Europa Clipper Could Help Discover if Jupiter's Moon is Habitable

Artist's concept of a Europa Clipper mission. Credit: NASA/JPL

Since 1979, when the Voyager probes flew past Jupiter and its system of moons, scientists have speculated about the possibility of life within Europa. Based on planetary modeling, Europa is believed to be differentiated between a rocky and metallic core, an icy crust and mantle, and a liquid-water ocean that could be 100 to 200 km (62 to 124 mi) deep. Scientists theorize that this ocean is maintained by tidal flexing, where interaction with Jupiter’s powerful gravitational field leads to geological activity in Europa’s core and hydrothermal vents at the core-mantle boundary.

Investigating the potential habitability of Europa is the main purpose of NASA’s Europa Clipper mission, which will launch on October 10th, 2024, and arrive around Jupiter in April 2030. However, this presents a challenge for astrobiologists since the habitability of Europa is dependent on many interrelated parameters that require collaborative investigation. In a recent paper, a team of NASA-led researchers reviewed the objectives of the Europa Clipper mission and anticipated what it could reveal regarding the moon’s interior, composition, and geology.

Continue reading “Europa Clipper Could Help Discover if Jupiter's Moon is Habitable”

NASA Tests a Prototype Europa Lander

Testing Hardware for Potential Future Landing on Europa. Credit: NASA JPL-Caltech

In 2024, NASA will launch the Europa Clipper, the long-awaited orbiter mission that will fly to Jupiter (arriving in 2030) to explore its icy moon Europa. Through a series of flybys, the Clipper will survey Europa’s surface and plume activity in the hopes of spotting organic molecules and other potential indications of life (“biosignatures”). If all goes well, NASA plans to send a follow-up mission to land on the surface and examine Europa’s icy sheet and plumes more closely. This proposed mission is aptly named the Europa Lander.

While no date has been set, and the mission is still in the research phase, some significant steps have been taken to get the Europa Lander to the development phase. This past August, engineers at NASA’s Jet Propulsion Laboratory (JPL) in Southern California tested a prototype of this proposed landing system in a simulated environment. This system combines hardware used by previous NASA lander missions and some new elements that will enable a mission to Europa. It also could be adapted to facilitate missions to more “Ocean Worlds” and other celestial bodies in our Solar System.

Continue reading “NASA Tests a Prototype Europa Lander”

A Hybrid Fission/Fusion Reactor Could be the Best way to get Through the ice on Europa

This reprocessed colour view of Jupiter’s moon Europa was made from images taken by NASA's Galileo spacecraft in the late 1990s. Credit: NASA/JPL-Caltech

In the coming years, NASA and the European Space Agency (ESA) will send two robotic missions to explore Jupiter’s icy moon Europa. These are none other than NASA’s Europa Clipper and the ESA’s Jupiter Icy Moons Explorer (JUICE), which will launch in 2024, and 2023 (respectively). Once they arrive by the 2030s, they will study Europa’s surface with a series of flybys to determine if its interior ocean could support life. These will be the first astrobiology missions to an icy moon in the outer Solar System, collectively known as “Ocean Worlds.”

One of the many challenges for these missions is how to mine through the thick icy crusts and obtain samples from the interior ocean for analysis. According to a proposal by Dr. Theresa Benyo (a physicist and the principal investigator of the lattice confinement fusion project at NASA’s Glenn Research Center), a possible solution is to use a special reactor that relies on fission and fusion reactions. This proposal was selected for Phase I development by the NASA Innovative Advanced Concepts (NIAC) program, which includes a $12,500 grant.

Continue reading “A Hybrid Fission/Fusion Reactor Could be the Best way to get Through the ice on Europa”

NASA has Built a Collection of Instruments That Will Search for Life Inside Europa and Enceladus

Counterclockwise from top: California’s Mono Lake was the site of a field test for JPL’s Ocean Worlds Life Surveyor. A suite of eight instruments designed to detect life in liquid samples from icy moons, OWLS can autonomously track lifelike movement in water flowing past its microscopes. Credit: NASA/JPL-Caltech

One of the most exciting aspects of space exploration today is how the field of astrobiology – the search for life in our Universe – has become so prominent. In the coming years, many robotic and even crewed missions will be bound for Mars that will aid in the ongoing search for life there. Beyond Mars, missions are planned for the outer Solar System that will explore satellites and bodies with icy exteriors and interior oceans – otherwise known as “Ocean Worlds.” These include the Jovian satellites Europa and Ganymede and Saturn’s moons Titan and Enceladus.

