The Origins of Life Could Indeed Be “Interstellar”

Some of science’s most pressing questions involve the origins of life on Earth. How did the first lifeforms emerge from the seemingly hostile conditions that plagued our planet for much of its history? What enabled the leap from simple, unicellular organisms to more complex organisms consisting of many cells working together to metabolize, respire, and reproduce? In such an unfamiliar environment, how does one even separate “life” from non-life in the first place?

Now, scientists at the University of Hawaii at Manoa believe that they may have an answer to at least one of those questions. According to the team, a vital cellular building block called glycerol may have first originated via chemical reactions deep in interstellar space.

Glycerol is an organic molecule that is present in the cell membranes of all living things. In animal cells this membrane takes the form of a phospholipid bilayer, a dual-layer membrane that sandwiches water-repelling fatty acids between outer and inner sheets of water-soluble molecules. This type of membrane allows the cell’s inner aqueous environment to remain separate and protected from its external, similarly watery world. Glycerol is a vital component of each phospholipid because it forms the backbone between the molecule’s two characteristic parts: a polar, water-soluble head, and a non-polar, fatty tail.

Many scientists believe that cell membranes such as these were a necessary prerequisite to the evolution of multicellular life on Earth; however, their complex structure requires a very specific environment – namely, one low in calcium and magnesium salts with a fairly neutral pH and stable temperature. These carefully balanced conditions would have been hard to come by on the prehistoric Earth.

Icy bodies born in interstellar space offer an alternative scenario. Scientists have already discovered organic molecules such as amino acids and lipid precursors in the Murchison meteorite that landed in Australia in 1969. Although the idea remains controversial, it is possible that glycerol could have been brought to Earth in a similar manner.

The Murchison Meteorite. Image credit: James St. John
The Murchison Meteorite.
Image credit: James St. John

Meteors typically form from tiny crumbs of material in cold molecular clouds, regions of gaseous hydrogen and interstellar dust that serve as the birthplace of stars and planetary systems. As they move through the cloud, these grains accumulate layers of frozen water, methanol, carbon dioxide, and carbon monoxide. Over time, high-energy ultraviolet radiation and cosmic rays bombard the icy fragments and cause chemical reactions that enrich their frozen cores with organic compounds. Later, as stars form and ambient material falls into orbit around them, the ices and the organic molecules they contain are incorporated into larger rocky bodies such as meteors. The meteors can then crash into planets like ours, potentially seeding them with building blocks of life.

In order to test whether or not glycerol could be created by the high-energy radiation that typically bombards interstellar ice grains, the team at the University of Hawaii designed their own meteorites: small bits of icy methanol cooled to 5 degrees Kelvin. After blasting their model ices with energetic electrons meant to mimic the effects of cosmic rays, the scientists found that some molecules of methanol within the ices did, in fact, transform into glycerol.

While this experiment appears to be a success, scientists realize that their laboratory models do not exactly replicate conditions in interstellar space. For instance, methanol traditionally makes up only about 30% of the ice in space rocks. Future work will investigate the effects of high-energy radiation on model ices made primarily of water. High-energy electrons fired in a lab are also not a perfect substitute for true cosmic rays and do not represent effects on ice that may result from ultraviolet radiation in interstellar space.

More research is necessary before scientists can draw any global conclusions; however, this study and its predecessors do provide compelling evidence that life as we know it truly could have come from above.

From Eternity to Here: The Amazing Origin of our Species (in 90 Seconds)

From the initial expansion of the Big Bang to the birth of the Moon, from the timid scampering of the first mammals to the rise — and fall — of countless civilizations, this fascinating new video by melodysheep (aka John D. Boswell) takes us on a breathless 90-second tour through human history — starting from the literal beginnings of space and time itself. It’s as imaginative and powerful as the most gripping Hollywood trailer… and it’s even inspired by a true story: ours.


(Video by melodysheep, creator of the Symphony of Science series.)

Alien Life May Not Be So Alien – If It Exists At All


Are we too hopeful in our hunt for extraterrestrial life? Regardless of exoplanet counts, super-Earths and Goldilocks zones, the probability of life elsewhere in the Universe is still a moot point — to date, we still only know of one instance of it. But even if life does exist somehow, somewhere besides Earth, would it really be all that alien?

