Tutankhamun’s Meteorite Blade

The Egyptian Pyramids; instantly recognizable to almost anyone. Image: Armstrong White, CC BY 2.0

The spread of metallurgy in different civilizations is a keen point of interest for historians and archaeologists. It helps chart the rise and fall of different cultures. There are even names for the different ages corresponding to increasingly sophisticated metallurgical technologies: the Stone Age, the Bronze Age, and the Iron Age.

But sometimes, a piece of evidence surfaces that doesn’t fit our understanding of a civilization.

Probably the most iconic ancient civilization in all of history is ancient Egypt. Its pyramids are instantly recognizable to almost anyone. When King Tutankhamun’s almost intact tomb was discovered in 1922, it was a treasure trove of artifacts. And though the tomb, and King Tut, are most well-known for the golden death mask, it’s another, little-known artifact that has perhaps the most intriguing story: King Tut’s iron dagger.

King Tutankhamun's Golden Death Mask, one of the most stunning human artifacts in existence. Image: Carsten Frenzl, CC BY 2.0
King Tutankhamun’s Golden Death Mask, one of the most stunning human artifacts in existence. Image: Carsten Frenzl, CC BY 2.0

King Tut’s iron-bladed dagger wasn’t discovered until 1925, three years after the tomb was discovered. It was hidden in the wrappings surrounding Tut’s mummy. It’s mere existence was a puzzle, because King Tut reigned in 1332–1323 BC, 600 years before the Egyptians developed iron smelting technology.

King Tut's iron dagger was concealed in the wrappings surrounding the boy-king's mummy. Image: Daniela Comelli/Polytechnic University of Milan
King Tut’s iron dagger was concealed in the wrappings surrounding the boy-king’s mummy. Image: Daniela Comelli/Polytechnic University of Milan

It was long thought, but never proven, that the blade may be made of meteorite iron. In the past, tests have produced inconclusive results. But according to a new study led by Daniela Comelli, of the Polytechnic University of Milan, and published in the Journal of Meteoritics and Planetary Science, there is no doubt that a meteorite was the source of iron for the blade.

The team of scientists behind the study used a technique called x-ray fluorescence spectrometry to determine the chemical composition of the blade. This technique aims x-rays at an artifact, then determines its composition by the spectrum of colors given off. Those results were then compared with 11 other meteorites.

In the dagger’s case, the results indicated Fe plus 10.8 wt% Ni and 0.58 wt% Co. This couldn’t be a coincidence, since iron meteorites are mostly made of Fe (Iron) and Ni (Nickel), with minor quantities of Co (Cobalt), P (Phosphorus), S (Sulphur), and C (Carbon). Iron found in the Earth’s crust has almost no Ni content.

Testing of Egyptian artifacts is a tricky business. Egypt is highly protective of their archaeological resources. This study was possible only because of advances in portable x-ray fluorescence spectrometry, which meant the dagger didn’t have to be taken to a lab and could be tested at the Egyptian Museum of Cairo.

Iron objects were rare in Egypt at that time, and were considered more valuable than gold. They were mostly decorative, probably because ancient Egyptians found iron very difficult to work. It requires a very high heat to work with, which was not possible in ancient Egypt.

Iron meteorites like this one would have attracted the attention of ancient Egyptians. This one is the Bendego meteorite from Brazil. Image: Jorge Andrade - Flickr: National Museum, Rio de Janeiro CC BY 2.0
Iron meteorites like this one would have attracted the attention of ancient Egyptians. This one is the Bendego meteorite from Brazil. Image: Jorge Andrade – Flickr: National Museum, Rio de Janeiro CC BY 2.0

Even without the ability to heat and work iron, a great deal of craftsmanship went into the blade. The dagger itself had to be hammered into shape, and it features a decorated golden handle and a rounded rock crystal knob. It’s golden sheath is decorated with a jackal’s head and a pattern of feathers and lilies.

