Hubble Examines Earth’s Reflection as an ‘Exoplanet’ During a Lunar Eclipse

Hubble eclipse

What would we look for in a distant exoplanet in the hunt for Earth-like worlds, and perhaps life? A recent observation carried out by the Hubble Space Telescope found tell-tale signatures from our home planet by looking at a familiar source under extraordinary circumstances: Earth’s Moon, during a total lunar eclipse.

Continue reading “Hubble Examines Earth’s Reflection as an ‘Exoplanet’ During a Lunar Eclipse”

A Strange Planet has been Found that’s Smaller than Neptune But 50% More Massive

Astronomers have found another strange exoplanet in a distant solar system. This one’s an oddball because its size is intermediate between Earth and Neptune, yet it’s 50% more massive than Neptune.

Astronomers have found what they call “puff planets” in other Solar Systems. Those are planets that are a few times more massive than Earth, but with radii much larger than Neptune’s. But this planet is the opposite of that: it’s much more massive than Neptune, but it also has a much smaller radius. Super-dense, not super-puffy.

This oddball planet is calling into question our understanding of how planets form.

Continue reading “A Strange Planet has been Found that’s Smaller than Neptune But 50% More Massive”

There are Natural Starshades Out There, Which Would Help Astronomers Image Exoplanets

In the past few decades, the study of extrasolar planets has grown by leaps and bounds, with the confirmation of over 4000 exoplanets. With so many planets available for study, the focus of exoplanet-researchers is shifting from discovery to characterization. In the coming years, new technologies and next-generation telescopes will also enable Direct Imaging studies, which will vastly improve our understanding of exoplanet atmospheres.

To facilitate this process, astronomers will rely on costly technologies like coronagraphs and starshades, which block out the light of a star so any planets orbiting it will become more visible. However, according to a new study by an international team of astronomers and cosmologists, eclipsing binary stars could provide all the shading that’s needed to directly image planets orbiting them.

Continue reading “There are Natural Starshades Out There, Which Would Help Astronomers Image Exoplanets”

Study Finds Bizarre Exoplanet Orbits for Binary Stars

Exoplanet surface

There’s an iconic scene in the original Star Wars movie where Luke Skywalker looks out over the desert landscape of Tatooine at the amazing spectacle of a double sunset. Now, a new study out of the National Radio Astronomy Observatory (NRAO) suggests that such exotic exoplanet worlds orbiting multiple stars may exist in misaligned orbits, far out of the primary orbital plane.

Continue reading “Study Finds Bizarre Exoplanet Orbits for Binary Stars”

What is a Generation Ship?

The dream of traveling to another star and planting the seed of humanity on a distant planet… It is no exaggeration to say that it has captivated the imaginations of human beings for centuries. With the birth of modern astronomy and the Space Age, scientific proposals have even been made as to how it could be done. But of course, living in a relativistic Universe presents many challenges for which there are no simple solutions.

Of these challenges, one of the greatest has to do with the sheer amount of energy necessary to get humans to another star within their own lifetimes. Hence why some proponents of interstellar travel recommend sending spacecraft that are essentially miniaturized worlds that can accommodate travelers for centuries or longer. These “Generation Ships” (aka. worldships or Interstellar Arks) are spacecraft that are built for the truly long haul.

Continue reading “What is a Generation Ship?”

Astronomers Image the Atmosphere of a Red Dwarf Planet for the First Time. Spoiler Alert, it’s a Terrible Place to Live

The field of exoplanet research continues to grow by leaps and bounds. Thanks to missions like the Kepler Space Telescope, over four-thousand planets have been discovered beyond our Solar System, with more being confirmed all the time. Thanks to these discoveries and all that we’ve learned from them, the focus has begun to transition from the process of discovery to characterization.

For instance, a group of astronomers was able to image the surface of a planet orbiting a red dwarf star for the first time. Using data from the NASA Spitzer Space Telescope, the team was able to provide a rare glimpse at the conditions on the planet’s surface. And while those conditions were rather inhospitable – akin to something like Hades, but with less air to breathe – this represents a major breakthrough in the study of exoplanets.

Continue reading “Astronomers Image the Atmosphere of a Red Dwarf Planet for the First Time. Spoiler Alert, it’s a Terrible Place to Live”

Ground-Based Telescope Directly Observes the Atmosphere of an Extrasolar Planet, and Sees Swirling Clouds of Iron and Silicates

An artist's illustration of the exoplanet HR8799e. The ESO's GRAVITY instrument on its Very Large Telescope Interferometer made the first direct optical observation of this planet and its atmosphere. Image Credit: ESO/L. Calçada

We’ve finally got our first optical look at an exoplanet and its atmosphere, and boy is it a strange place. The planet is called HR8799e, and its atmosphere is a complex one. HR8799e is in the grips of a global storm, dominated by swirling clouds of iron and silicates.

