Massive Triple Star System Creates this Bizarre Swirling Pinwheel of Dust. And it Could be the Site of a Gamma Ray Burst

The VISIR instrument on ESO’s VLT captured this stunning image of a newly-discovered massive binary star system. Nicknamed Apep after an ancient Egyptian deity, it could be the first gamma-ray burst progenitor to be found in our galaxy. Apep’s stellar winds have created the dust cloud surrounding the system, which consists of a binary star with a fainter companion. With 2 Wolf-Rayet stars orbiting each other in the binary, the serpentine swirls surrounding Apep are formed by the collision of two sets of powerful stellar winds, which create the spectacular dust plumes seen in the image. The reddish pinwheel in this image is data from the VISIR instrument on ESO’s Very Large Telescope (VLT), and shows the spectacular plumes of dust surrounding Apep. The blue sources at the centre of the image are a triple star system — which consists of a binary star system and a companion single star bound together by gravity. Though only two star-like objects are visible in the image, the lower source is in fact an unresolved binary Wolf-Rayet star. The triple star system was captured by the NACO adaptive optics instrument on the VLT. Credit: ESO/Callingham et al.

When stars reach the end of their lifespan, many undergo gravitational collapse and explode into a supernova, In some cases, they collapse to become black holes and release a tremendous amount of energy in a short amount of time. These are what is known as gamma-ray bursts (GRBs), and they are one of the most powerful events in the known Universe.

Recently, an international team of astronomers was able to capture an image  of a newly-discovered triple star system surrounded by a “pinwheel” of dust. This system, nicknamed “Apep”, is located roughly 8,000 light years from Earth and destined to become a long-duration GRB. In addition, it is the first of its kind to be discovered in our galaxy.

Continue reading “Massive Triple Star System Creates this Bizarre Swirling Pinwheel of Dust. And it Could be the Site of a Gamma Ray Burst”

Super Earth Planet Found Around One of the Closest Stars to us. But it’s Probably a Terrible Place to Live

The nearest single star to the Sun hosts an exoplanet at least 3.2 times as massive as Earth — a so-called super-Earth. Data from a worldwide array of telescopes, including ESO’s planet-hunting HARPS instrument, have revealed this frozen, dimly lit world. The newly discovered planet is the second-closest known exoplanet to the Earth and orbits the fastest moving star in the night sky. This image shows an artist’s impression of the planet’s surface. Credit: ESO

In the course of searching for extra-solar planets, some very interesting finds have been made. Some of them have even occurred within our own galactic neighborhood. Just two years ago, astronomers from the Red Dots and CARMENES campaigns announced the discovery of Proxima b, a rocky planet that orbits within the habitable zone of our nearest stellar neighbor – Proxima Centauri.

This rocky world, which may be habitable, remains the closest exoplanet ever discovered to our Solar System. A few days ago (on Nov. 14th), Red Dots and CARMENES announced another find: a rocky planet orbiting Barnard’s star, which is just 6 light years from Earth. This planet, Barnard’s Star b, is now the second closest exoplanet to our Solar System, and the closest planet to orbit a single star.

Continue reading “Super Earth Planet Found Around One of the Closest Stars to us. But it’s Probably a Terrible Place to Live”

Astronomers Get as Close as They Can to Seeing the Black Hole at the Heart of the Milky Way

This visualization uses data from simulations of orbital motions of gas swirling around at about 30% of the speed of light on a circular orbit around the black hole. Credit: ESO/Gravity Consortium/L. Calçada

Since the 1970s, astronomers have theorized that at the center of our galaxy,  about 26,000 light-years from Earth, there exists a supermassive black hole (SMBH) known as Sagittarius A*. Measuring an estimated 44 million km (27.3 million mi) in diameter and weighing in at roughly 4 million Solar masses, this black hole is believed to have had a profound influence on the formation and evolution of our galaxy.