Ancient Egyptians probably new what they were working with. They called meteorite iron from the sky in one hieroglyph. Whether they knew with absolute certainty that their iron meteorites came from the sky, and what that might have meant, they did value the iron. As the authors of the study say, “…our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects.”

The authors go on to say, “Moreover, the high manufacturing quality of Tutankhamun’s dagger blade, in comparison with other simple-shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun’s time.”

What Is the Longest River In The World?

Planet Earth boasts some very long rivers, all of which have long and honored histories. The Amazon, Mississippi, Euphrates, Yangtze, and Nile have all played huge roles in the rise and evolution of human societies. Rivers like the Danube, Seine, Volga and Thames are intrinsic to the character of some of our most major cities.

But when it comes to the title of which river is longest, the Nile takes top billing. At 6,583 km (4,258 miles) long, and draining in an area of 3,349,000 square kilometers, it is the longest river in the world, and even the longest river in the Solar System. It crosses international boundaries, its water is shared by 11 African nations, and it is responsible for the one of the greatest and longest-lasting civilizations in the world.

Officially, the Nile begins at Lake Victoria – Africa’s largest Great Lake that occupies the border region between Tanzania, Uganda and Kenya – and ends in a large delta and empties into the Mediterranean Sea. However, the great river also has many tributaries, the greatest of which are the Blue Nile and White Nile rivers.

The White Nile is the source of the majority of the Nile’s water and fertile soil, and originates from Africa’s Great Lakes region of Central Africa (a group that includes Lake Victoria, Edward, Tanganyika, etc.). The Blue Nile starts at Lake Tana in Ethiopia, and flows north-west to where it meets the Nile near Khartoum, Sudan.

Nile Delta from space  by the MODIS sensor on the Terra satellite. Credit: Jacques Descloitres/NASA/GSFC
Nile Delta from space by the MODIS sensor on the Terra satellite.
Credit: Jacques Descloitres/NASA/GSFC

The northern section of the Nile flows entirely through the Sudanese Desert to Egypt. Historically speaking, most of the population and cities of these two countries were built along the river valley, a tradition which continues into the modern age. In addition to the capitol cities of Juba, Khartoum, and Cairo, nearly all the cultural and historical sites of Ancient Egypt are to be found along the riverbanks.

The Nile was a much longer river in ancient times. Prior to the Miocene era (ca. 23 to 5 million years ago), Lake Tangnayika drained northwards into the Albert Nile, making the Nile about 1,400 km. That portion of the river became blocked by the bulk of the formation of the Virunga Mountains through volcanic activity.

Between 8000 and 1000 B.C.E., there was also a third tributary called the Yellow Nile that connected the highlands of eastern Chad to the Nile River Valley. Its remains are known as the Wadi Howar, a riverbed that passes through the northern border of Chad and meets the Nile near the southern point of the Great Bend  – the region that lies between Khartoum and Aswan in southern Egypt where the river protrudes east and west before traveling north again.

The Nile, as it exists today, is thought to be the fifth river that has flowed from the Ethiopian Highlands. Some form of the Nile is believed to have existed for 25 million years. Satellite images have been used to confirm this, identifying dry watercourses to the west of the Nile that are believed to have been the Eonile.

Lake Moeris and Faiyum Oasis, as seen from space, south-west of the Nile Delta and Cairo. Credit: Earth Snapshot
Lake Moeris and Faiyum Oasis, as seen from space, south-west of the Nile Delta and Cairo. Credit: Earth Snapshot

This “ancestral Nile” is believed to be what flowed in the region during the later Miocene, transporting sedimentary deposits to the Mediterranean Sea. During the late-Miocene Era, the Mediterranean Sea became a closed basin and evaporated to the point of being empty or nearly so. At this point, the Nile cut a new course down to a base level that was several hundred meters below sea level.

This created a very long and deep canyon which was filled with sediment, which at some point raised the riverbed sufficiently for the river to overflow westward into a depression to create Lake Moeris southwest of Cairo. A canyon, now filled by surface drift, represents an ancestral Nile called the Eonile that flowed during the Miocene.