Continue reading “Ground-Based Telescope Directly Observes the Atmosphere of an Extrasolar Planet, and Sees Swirling Clouds of Iron and Silicates”

Astronomers find Planet Vulcan – 40 Eridani A – Right Where Star Trek Predicted it.

One of the more interesting and rewarding aspects of astronomy and space exploration is seeing science fiction become science fact. While we are still many years away from colonizing the Solar System or reaching the nearest stars (if we ever do), there are still many rewarding discoveries being made that are fulfilling the fevered dreams of science fiction fans.

For instance, using the Dharma Planet Survey, an international team of scientists recently discovered a super-Earth orbiting a star just 16 light-years away. This super-Earth is not only the closest planet of its kind to the Solar System, it also happens to be located in the same star system as the fictional planet Vulcan from the Star Trek universe.

Continue reading “Astronomers find Planet Vulcan – 40 Eridani A – Right Where Star Trek Predicted it.”

What’s the Minimum Number of People you Should Send in a Generational Ship to Proxima Centauri?

Humanity has long dreamed about sending humans to other planets, even before crewed spaceflight became a reality. And with the discovery of thousands exoplanets in recent decades, particularly those that orbit within neighboring star systems (like Proxima b), that dream seems closer than ever to becoming a reality. But of course, a lot of technical challenges need to be overcome before we can hope to mount such a mission.

In addition, a lot of questions need to be answered. For example, what kind of ship should we send to Proxima b or other nearby exoplanets? And how many people would we need to place aboard that ship? The latter question was the subject of a recent paper written by a team of French researchers who calculated the minimal number of people that would be needed in order to ensure that a healthy multi-generational crew could make the journey to Proxima b.

The study, titled “Computing the minimal crew for a multi-generational space travel towards Proxima Centauri b“, recently appeared online and will soon be published in the Journal of the British Interplanetary Society. It was conducted by Dr. Frederic Marin, an astrophysicist from the Astronomical Observatory of Strasbourg, and Dr. Camille Beluffi, a particle physicist working with the scientific start-up Casc4de.

The Project Orion concept for a nuclear-powered spacecraft. Credit: silodrome.co

Their study was the second in a series of papers that attempt to evaluate the viability of an interstellar voyage to Proxima b. The first study, titled “HERITAGE: a Monte Carlo code to evaluate the viability of interstellar travels using a multi-generational crew“, was also published in the August 2017 issue of the Journal of the British Interplanetary Society.

Dr. Marin and Dr. Beluffi begin their latest study by considering the various concepts that have been proposed for making an interstellar journey – many of which were explored in a previous UT article, “How Long Would it Take to Get to the Nearest Star?“. These include the more traditional approaches, like Nuclear Pulse Propulsion (i.e. the Orion Project) and fusion rockets (i.e. the Daedalus Project), and also the more modern concept of Breakthrough Starshot.

However, such missions are still a long way off and/or do not involve crewed spaceflight (which is the case with Starshot). As such, Dr. Marin and Dr. Beluffi also took into account missions that will be launching in the coming years like NASA’s  Parker Solar Probe. This probe will reach record-breaking orbital velocities of up to 724,205 km/h, which works out to about 200 km/s (or 0.067% the speed of light).

As Dr. Marin told Universe Today via email:

“This purely and entirely rely on the technology available at the time of the mission. If we would create a spacecraft right now, we could only reach about 200 km/s, which translates into 6300 years of travel. Of course technology is getting better with time and by the time a real interstellar project will be created, we can expect to have improved the duration by one order of magnitude, i.e. 630 years. This is speculative as technology as yet to be invented.”

Weighing in at 60,000 tons when fully fuelled, Daedalus would dwarf even the Saturn V rocket. Credit: Adrian Mann

With their baseline for speed and travel time established – 200 km/s-¹ and 6300 years – Dr. Marin and Dr. Beluffi then set out to determine the minimum number of people needed to ensure that a healthy crew arrived at Proxima b. To do this, the pair conducted a series of Monte Carlo simulations using a new code created by Dr. Marin himself. This mathematical technique takes into account chance events in decision making to produce distributions of possible outcomes.

“We are using a new numerical software that I have created,” said Dr. Marin. “It is named HERITAGE, see the first paper of the series. It is a stochastic Monte Carlo code that accounts for all possible outcomes of space simulations by testing every randomized scenario for procreation, life and death. By looping the simulation thousands of times, we get statistical values that are representative of a real space travel for a multi-generational crew. The code accounts for as many biological factors as possible and is currently being developed to include more and more physics.”

These biological factors include things like the number of women vs. men, their respective ages, life expectancy, fertility rates, birth rates, and how long the crew would have to reproduce. It also took into account some extreme possibilities, which included accidents, disasters, catastrophic events, and the number of crew members likely to be effected by them.

They then averaged the results of these simulations over 100 interstellar journeys based on these various factors and different values to determine the size of the minimum crew. In the end, Dr. Marin and Dr. Beluffi concluded that under conservative conditions, a minimum of 98 crew members would be needed to sustain a multi-generational voyage to the nearest star system with a potentially-habitable exoplanet.

Illustration of the Parker Solar Probe spacecraft approaching the Sun. Credits: Johns Hopkins University Applied Physics Laboratory

Any less than that, and the likelihood of success would drop off considerably. For instance, with an initial crew of 32, their simulations indicated that the chances for success would reach 0%, largely because such a small community would make inbreeding inevitable. While this crew might eventually arrive at Proxima b, they would not be a genetically healthy crew, and therefore not a very good way to start a colony! As Dr. Marin explained:

“Our simulations allows us to predict with great precision the minimum size of the initial crew that will leave for centuries-long space travels. By allowing the crew to evolve under a list of adaptive social engineering principles (namely, yearly evaluations of the vessel population, offspring restrictions and breeding constraints), we show in this paper that it is possible to create and maintain a healthy population virtually indefinitely.”

While the technology and resources needed to make an interstellar voyage is still generations away, studies of this kind could be of profound significance for those missions – if and when they occur. Knowing in advance the likelihood that such a mission will succeed, and what will increase that likelihood to the point that success is virtually guaranteed, will also increase the likelihood that such missions are mounted.

This study and the one that preceded it are also significant in that they are the first to take into account key biological factors (like procreation) and how they will affect a multi-generational crew. As Dr. Marin concluded:

“Our project aims to provide realistic simulations of multi-generational space ships in order to prepare future space exploration, in a multidisciplinary project that utilizes the expertise of physicists, astronomers, anthropologists, rocket engineers, sociologists and many others. HERITAGE is the first ever dedicated Monte Carlo code to compute the probabilistic evolution of a kin-based crew aboard an interstellar ship, which allows one to explore whether a crew of a proposed size could survive for multiple generations without any artificial stocks of additional genetic material. Determining the minimum size of the crew is an essential step in the preparation of any multi-generational mission, affecting the resources and budget required for such an endeavor but also with implications for sociological, ethical and political factors. Furthermore, these elements are essential in examining the creation of any self-sustaining colony – not only humans establishing planetary settlements, but also with more immediate impacts: for example, managing the genetic health of endangered species or resource allocation in restrictive environments.”

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity’s first interstellar voyage. Credit: breakthroughinitiatives.org

Dr. Marin was also quoted recently in an article in The Conversation about the goals of his and Dr. Beluffi’s project, which is all about determining what is needed to ensure the health and safety of future interstellar voyagers. As he said in the article:

“Of the 3757 exoplanets that have been detected, the closest Earth-like planet lies at 40 trillion kilometers from us. At 1% of the speed of light, which is far superior to the highest velocities achieved by state-of-the-art spacecraft, it would still take 422 years for ships to reach their destination. One of the immediate consequences of this is that interstellar voyages cannot be achieved within a human lifespan. It requires a long-duration space mission, which necessitates finding a solution whereby the crew survive hundreds of years in deep space. This is the goal of our project: to establish the minimum size of a self-sustaining, long duration space mission, in terms of both hardware and population. By doing so, we intend to obtain scientifically-accurate estimates of the requirements for multi-generational interstellar travel, unlocking the future of human space exploration, migration and habitation.”

In the coming decades, next-generation telescopes are expected to discover thousands more exoplanets. But more importantly, these high-resolution instruments are also expected to reveal things about exoplanets that will allow us to characterize them. These will include spectra from their atmospheres that will let scientists know with greater certainty if they are actually habitable.

With more candidates to choose from, we will be all the more prepared for the day when interstellar voyages can be launched. When that time comes, our scientists will be armed with the necessary information for ensuring that the people that arrive will be hail, hearty, and prepared to tackle the challenges of exploring a new world!

Further Reading: arXiv, arXiv (2), The Conversation