And yet, scientists have never been able to see it directly and its existence has only been inferred from the effect it has on the stars and material surrounding it. However, new observations conducted by the GRAVITY collaboration** has managed to yield the most detailed observations to date of the matter surrounding Sagittarius A*, which is the strongest evidence yet that a black hole exists at the center of the Milky Way. Continue reading “Astronomers Get as Close as They Can to Seeing the Black Hole at the Heart of the Milky Way”

An Extremely Large Hole has Been Dug for the Extremely Large Telescope

Construction site for the ESO’s Extremely Large Telescope (ELT) in the remote Chilean Atacama Desert. Credit: G. Hüdepohl/ESO

All over the world, some truly groundbreaking telescopes are being built that will usher in a new age of astronomy. Sites include the mountain of Mauna Kea in Hawaii, Australia, South Africa, southwestern China, and the Atacama Desert – a remote plateau in the Chilean Andes. In this extremely dry environment, multiple arrays are being built that will allow astronomers to see farther into the cosmos and with greater resolution.

One of these is the European Southern Observatory’s (ESO) Extremely Large Telescope (ELT), a next-generation array that will feature a complex primary mirror measuring 39 meters (128 feet) in diameter. At this very moment, construction is underway atop the Andean mountain of Cerro Armazones, where construction teams are busy pouring the foundations for the largest telescope every built.

Continue reading “An Extremely Large Hole has Been Dug for the Extremely Large Telescope”

New Video Shows Construction Beginning on the World’s Largest Telescope

Artist's impression of the European Extremely Large Telescope. Credit: ESO/L. Calçada

In the coming years, many ground-based and space-based telescopes will commence operations and collect their first light from cosmic sources. This next-generation of telescopes is not only expected to see farther into the cosmos (and hence, farther back in time), they are also expected to reveal new things about the nature of our Universe, its creation and its evolution.

One of these instruments is the Extremely Large Telescope, an optical telescope that is overseen by the European Southern Observatory. Once it is built, the ELT will be the largest ground-based telescope in the world. Construction began in May of 2017, and the ESO recently released a video that illustrates what it will look like when it is complete.

Continue reading “New Video Shows Construction Beginning on the World’s Largest Telescope”

This Beautiful Photo of Galaxy NGC 3981 was Taken by the Most Powerful Telescope in the World for no Scientific Reason at all. Just Because it’s Pretty

This image of the spiral galaxy NGC 3981 was captured by the FORS2 instrument on the ESO's VLT. NGC 3981 is in the Crater constellation. Image: ESO

The world’s most powerful telescopes have a lot of work to do. They’re tasked with helping us unravel the mysteries of the universe, like dark matter and dark energy. They’re burdened with helping us find other habitable worlds that might host life. And they’re busy with a multitude of other tasks, like documenting the end of a star’s life, or keeping an eye on meteors that get too close to Earth.

But sometimes, they have to take a break.
Continue reading “This Beautiful Photo of Galaxy NGC 3981 was Taken by the Most Powerful Telescope in the World for no Scientific Reason at all. Just Because it’s Pretty”

Telescope Pierces into One of the Biggest Nebulae in the Milky Way to Reveal its Newly Forming (and Nearly Dying) Stars

Image of the Carina nebula taken by VISTA, which reveals the dynamic cloud of interstellar matter and thinly spread gas and dust as never before. Credit: ESO/J. Emerson/M. Irwin/J. Lewis

Located about 7500 light-years from Earth, in the constellation of Carina, lies a star-forming region known as the Carina Nebula. This dynamic, evolving cloud of interstellar gas and dust measures about 300 light-years in diameter and is one of the Milky Way’s largest star-forming regions. It is also an exercise in contrasts, consisting of bright regions of gas illuminated by intense stellar radiation and dark pillars of dust that obscure star formation.
Continue reading “Telescope Pierces into One of the Biggest Nebulae in the Milky Way to Reveal its Newly Forming (and Nearly Dying) Stars”

Einstein Was Right… Again! Successful Test of General Relativity Near a Supermassive Black Hole

Artist’s impression of the path of the star S2 as it passes very close to the supermassive black hole at the centre of the Milky Way. Credit: ESO/M. Kornmesser

In 1915, Albert Einstein published his famous Theory of General Relativity, which provided a unified description of gravity as a geometric property of space and time. This theory gave rise to the modern theory of gravitation and revolutionized our understanding of physics. Even though a century has passed since then, scientists are still conducting experiments that confirm his theory’s predictions.

