1 megaparsec in distance means it’s racing away at 68 km/s.

This is all because space is expanding everywhere in all places, and as a result distant galaxies appear to be expanding away from us faster than closer ones. There’s just more “space” to expand between us and them in the first place. Even better, our Universe was much more dense in the past, as a result the Hubble parameter hasn’t always had the same value.

There are two things affecting the Hubble parameter: dark energy, working to drive the Universe outwards, and matter, dark and regular flavor trying to hold it together. Pro tip: The matter side of this fight is currently losing.

Expansion of the Universe. Image credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb.
Expansion of the Universe. Image credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb.

Earlier in the Universe, when the Hubble parameter was smaller, matter had a stronger influence due to its higher overall density. Today dark energy is dominant, thus the Hubble parameter is larger, and this is why we talk about the Universe not only expanding but accelerating.

Our cosmos expands at about the rate at which space is expanding, and the speed at which objects expand away from us depends upon their distance. If you go far enough out, there is a distance at which objects are speeding away from us faster than the speed of light. As a result, it’s suspected that receding galaxies will cross a type of cosmological event horizon, where any evidence of their existence, not even light, would ever be able to reach us, no matter how far into the future you went.

What do you think? Is there anything out there past that cosmological event horizon line waiting to surprise us?

Is Everything Actually Shrinking?

Whoa, here’s something to think about. Maybe the Universe isn’t expanding at all. Maybe everything is actually just shrinking, so it looks like it’s expanding. Turns out, scientists have thought of this.

Videos Suggested for You:

132 - What Came Before The Big Bang_ 136 - Why Is Space Black_

Video Transcript

It’s tinfoil hat day again at The Guide To Space. There’s some people who would have you believe the Universe is expanding. They’re peddling this idea it all started with a bang, and that expansion is continuing and accelerating. Yet, they can’t tell us what force is causing this acceleration. Just “dark energy”, or some other JK Rowling-esque sounding thing. Otherwise known as the acceleration that shall not be named, and it shall be taught in the class which follows potions in 3rd period.

I propose to you, faithful viewer, an alternative to this expansionist conspiracy. What if distances are staying the same, and everything is in fact, shrinking? Are we destined to compress all the way down to the Microverse? Is it only a matter of time before our galaxy starts drinking its coffee from a thimble or perhaps sealed in a pendant hanging on Orion’s belt? So, could we tell if that’s actually what’s going on?

Representation of the timeline of the universe over 13.7 billion years, and the expansion in the universe that followed. Credit: NASA/WMAP Science Team.
Representation of the timeline of the universe over 13.7 billion years, and the expansion in the universe that followed. Credit: NASA/WMAP Science Team.

Better get some scotch tape for the hats, kids. This one gets pretty rocky right out of the gate.
The first horrible and critical assumption here is that shrinking objects and an expanding universe would look exactly the same, which without magic or handwaving just isn’t the case. But you don’t have to take my word for it, we have science to punch holes in our Shrink-truther conspiracy.

Let’s start with distances. If we assumed the Earth and everything on it was getting smaller, we’d also be shrinking things like meter sticks. In the past they would have been larger. If everything was larger in the past, including the length of a meter, this means the speed of light would have appeared slower in the past. So was the speed of light slower in the past? I’m afraid it wasn’t, which really hobbles the shrinky-dink universe plot. But how do we know that?

The diagram shows the electromagnetic spectrum, the absorption of light by the Earth's atmosphere and illustrates the astronomical assets that focus on specific wavelengths of light. ALMA at the Chilean site and with modern solid state electronics is able to overcome the limitations placed by the Earth's atmosphere. (Credit: Wikimedia, T.Reyes)
The diagram shows the electromagnetic spectrum, the absorption of light by the Earth’s atmosphere and illustrates the astronomical assets that focus on specific wavelengths of light. ALMA at the Chilean site and with modern solid state electronics is able to overcome the limitations placed by the Earth’s atmosphere. (Credit: Wikimedia, T.Reyes)

You’ve probably seen spectral lines before or at least heard them referenced. Scientists use them to determine the chemical composition of materials. A changing speed of light would affect the spectral lines of distant objects, and because some people are just super smart and were able to do the math on this, we know that when we look at distant gas clouds we find the speed of light has changed no more than one part in a billion over the past 7 billion years.

Shrinking objects would also become more dense over time. This means that the universal constant of gravity should appear smaller in the past. Some have actually studied this, to determine whether it has changed over time, and they’ve also seen no change.

Artists illustration of the expansion of the Universe (Credit: NASA, Goddard Space Flight Center)
Artists illustration of the expansion of the Universe (Credit: NASA, Goddard Space Flight Center)

If objects in the Universe were shrinking, the Universe would actually be collapsing. If galaxies weren’t moving away from each other, their gravity would cause them to start falling toward each other. If they were shrinking, assuming their mass doesn’t change, their gravity would be just as strong, so shrinking wouldn’t stop their mutual attraction. A Universe of shrinking objects would look exactly opposite to what we observe.