Similar to how missions to Mars have analyzed soil and rock samples for evidence of past life, the proposed missions will analyze liquid samples for the chemical signatures that we associate with life and biological processes (aka. “biosignatures”). To aid in this search, scientists at NASA’s Jet Propulsion Laboratory have designed the Ocean Worlds Life Surveyor (OWLS), a suite of eight scientific instruments designed to sniff out biosignatures. In the coming decades, this suite could be used by robotic probes bound for “Ocean Worlds” all across the Solar System to search for signs of life.

Continue reading “NASA has Built a Collection of Instruments That Will Search for Life Inside Europa and Enceladus”

Europa has Water in its Atmosphere

Observations by the NASA/ESA Hubble Space Telescope recently revealed water vapour in the atmosphere of Ganymede, one of Jupiter’s moons. A new analysis of archival images and spectra has now revealed that water vapour is also present in the atmosphere of Jupter’s icy moon Europa. The analysis found that a water vapour atmosphere is present only on one hemisphere of the moon. This result advances our understanding of the atmospheric structure of icy moons, and helps lay the groundwork for upcoming science missions which will explore Jupiter’s icy moons.

Since the Voyager probes passed through the Jupiter system in 1979, scientists have been intrigued and mystified by its moon Europa. Once the images these probes acquired of the moon’s icy surface returned to Earth, scientists began to speculate about the possibility of a subsurface ocean. Since then, the detection of plume activity and other lines of evidence have bolstered this theory and fed speculation that there could be life beneath Europa’s icy surface.

According to new research, another critical piece of evidence of Europa’s watery nature has at least been confirmed. Using a similar technique that confirmed the presence of atmospheric water vapor in Jupiter’s moon Ganymede, Lorenz Roth of the KTH Royal Institute of Technology confirmed that Europa has water vapor in its atmosphere. This discovery could lead to a greater understanding of Europa’s atmosphere and surface environment, informing missions headed there in the near future.

Continue reading “Europa has Water in its Atmosphere”

Water Vapor Was Just Found on Europa, More Evidence There’s Liquid Water Beneath All that Ice

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

What’s been long-suspected has now been confirmed: Jupiter’s moon Europa has water. As we’ve learned more about the outer Solar System in recent years, Europa has become a high-priority target in the search for life. With this discovery, NASA has just painted a big red bulls-eye on Jupiter’s smallest Galilean moon.

Continue reading “Water Vapor Was Just Found on Europa, More Evidence There’s Liquid Water Beneath All that Ice”

Europa is Going to be Tough to Land on, it Could Have Towering Walls of Ice Spikes Across its Surface

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

Jupiter’s moon Europa has been the subject of fascination ever since the Pioneer 10 and 11 and Voyager 1 and 2 missions passed through the system back in the 1970s. While the moon has no viable atmosphere and is bombarded by intense radiation from Jupiter’s powerful magnetic field, scientists believe that one of the most likely places to find life beyond Earth exists beneath its icy surface.

Little wonder then why multiple missions are being planned to study this moon up-close. However, if and when those missions reach Europa sometime in the next decade, they will have to contend with some sharp surface features that could make it hard to land. Such is the conclusion of a new study by researchers from Britain, the US and NASA’s Ames Research Center, which indicates that Europa’s surface is covered in bladed terrain.

Continue reading “Europa is Going to be Tough to Land on, it Could Have Towering Walls of Ice Spikes Across its Surface”

Europa Lander Could Carry a Microphone and “Listen” to the Ice to Find Out What’s Underneath

Artist's rendering of a possible Europa Lander mission, which would explore the surface of the icy moon in the coming decades. Credit:: NASA/JPL-Caltech

Between the Europa Clipper and the proposed Europa Lander, NASA has made it clear that it intends to send a mission to this icy moon of Jupiter in the coming decade. Ever since the Voyager 1 and 2 probes conducted their historic flybys of the moon in 1973 and 1974 – which offered the first indications of a warm-water ocean in the moon’s interior – scientists have been eager to peak beneath the surface and see what is there.

Towards this end, NASA has issued a grant to a team of researchers from Arizona State University to build and test a specially-designed seismometer that the lander would use to listen to Europa’s interior. Known as the Seismometer for Exploring the Subsurface of Europa (SESE), this device will help scientists determine if the interior of Europa is conducive to life.