Thanks to recent observations made by a team of international astronomers (known as the GRAVITY collaboration), the effects of General Relativity have been revealed using a Supermassive Black Hole (SMBH) for the very first time. These findings were the culmination of a 26-year campaign of observations of the SMBH at the center of the Milky Way (Sagittarius A*) using the European Southern Observatory‘s (ESO) instruments.

The study which describes the team’s findings recently appeared in the journal Astronomy and Astrophysics, titled “Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole“. The study was led by Roberto Arbuto of the ESO and included members from the GRAVITY collaboration – which is led by Reinhard Genzel of the Max Planck Institute for Extraterrestrial Physics (MPE) and includes astronomers from multiple European universities and research institutes.

Annotated image of the path of the star S2 as it passes very close to the supermassive black hole at the center of the Milky Way. Credit: ESO/M. Kornmesser

For the sake of their study, the team relied on data gathered by the VLT’s extremely sensitive and high-precision instruments. These included the GRAVITY astrometric and interferometry instrument, the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) instrument, and the Nasmyth Adaptive Optics System (NAOS) – Near-Infrared Imager and Spectrograph (CONICA) instrument, which are together known as NACO.

The new infrared observations collected by these instruments allowed the team to monitor one of the stars (S2) that orbits Sagittarius A* as it passed in front of the black hole – which took place in May of 2018. At the closest point in its orbit, the star was at a distance of less than 20 billion km (12.4 billion mi) from the black hole and was moving at a speed in excess of 25 million km/h (15 million mph) – almost three percent of the speed of light.

Whereas the SINFONI instrument was used to measure the velocity of S2 towards and away from Earth, the GRAVITY instrument in the VLT Interferometer (VLTI) made extraordinarily precise measurements of the changing position of S2 in order to define the shape of its orbit. The GRAVITY instrument then created the sharp images that revealed the motion of the star as it passed close to the black hole.

The team then compared the position and velocity measurements to previous observations of S2 using other instruments. They then compared these results with predictions made by Newton’s Law of Universal Gravitation, General Relativity, and other theories of gravity. As expected, the new results were consistent with the predictions made by Einstein over a century ago.

As Reinhard Genzel, who in addition to being the leader of the GRAVITY collaboration was a co-author on the paper, explained in a recent ESO press release:

“This is the second time that we have observed the close passage of S2 around the black hole in our galactic center. But this time, because of much improved instrumentation, we were able to observe the star with unprecedented resolution. We have been preparing intensely for this event over several years, as we wanted to make the most of this unique opportunity to observe general relativistic effects.”

When observed with the VLT’s new instruments, the team noted an effect called gravitational redshift, where the light coming from S2 changed color as it drew closer to the black hole. This was caused by the very strong gravitational field of the black hole, which stretched the wavelength of the star’s light, causing it to shift towards the red end of the spectrum.

The change in the wavelength of light from S2 agrees precisely with what Einstein’s field equation’s predicted. As Frank Eisenhauer – a researcher from the Max Planck Institute of Extraterrestrial Physics, the Principal Investigator of GRAVITY and the SINFONI spectrograph, and a co-author on the study – indicated:

Our first observations of S2 with GRAVITY, about two years ago, already showed that we would have the ideal black hole laboratory. During the close passage, we could even detect the faint glow around the black hole on most of the images, which allowed us to precisely follow the star on its orbit, ultimately leading to the detection of the gravitational redshift in the spectrum of S2.

Whereas other tests have been performed that have confirmed Einstein’s predictions, this is the first time that the effects of General Relativity have been observed in the motion of a star around a supermassive black hole. In this respect, Einstein has been proven right once again, using one the most extreme laboratory to date! What’s more, it confirmed that tests involving relativistic effects can provide consistent results over time and space.