Due to their inability to penetrate the wetlands of South Sudan, the headwaters of the Nile remained unknown to Greek and Roman explorers. Hence, it was not until 1858 when John Speke sighted Lake Victoria that the source of the Nile became known to European historians. He reached its southern shore while traveling with Richard Burton on an expedition to explore central Africa and locate the African Great Lakes.

The Temple of Luxor, Egypt, one of the most important ancient Egyptian cultural monuments, located aside the Nile. Credit: Wikipedia/Creative Commons
The Temple of Luxor, one of the most important ancient Egyptian cultural monuments, located in southern Egypt along the Nile. Credit: Wikipedia/Creative Commons

Believing he had found the source of the Nile, he named the lake after Queen Victoria, the then-monarch of the United Kingdom. Upon learning of this, Burton was outraged that Speke claimed to have found the true source of the Nile and a scientific dispute ensued.

This in turn triggered new waves of exploration that sent David Livingstone into the area. However, he failed by pushing too far to the west where he encountered the Congo River. It was not until the Welsh-American explorer Henry Morton Stanley circumvented Lake Victoria during an expedition that ran from 1874 to 1877 that Speke’s claim to have found the source of the Nile was confirmed.

The Nile became a major transportation route during the European colonial period. Many steamers used the waterway to travel through Egypt and south to the Sudan during the 19th century. With the completion of the Suez Canal and the British takeover of Egypt in the 1870s, steamer navigation of the river became a regular occurrence and continued well into the 1960s and the independence of both nations.

Today, the Nile River remains a central feature to Egypt and the Sudan. Its waters are used by all nations that it passes through for irrigation and farming, and its important to the rise and endurance of civilization in the region cannot be underestimated. In fact, the sheer longevity of Egypt’s many ruling dynasties is often attributed by historians to the periodic flows of sediment and nutrients from Lake Victoria to the delta. Thanks to these flows, it is believed, communities along the Nile River never experienced collapse and disintegration as other cultures did.

The Nile is rivaled only by Amazon, which is also the world’s widest river.

If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Source:
Wikipedia

‘Shockwave Of Fire’ Rained Down After Old Comet Strike On Earth, Scientists Say

Speak about destruction. A comet slammed into Earth’s atmosphere 28 million years ago and basically killed everything with fire below, leaving a huge deposit of yellow silica glass in its wake, a team of astronomers say.

The evidence — a black pebble found by an Egyptian geologist within this vast tract of glass — is believed to be a part of the comet’s nucleus or heart and not just an ordinary meteorite. The team says this could be the first hard evidence, so to speak, of a comet striking Earth.

The temporary “shockwave of fire” hit 2,300 square miles (roughly 6,000 square kilometers) of Egyptian sand, turning the grains into glass. Given the area’s rich archaeological history, it’s probably not too much of a surprise that a small portion of this is visible in a brooch that belonged to ancient boy-king Tutankhamun.

A brooch that belonged to the Egyptian boy-king Tutankhamun, which reportedly contains a silica glass stone that originated from a comet explosion. Credit: University of the Witwatersrand, Johannesburg
A brooch that belonged to the Egyptian boy-king Tutankhamun, which reportedly contains a silica glass stone that originated from a comet explosion. Credit: University of the Witwatersrand, Johannesburg

“It’s a typical scientific euphoria when you eliminate all other options and come to the realization of what it must be,” said lead author Jan Kramers of the University of Johannesburg in a statement.

Besides silica, the cosmic blast furnace left teeny-tiny diamonds in its wake, forming from carbon. “Normally they form deep in the earth, where the pressure is high, but you can also generate very high pressure with shock. Part of the comet impacted and the shock of the impact produced the diamonds,” said Kramers.

More information on this find should be available soon when the discovery is published in Earth and Planetary Science Letters. The authors first discussed their find in a public lecture Oct. 10. It will be interesting to see what other scientific teams think of this hypothesis, so stay tuned for the reaction.

Source: University of the Witwartersrand, Johannesburg