According to the profile for the Europa Lander, this microphone would be mounted to the robotic probe. Once it reached the surface of the moon, the seismometer would begin collecting information on Europa’s subsurface environment. This would include data on its natural tides and movements within the shell, which would determine the icy surface’s thickness.

Image of Europa’s ice shell, taken by the Galileo spacecraft, of fractured “chaos terrain”. Credit: NASA/JPL-Caltech

It would also determine if the surface has pockets of water – i.e. subsurface lakes – and see how often water rises to the surface. For some time, scientists have suspected that Europa’s “chaos terrain” would be the ideal place to search for evidence of life. These features, which are basically a jumbled mess of ridges, cracks, and plains, are believed to be spots where the subsurface ocean is interacting with the icy crust.

As such, any evidence of organic molecules or biological organisms would be easiest to find there. In addition, astronomers have also detected water plumes coming from Europa’s surface. These are also considered to be one of the best bets for finding evidence of life in the interior. But before they can be explored directly, determining where reservoirs of water reside beneath the ice and if they are connected to the interior ocean is paramount.

And this is where instruments like the SESE would come into play. Hongyu Yu is an exploration system engineer from ASU’s School of Earth and Space Exploration and the leader of the SESE team. As he stated in a recent article by ASU Now, “We want to hear what Europa has to tell us. And that means putting a sensitive ‘ear’ on Europa’s surface.”

While the idea of a Europa Lander is still in the concept-development stage, NASA is working to develop all the necessary components for such a mission. As such, they have provided the ASU team with a grant to develop and test their miniature seismometer, which measures no more than 10 cm (4 inches) on a side and could easily be fitted aboard a robotic lander.

Europa’s “Great Lake.” Scientists speculate many more exist throughout the shallow regions of the moon’s icy shell. Credit: Britney Schmidt/Dead Pixel FX/Univ. of Texas at Austin.

More importantly, their seismometer differs from conventional designs in that it does not rely on a mass-and-spring sensor. Such a design would be ill-suited for a mission to another body in our Solar System since it needs to be positioned upright, which requires that it be carefully planted and not disturbed. What’s more, the sensor needs to be placed within a complete vacuum to ensure accurate measurements.

By using a micro-electrical system with a liquid electrolyte for a sensor, Yu and his team have created a seismometer that can operate under a wider range of conditions. “Our design avoids all these problems,” he said. “This design has a high sensitivity to a wide range of vibrations, and it can operate at any angle to the surface. And if necessary, they can hit the ground hard on landing.”

As Lenore Dai – a chemical engineer and the director of the ASU’s School for Engineering of Matter, Transport and Energy – explained, the design also makes the SESE well suited for exploring extreme environments – like Europa’s icy surface. “We’re excited at the opportunity to develop electrolytes and polymers beyond their traditional temperature limits,” she said. “This project also exemplifies collaboration across disciplines.”

The SESE can also take a beating without compromising its sensor readings, which was tested when the team struck it with a sledgehammer and found that it still worked afterwards. According to seismologist Edward Garnero, who is also a member of the SESE team, this will come in handy. Landers typically have six to eight legs, he claims, which could be mated with seismometers to turn them into scientific instruments.

Artist’s concept of chloride salts bubbling up from Europa’s liquid ocean and reaching the frozen surface.  Credit: NASA/JPL-Caltech

Having this many sensors on the lander would give scientists the ability to combine data, allowing them to overcome the issue of variable seismic vibrations recorded by each. As such, ensuring that they are rugged is a must.

“Seismometers need to connect with the solid ground to operate most effectively. If each leg carries a seismometer, these could be pushed into the surface on landing, making good contact with the ground. We can also sort out high frequency signals from longer wavelength ones. For example, small meteorites hitting the surface not too far away would produce high frequency waves, and tides of gravitational tugs from Jupiter and Europa’s neighbor moons would make long, slow waves.”

Such a device could also prove crucial to missions other “ocean worlds” within the Solar System, which include Ceres, Ganymede, Callisto, Enceladus, Titan and others. On these bodies as well, it is believed that life could very well exist in warm-water oceans that lie beneath the surface. As such, a compact, rugged seismometer that is capable of working in extreme-temperature environments would be ideal for studying their interiors.

What’s more, missions of this kind would be able to reveal where the ice sheets on these bodies are thinnest, and hence where the interior oceans are most accessible. Once that’s done, NASA and other space agencies will know exactly where to send in the probe (or possibly the robotic submarine). Though we might have to wait a few decades on that one!

Further Reading: ASU Now