“Here in the Solar System we can only test the laws of physics now and under certain circumstances,” said Françoise Delplancke, head of the System Engineering Department at ESO. “So it’s very important in astronomy to also check that those laws are still valid where the gravitational fields are very much stronger.”

In the near future, another relativistic test will be possible as S2 moves away from the black hole. This is known as a Schwarzschild precession, where the star is expected to experience a small rotation in its orbit. The GRAVITY Collaboration will be monitoring S2 to observe this effect as well, once again relying on the VLT’s very precise and sensitive instruments.

As Xavier Barcons (the ESO’s Director General) indicated, this accomplishment was made possible thanks to the spirit of international cooperation represented by the GRAVITY collaboration and the instruments they helped the ESO develop:

“ESO has worked with Reinhard Genzel and his team and collaborators in the ESO Member States for over a quarter of a century. It was a huge challenge to develop the uniquely powerful instruments needed to make these very delicate measurements and to deploy them at the VLT in Paranal. The discovery announced today is the very exciting result of a remarkable partnership.”

And be sure to check out this video of the GRAVITY Collaboration’s successful test, courtesy of the ESO:

Further Reading: ESO, Astronomy and Astrophysics

Stunning First Ever Photograph of a Newly Forming Planet

This spectacular image from the SPHERE instrument on ESO's Very Large Telescope is the first clear image of a planet caught in the very act of formation around the dwarf star PDS 70. Credit: ESO/A. Müller et al.

For decades, the most widely-accepted view of how our Solar System formed has been the Nebular Hypothesis. According to this theory, the Sun, the planets, and all other objects in the Solar System formed from nebulous material billions of years ago. This dust experienced a gravitational collapse at the center, forming our Sun, while the rest of the material formed a circumstellar debris ring that coalesced to form the planets.

Thanks to the development of modern telescopes, astronomers have been able to probe other star systems to test this hypothesis. Unfortunately, in most cases, astronomers have only been able to observe debris rings around stars with hints of planets in formation. It was only recently that a team of European astronomers were able to capture an image of a newborn planet, thus demonstrating that debris rings are indeed the birthplace of planets.

The team’s research appeared in two papers that were recently published in Astronomy & Astrophysics, titled “Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70” and “Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk.” The team behind both studies included member from the Max Planck Institute for Astronomy (MPIA) as well as multiple observatories and universities.

Near infrared image of the PDS70 disk obtained with the SPHERE instrument. Credit: ESO/A. Müller, MPIA

For the sake of their studies, the teams selected PDS 70b, a planet that was discovered at a distance of 22 Astronomical Units (AUs) from its host star and which was believed to be a newly-formed body. In the first study – which was led by Miriam Keppler of the Max Planck Institute for Astronomy – the team indicated how they studied the protoplanetary disk around the star PDS 70.

PDS 70 is a low-mass T Tauri star located in the constellation Centaurus, approximately 370 light-years from Earth. This study was performed using archival images in the near-infrared band taken by the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) instrument on the ESO’s Very Large Telescope (VLT) and the Near-Infrared Coronagraphic Imager on the Gemini South Telescope.

Using these instruments, the team made the first robust detection of a young planet (PDS 70b) orbiting within a gap in its star’s protoplanetary disc and located roughly three billion km (1.86 billion mi) from its central star – roughly the same distance between Uranus and the Sun. In the second study, led by Andre Muller (also from the MPIA) the team describes how they used the SPHERE instrument to measure the brightness of the planet at different wavelengths.

From this, they were able to determine that PDS 70b is a gas giant that has about nine Jupiter masses and a surface temperature of about 1000 °C (1832 °F), making it a particularly “Hot Super-Jupiter”. The planet must be younger than its host star, and is probably still growing. The data also indicated that the planet is surrounded by clouds that alter the radiation emitted by the planetary core and its atmosphere.

Thanks to the advanced instruments used, the team was also able to acquire an image of the planet and its system. As you can see from the image (posted at top) and the video below, the planet is visible as a bright point to the right of the blackened center of the image. This dark region is due to a corongraph, which blocks the light from the star so the team could detect the much-fainter companion.