So, good news. We’re pretty sure that objects, and us, and all other things in the Universe are not shrinking. We’re still not sure why anyone would name a thing Shrinky Dinks. Especially a craft toy marketed at children.

Hearing the Early Universe’s Scream: Sloan Survey Announces New Findings

Imagine a single mission that would allow you to explore the Milky Way and beyond, investigating cosmic chemistry, hunting planets, mapping galactic structure, probing dark energy and analyzing the expansion of the wider Universe. Enter the Sloan Digital Sky Survey, a massive scientific collaboration that enables one thousand astronomers from 51 institutions around the world to do just that.

At Tuesday’s AAS briefing in Seattle, researchers announced the public release of data collected by the project’s latest incarnation, SDSS-III. This data release, termed “DR12,” represents the survey’s largest and most detailed collection of measurements yet: 2,000 nights’ worth of brand-new information about nearly 500 million stars and galaxies.

One component of SDSS is exploring dark energy by “listening” for acoustic oscillation signals from the the acceleration of the early Universe, and the team also shared a new animated “fly-through” of the Universe that was created using SDSS data.

The SDSS-III collaboration is based at the powerful 2.5-meter Sloan Foundation Telescope at the Apache Point Observatory in New Mexico. The project itself consists of four component surveys: BOSS, APOGEE, MARVELS, and SEGUE. Each of these surveys applies different trappings to the parent telescope in order to accomplish its own, unique goal.

BOSS (the Baryon Oscillation Spectroscopic Survey) visualizes the way that sound waves produced by interacting matter in the early Universe are reflected in the large-scale structure of our cosmos. These ancient imprints, which date back to the first 500,000 years after the Big Bang, are especially evident in high-redshift objects like luminous-red galaxies and quasars. Three-dimensional models created from BOSS observations will allow astronomers to track the expansion of the Universe over a span of 9 billion years, a feat that, later this year, will pave the way for rigorous assessment of current theories regarding dark energy.

At the press briefing, Daniel Eistenstein from the Harvard-Smithsonian Center for Astrophysics explained how BOSS requires huge volumes of data and that so far 1.4 million galaxies have been mapped. He indicated the data analyzed so far strongly confirm dark energy’s existence.

This tweet from the SDSS twitter account uses a bit of humor to explain how BOSS works:

APOGEE (the Apache Point Observatory Galactic Evolution Experiment) employs a sophisticated, near-infrared spectrograph to pierce through thick dust and gather light from 100,000 distant red giants. By analyzing the spectral lines that appear in this light, scientists can identify the signatures of 15 different chemical elements that make up the faraway stars – observations that will help researchers piece together the stellar history of our galaxy.

MARVELS (the Multi-Object APO Radial Velocity Exoplanet Large-Area Survey) identifies minuscule wobbles in the orbits of stars, movements that betray the gravitational influence of orbiting planets. The technology itself is unprecedented. “MARVELS is the first large-scale survey to measure these tiny motions for dozens of stars simultaneously,” explained the project’s principal investigator Jian Ge, “which means we can probe and characterize the full population of giant planets in ways that weren’t possible before.”

At the press briefing, Ge said that MARVELS observed 5,500 stars repeatedly, looking for giant exoplanets around these stars. So far, the data has revealed 51 giant planet candidates as well as 38 brown dwarf candidates. Ge added that more will be found with better data processing.

A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS -- just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.
A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS — just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.

SEGUE (the Sloan Extension for Galactic Understanding and Exploration) rounds out the quartet by analyzing visible light from 250,000 stars in the outer reaches of our galaxy. Coincidentally, this survey’s observations “segue” nicely into work being done by other projects within SDSS-III. Constance Rockosi, leader of the SDSS-III domain of SEGUE, recaps the importance of her project’s observations of our outer galaxy: “In combination with the much more detailed view of the inner galaxy from APOGEE, we’re getting a truly holistic picture of the Milky Way.”

One of the most exceptional attributes of SDSS-III is its universality; that is, every byte of juicy information contained in DR12 will be made freely available to professionals, amateurs, and lay public alike. This philosophy enables interested parties from all walks of life to contribute to the advancement of astronomy in whatever capacity they are able.

As momentous as the release of DR12 is for today’s astronomers, however, there is still much more work to be done. “Crossing the DR12 finish line is a huge accomplishment by hundreds of people,” said Daniel Eisenstein, director of the SDSS-III collaboration, “But it’s a big universe out there, so there is plenty more to observe.”

DR12 includes observations made by SDSS-III between July 2008 and June 2014. The project’s successor, SDSS-IV, began its run in July 2014 and will continue observing for six more years.

Here is the video animation of the fly-through of the Universe: