## Gravity Formula

The gravity formula that most people remember, or think of, is the equation which captures Newton’s law of universal gravitation, which says that the gravitational force between two objects is proportional to the mass of each, and inversely proportional to the distance between them. It is usually written like this (G is the gravitational constant):

F = Gm1m2/r2

Another, common, gravity formula is the one you learned in school: the acceleration due to the gravity of the Earth, on a test mass. This is, by convention, written as g, and is easily derived from the gravity formula above (M is the mass of the Earth, and r its radius):

g = GM/r2

In 1915, Einstein published his general theory of relativity, which not only solved a many-decades-long mystery concerning the observed motion of the planet Mercury (the mystery of why Uranus’ orbit did not match that predicted from applying Newton’s law was solved by the discovery of Neptune, but no hypothetical planet could explain why Mercury’s orbit didn’t), but also made a prediction that was tested just a few years’ later (deflection of light near the Sun). Einstein’s theory contains many gravity formulae, most of which are difficult to write down using only simple HTML scripts (so I’m not going to try).

The Earth is not a perfect sphere – the distance from surface to center is smaller at the poles than the equator, for example – and it is rotating (which means that the force on an object includes the centripetal acceleration due to this rotation). For people who need accurate formulae for gravity, both on the Earth’s surface and above it, there is a set of international gravity formulae which define what is called theoretical gravity, or normal gravity, g0. This corrects for the variation in g due to latitude (and so both the force due to the Earth’s rotation, and its non-spherical shape).

Here are some links that you can follow to learn more about gravity formulae (or gravity formulas): Newton’s theory of “Universal Gravitation” (NASA), International Gravity Formula(e) (University of Oklahoma), and Newton’s Law of Gravity (University of Oregon).

Many aspects of gravity, including a gravity formula or three, are covered in various Universe Today articles. For example, New Research Confirms Einstein, Milky Way Dwarf Galaxies Thwart Newtonian Gravity?, and Modifying Gravity to Account for Dark Matter. Here’s some information on 0 gravity.

Astronomy Cast’s episode Gravity gives you much more on not just one gravity formula, but several; and Gravitational Waves is good too. Be sure to check them out!

## What is Space?

First, some simple answers: space is everything in the universe beyond the top of the Earth’s atmosphere – the Moon, where the GPS satellites orbit, Mars, other stars, the Milky Way, black holes, and distant quasars. Space also means what’s between planets, moons, stars, etc – it’s the near-vacuum otherwise known as the interplanetary medium, the interstellar medium, the inter-galactic medium, the intra-cluster medium, etc; in other words, it’s very low density gas or plasma (‘space physics’ is, in fact, just a branch of plasma physics!).

But you really want to know what space is, don’t you? You’re asking about the thing that’s like time, or mass.

And one simple, but profound, answer to the question “What is space?” is “that which you measure with a ruler”. And why is this a profound answer? Because thinking about it lead Einstein to develop first the theory of special relativity, and then the theory of general relativity. And those theories overthrew an idea that was built into physics since before the time of Newton (and built into philosophy too); namely, the idea of absolute space (and time). It turns out that space isn’t something absolute, something you could, in principle, measure with lots of rulers (and lots of time), and which everyone else who did the same thing would agree with you on.

Space, in the best theory of physics on this topic we have today – Einstein’s theory of general relativity (GR) – is a component of space-time, which can be described very well using the math in GR, but which is difficult to envision with our naïve intuitions. In other words, “What is space?” is a question I can’t really answer, in the short space I have in this Guide to Space article.

More reading: What is space? (ESA), What is space? (National Research Council of Canada), Ned Wright’s Cosmology Tutorial, and Sean Carroll’s Cosmology Primer pretty much cover this vast topic, from kids’ to physics undergrad’ level.

It’s hard to know just what Universe Today articles to recommend, because there are so many! Space Elevator? Build it on the Moon First illustrates one meaning of the word ‘space’; for meanings closer to what I’ve covered here, try New Way to Measure Curvature of Space Could Unite Gravity Theory, and Einstein’s General Relativity Tested Again, Much More Stringently.

Astronomy Cast episodes Einstein’s Theory of Special Relativity, Einstein’s Theory of General Relativity, Large Scale Structure of the Universe, and Coordinate Systems, are all good, covering as they do different ways to answer the question “What is space?”

Source: ESA

## Gravity Equation

There is not one, not two, not even three gravity equations, but many!

The one most people know describes Newton’s universal law of gravitation:

F = Gm1m2/r2,
where F is the force due to gravity, between two masses (m1 and m2), which are a distance r apart; G is the gravitational constant.

From this is it straightforward to derive another, common, gravity equation, that which gives the acceleration due to gravity, g, here on the surface of the Earth:

g = GM/r2,
Where M is the mass of the Earth, r the radius of the Earth (or distance between the center of the Earth and you, standing on its surface), and G is the gravitational constant.

With its publication in the early years of the last century, Einstein’s theory of general relativity (GR) became a much more accurate theory of gravity (the theory has been tested extensively, and has passed all tests, with flying colors, to date). In GR, the gravity equation usually refers to Einstein’s field equations (EFE), which are not at all straight-forward to write, let alone explain (so I’m going to write them … but not explain them!):

G?? = 8?G/c4 T??

G (without the subscripts) is the gravitational constant, and c is the speed of light.

Finally, here’s a acceleration of gravity equation you’ve probably never heard of before:

a = ?(GMa0/r),

where a is the acceleration a star feels, due to gravity under MOND (MOdified Newtonian Dynamics), an alternative theory of gravity, M is the mass of a galaxy, r the distance between the star in the outskirts of that galaxy and its center, G the gravitational constant, and a0 a new constant.

Some websites which contain more on gravity equations, for your interest and enjoyment: Newton’s Theory of “Universal Gravitation” (NASA), Einstein’s equation of gravity (University of Wisconsin Madison – heavy), and Gravity Formula (University of Nebraska-Lincoln).

Universe Today, as you would expect, has several stories relevant to gravity equations; here are a few: See the Universe with Gravity Eyes, A Case of MOND Over Dark Matter, and Flyby Anomalies Explained?. Here’s an article about 0 gravity.

Gravity, an Astronomy Cast episode, has more on gravity equations, as do several Astronomy Cast Question Shows, such as September 26th, 2008, and March 31st, 2009.

## Cosmological Constant

[/caption]
The cosmological constant, symbol Λ (Greek capital lambda), was ‘invented’ by Einstein, not long after he published his theory of general relativity (GR). It appears on the left-hand side of the Einstein field equations.

Einstein added this term because he – along with all other astronomers and physicists of the time – thought the universe was static (the cosmological constant can make a universe filled with mass-energy static, neither expanding nor contracting). However, he very quickly realized that this wouldn’t work, because such a universe would be unstable … and quickly turn into one either expanding or contracting! Not long afterwards, Hubble (actually Vesto Slipher) discovered that the universe is, in fact, expanding, so the need for a cosmological constant went away.

Until 1998.

In that year, two teams of astronomers independently announced that distant Type Ia supernovae did not have the apparent luminosity they should, in a universe composed almost entirely of mass-energy in the form of baryons (ordinary matter) and cold dark matter.

Dark Energy had been discovered: dark energy is a form of mass-energy that has a constant density throughout the universe, and perhaps throughout time as well; counter-intuitively, it causes the expansion of the universe to accelerate (i.e. it acts kinda like anti-gravity). The most natural form of dark energy is the cosmological constant.

A great deal of research has gone into trying to discover if dark energy is, in fact, just the cosmological constant, or if it is quintessence, or something else. So far, results from observations of the CMB (by WMAP, mainly), of BAO (baryon acoustic oscillations, by extensive surveys of galaxies), and of high-redshift supernovae (by many teams) are consistent with dark energy being the cosmological constant.

So if the cosmological constant is (a) mass-energy (density), it can be expressed as kilograms (per cubic meter), can’t it? Yes, and the best estimate today is 7.3 x 10-27 kg m 3.

Ned Wright’s Cosmology Tutorial (UCLA) and Sean Carroll’s Cosmology Primer (California Institute of Technology) between them cover not only the cosmological constant, but also cosmology! NASA’s What Is A Cosmological Constant? is a great one-page intro.

Universe Today has many, many stories featuring the cosmological constant! Here are a few to whet your appetite: Universe to WMAP: LCDM Rules, OK?, Einstein’s Cosmological Constant Predicts Dark Energy, and No “Big Rip” in our Future: Chandra Provides Insights Into Dark Energy.

There are many Astronomy Cast episodes which include discussion of the cosmological constant … these are among the best: The Big Bang and Cosmic Microwave Background, The Important Numbers in the Universe, and the March 18th, 2009 Questions Show.

Sources:
http://map.gsfc.nasa.gov/universe/uni_accel.html