As Miriam Keppler, a postdoctoral student at the MPIA, explained in a recent ESO press statement:

“These discs around young stars are the birthplaces of planets, but so far only a handful of observations have detected hints of baby planets in them. The problem is that until now, most of these planet candidates could just have been features in the disc.”

In addition to spotting the young planet, the research teams also noted that it has sculpted the protoplanetary disc orbiting the star. Essentially, the planet’s orbit has traced a giant hole in the center of the disc after accumulating material from it. This means that PDS 70 b is still located in the vicinity of its birth place, is likely to still be accumulating material and will continue to grow and change.

For decades, astronomers have been aware of these gaps in the protoplanetary disc and speculated that they were produced by a planet. Now, they finally have the evidence to support this theory. As André Müller explained:

Keppler’s results give us a new window onto the complex and poorly-understood early stages of planetary evolution. We needed to observe a planet in a young star’s disc to really understand the processes behind planet formation.

These studies will be a boon to astronomers, especially when it comes to theoretical models of planet formation and evolution. By determining the planet’s atmospheric and physical properties, the astronomers have been able to test key aspects of the Nebular Hypothesis. The discovery of this young, dust-shrouded planet would not have been were if not for the capabilities of ESO’s SPHERE instrument.

This instrument studies exoplanets and discs around nearby stars using a technique known as high-contrast imaging, but also relies on advanced strategies and data processing techniques. In addition to blocking the light from a star with a coronagraph, SPHERE is able to filter out the signals of faint planetary companions around bright young stars at multiple wavelengths and epochs.

As Prof. Thomas Henning – the director at MPIA, the German co-investigator of the SPHERE instrument, and a senior author on the two studies – stated in a recent MPIA press release:

“After ten years of developing new powerful astronomical instruments such as SPHERE, this discovery shows us that we are finally able to find and study planets at the time of their formation. That is the fulfillment of a long-cherished dream.”

Future observations of this system will also allow astronomers to test other aspects of planet formation models and to learn about the early history of planetary systems. This data will also go a long way towards determining how our own Solar System formed and evolved during its early history.

Further Reading: ESO, MPIA, Astronomy & Astrophysics, Astronomy & Astrophysics (2)

Oumuamua Accelerated Out of the Solar System Like a Comet

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) telescope in Hawaii announced the first-ever detection of an interstellar asteroid – I/2017 U1 (aka. ‘Oumuamua). Originally though to be a comet, follow-up observations conducted by the European Southern Observatory (ESO) and others confirmed that ‘Oumuamua was actually a rocky body that had originated outside of our Solar System.

Since that time, multiple studies have been conducted to learn more about this interstellar visitor, and some missions have even been proposed to go and study it up close. However, the most recent study of ‘Oumuamua, conducted by a team of international scientists, has determined that based on the way it left our Solar System, ‘Oumuamua is likely to be a comet after all.

The study recently appeared in the journal Nature under the title “Non-gravitational acceleration in the trajectory of  1I/2017 U1 (Oumuamua)“. The study team was led by Marco Micheli of the ESA SSA-NEO Coordination Center and the INAF Osservatorio Astronomico di Roma and included members from the University of Hawaii’s Institute for Astronomy, NASA’s Jet Propulsion Laboratory, the European Southern Observatory (ESO), the Southwest Research Institute (SwRI), the Planetary Science Institute, and The Johns Hopkins University Applied Physics Laboratory (JHUAPL).

As noted, when it was first discovered – roughly a month after it made its closest approach to the Sun – scientists believed ‘Oumuamua was an interstellar comet. However, follow-up observations showed no evidence of gaseous emissions or a dusty environment around the body (i.e. a comet tail), thus leading to it being classified as a rocky interstellar asteroid.

This was followed by a team of international researchers conducting a study that showed how ‘Oumuamua was more icy that previously thought. Using the ESO’s Very Large Telescope in Chile and the William Herschel Telescope in La Palma, the team was able to obtain spectra from sunlight reflected off of ‘Oumuamua within 48 hours of the discovery. This revealed vital information about the composition of the object, and pointed towards it being icy rather than rocky.

The presence of an outer-layer of carbon rich material also explained why it did not experience outgassing as it neared the Sun. Following these initial observations, Marco Micheli and his team continued to conduct high-precision measurements of ‘Oumuamua and its position using ground-based facilities and the NASA/ESA Hubble Space Telescope.

By January, Hubble was able to snap some final images before the object became too faint to observe as it sped away from the Sun on its way to leaving the Solar System. To their surprise, they noted that the object was increasing its velocity deviating from the trajectory it would be following if only the gravity of the Sun and the planets were influencing its course.

Oumuamua as it appeared using the William Herschel Telescope on the night of October 29. Queen’s University Belfast/William Herschel Telescope

In short, they discovered that ‘Oumuamua was not slowing down as expected, and as of June 1st, 2018, was traveling at a speed of roughly 114,000 km/h (70,800 mph). The most likely explanation, according to the team, is that ‘Oumuamua is venting material from its surface due to solar heating (aka. outgassing). The release of this material would give ‘Oumuamua the steady push it needed to achieve this velocity.

As Davide Farnocchia, a researcher from NASA’s Jet Propulsion Laboratory and a co-author on the paper, explained in a recent ESA press release:

“We tested many possible alternatives and the most plausible one is that ’Oumuamua must be a comet, and that gasses emanating from its surface were causing the tiny variations in its trajectory.”

Moreover, the release of gas pressure would also explain how ‘Oumuamua is veering off course since outgassing has been known to have the effect of perturbing the comet’s path. Naturally, there are still some mysteries that still need to be solved about this body. For one, the team still has not detected any dusty material or chemical signatures that typically characterize a comet.

As such, the team concluded that ‘Oumuamua must have been releasing only a very small amount of dust, or perhaps was releasing more pure gas without much dust. In either case, ‘Oumuamua is estimated to be a very small object, measuring about 400 meters (1312 ft) long. In the end, the hypothesized outgassing of ‘Oumuamua remains a mystery, much like its origin.

Artist’s impression of the interstellar object, ‘Oumuamua, experiencing outgassing as it leaves our Solar System. Credit: ESA/Hubble, NASA, ESO, M. Kornmesser

In fact, the team originally performed the Hubble observations on ‘Oumuamua in the hopes of determining its exact path, which they would then use to trace the object back to its parent star system. These new results mean this will be more challenging than originally thought. As Olivier Hainaut, a researcher from the European Southern Observatory and a co-author on the study, explained:

“It was extremely surprising that `Oumuamua first appeared as an asteroid, given that we expect interstellar comets should be far more abundant, so we have at least solved that particular puzzle. It is still a tiny and weird object, but our results certainly lean towards it being a comet and not an asteroid after all.”

Detlef Koschny, another co-author on the study, is responsible for Near-Earth Object activities under ESA’s Space Situational Awareness program. As he explained, the study of ‘Oumuamua has provided astronomers with the opportunity to improve asteroid detection methods, which could play a vital role in the study of Near-Earth Asteroids and determining if they post a risk.

“Interstellar visitors like these are scientifically fascinating, but extremely rare,” he said. “Near-Earth objects originating from within our Solar System are much more common and because these could pose an impact risk, we are working to improve our ability to scan the sky every night with telescopes such as our Optical Ground Station that contributed to this fascinating discovery.”

Since ‘Oumuamua’s arrival, scientists have determined that there may be thousands of interstellar asteroids currently in our Solar System, the largest of which would be tens of km in radius. Similarly, another study was conducted that revealed the presence of an interstellar asteroid (2015 BZ509) that – unlike ‘Oumuamua, which was an interloper to out system – was captured by Jupiter’s gravity and has since remained in a stable orbit.

This latest study is also timely given the fact that June 30th is global “Asteroid Day”, an annual event designed to raise awareness about asteroids and what can be done to protect Earth from a possible impact. In honor of this event, the ESA co-hosted a live webcast with the European Southern Observatory to discuss the latest science news and research on asteroids. To watch a replay of the webcast, go to the ESA’s Asteroid Day webpage.

Further Reading: ESA, ESO, TED, Nature