In a recent paper titled “Bit by Bit: the Darwinian Basis for Life” Gerald Joyce, Professor of Molecular Biology and Biochemistry at the Scripps Research Institute in La Jolla, CA discusses the nature of life as we know it in regards to its fundamental chemical building blocks — DNA, RNA — and how its ability to pass on the memory of its construction separates true biology from mere chemistry.

“Evolution is nothing more than chemistry plus history,” Joyce said during a Public Library of Science podcast.

The DNA structures that evolved here on Earth — the only place in the Universe we know for certain that life can thrive — have proven to be highly successful (obviously). So what’s to say that life elsewhere wouldn’t be based on the same basic building blocks? And if it is, is it really a “new” life form?

“Truly new ‘alternative life’ would be life of a different biology,” Joyce said. “It would not have the information in it that is part of the same heritage of our life form.”

To arise in the first place, according to Joyce, new life can take two possible routes. Either it begins as chemical connections that grow increasingly more complex until they begin to hold on to the memory of their specific “bit” structure, eventually “bit-flipping” — aka, mutating — into new structures that are either successful or unsuccessful, or it starts from a more “privileged” beginning as an offshoot of previous life, bringing bits into a totally new, immediately successful orientation.

With those two scenarios, anywhere besides Earth “there are no example of either of those conditions so far.”

That’s not saying that there’s no life elsewhere in the Universe… just that we have yet to identify any evidence of it. And without evidence, any discussion of its probability is still pure conjecture.

“In order to estimate probabilities, we need facts,” said Joyce. “The problem is, there is only one life form. And so it’s not possible to estimate probability of life elsewhere when you have only one example.”

Voyager included a golden record with images and sounds of Earthly life recorded on it... just in case. (NASA)

Even though exoplanets are being found on a nearly daily basis, and it’s only a matter of time before a rocky, Earthlike world with liquid water on its surface is confirmed orbiting another star, that’s no guarantee of the presence of alien life — despite what conclusions the headlines will surely jump to.

There could be a billion habitable planets in our galaxy. But what’s the relationship between habitable and inhabited?” Joyce asks. “We don’t know.”

Still, we will continue to search for life beyond our planet, be it truly alien in nature… or something slightly more familiar. Why?

“I think humans are lonely,” Joyce said. “I think humans are like Geppetto — we want to have a ‘real boy’ out there that we can point to, we want to find a Pinocchio living on some extrasolar planet… and then somehow we won’t be such a lonely life form.”

And who knows… if any aliens out there really are a lot like us, they may naturally be searching for evidence of our existence as well. If only to not be so lonely.

Listen to the full PLoS podcast here.

How Plants May Have Helped Create Earth’s Unique Landscapes


According to conventional thinking, plant life first took hold on Earth after oceans and rivers formed; the soil produced by liquid water breaking down bare rock provided an ideal medium for plants to grow in. It certainly sounds logical, but a new study is challenging that view – the theory is that vascular plants, those containing a transport system for water and nutrients, actually created a cycle of glaciation and melting, conditions which led to the formation of rivers and mud which allowed forests and farmland to later develop. In short, they helped actually create the landscapes we see today.

The evidence was just published in two articles in a special edition of Nature Geoscience.

In the first article, analysis of the data proposes that vascular plants began to absorb the carbon dioxide in the atmosphere about 450 million years ago. This led to a cooling of temperatures on a global scale, resulting in widespread glaciation. As the glaciers later started to melt, they ground up the Earth’s surface, forming the kind of soils we see today.

The second article goes further, stating that today’s rivers were also created by vascular plants – the vegetation broke the rocks down into mud and minerals and then also held the mud in place. This caused river banks to start forming, acting as channels for water, which up until then had tended to flow over the surface much more randomly. As the water was channeled into more specific routes, rivers formed. This led to periodic flooding; sediments were deposited over large areas which created rich soil. As trees were able to take root in this new soil, debris from the trees fell into the rivers, creating logjams. This had the effect of creating new rivers and causing more flooding. These larger fertile areas were then able to support the growth of larger lush forests and farmland.

According to Martin Gibling, a professor of Earth science at Dalhousie University, “Sedimentary rocks, before plants, contained almost no mud. But after plants developed, the mud content increased dramatically. Muddy landscapes expanded greatly. A new kind of eco-space was created that wasn’t there before.”

The new theory also leads to the possibility that any exoplanets that happen to have vegetation would look different from Earth; varying circumstances would create a surface unique to each world. Any truly Earth-like exoplanets might be very similar in general, but the way that their surfaces have been modified might be rather different.

It’s an interesting scenario, but it also raises other questions. What about the ancient river channels on Mars? Some appear to have been formed by brief catastrophic floods, but others seem more similar to long-lived rivers here on Earth, especially if there actually was a northern hemisphere ocean as well. How did they form? Does this mean that rivers could form in a variety of ways, with or without plant life being involved? Could Mars have once had something equivalent to vascular plant life as well? Or could the new theory just be wrong? Then there’s Titan, which has numerous rivers still flowing today. Albeit they are liquid methane/ethane instead of water, but what exactly led to their formation?

From the editorial in Nature Geoscience:

Without the workings of life, the Earth would not be the planet it is today. Even if there are a number of planets that could support tectonics, running water and the chemical cycles that are essential for life as we know it, it seems unlikely that any of them would look like Earth. Even if evolution follows a predictable path, filling all available niches in a reproducible and consistent way, the niches on any Earth analogue could be different if the composition of its surface and atmosphere are not identical to those of Earth. And if evolution is random, the differences would be expected to be even larger. Either way, a glimpse of the surface of an exoplanet — if we ever get one — may give us a whole new perspective on biogeochemical cycling and geomorphology.

Just as the many exoplanets now being found are of a previously unknown and amazingly wide variety, and all uniquely alien, even the ones that (may) support life are likely to be just as diverse from each other as they are from Earth itself. Earth’s “twin” may be out there, but in terms of outward appearance, it may be somewhat more of a fraternal twin than an exact replica.

Key Step in Evolution Replicated by Scientists – With Yeast


One of the great puzzles in science has been the evolution of single-celled organisms into the incredibly wide variety of flora and fauna that we see today. How did Earth make the transition from an initially lifeless ball of rock to one populated only by single-celled organisms to a world teeming with more complex life?

As scientists understand it, single-celled organisms first began evolving into more complex forms more than 500 million years ago, as they began to form multi-cellular clusters. What isn’t understood is just how that process happened. But now, biologists are another step closer figuring out this puzzle, by successfully replicating this key step – using an ingredient common in the making of bread and beer – ordinary Brewer’s yeast (Saccharomyces cerevisiae). While helping to solve evolutionary riddles here on Earth, it also by extension has bearing on the question of biological evolution on other planets or moons as well.

The results were published in last week’s issue of the Journal Proceedings of the National Academy of Sciences (PNAS).

Yeasts are a microscopic form of fungi; they are uni-cellular but can become multi-cellular through the formation of a string of connected budding cells, like in molds. The experiments were based on this fact, and were surprisingly simple, they just hadn’t been done before, according to Will Ratcliff, a scientist at the University of Minnesota (UMN) and a co-author of the paper. “I don’t think anyone had ever tried it before,” he said, adding: “There aren’t many scientists doing experimental evolution, and they’re trying to answer questions about evolution, not recreate it.”

Sam Scheiner, program director in NSF’s Division of Environmental Biology, also adds: “To understand why the world is full of plants and animals, including humans, we need to know how one-celled organisms made the switch to living as a group, as multi-celled organisms. This study is the first to experimentally observe that transition, providing a look at an event that took place hundreds of millions of years ago.”

It’s been thought that the step toward multi-cellular complexity was a difficult one, an evolutionary hurdle that would be very hard to overcome. The new research however, suggests it may not be that difficult after all.

It took the first experiment only 60 days to produce results. The yeast was first added to a nutrient-rich culture, then the cells were allowed to grow for one day. They were then stratified by weight using a centrifuge. Clusters of yeast cells landed on the bottom of the test tubes. The process was then repeated, taking the cell clusters and re-adding them to fresh cultures. After sixty cycles of this, the cell clusters started to look like spherical snowflakes, composed of hundreds of cells.

The most significant finding was that the cells were not just clustering and sticking together randomly; the clusters were composed of cells that were genetically related to each other and remained attached after cell division. When clusters reached “critical mass,” some cells died, a process known as apoptosis, which allows the offspring to separate.

This then, simply put, is the process toward multi-cellular life. As described by Ratcliff, “A cluster alone isn’t multi-cellular. But when cells in a cluster cooperate, make sacrifices for the common good, and adapt to change, that’s an evolutionary transition to multi-cellularity.”

So next time you are baking bread or brewing your own beer, consider the fact that those lowly little yeast cells hold a lot more importance than just a useful role in your kitchen – they are also helping to solve some of the biggest mysteries of how life started, both here and perhaps elsewhere.