The Meteorites That Made Earth Were Filled With Water

Water's Early Journey in a Solar System
New research suggests that Earth's building blocks included water from the beginning. Credit: NASA/JPL-Caltech

According to the most widely accepted scientific theory, our Solar System formed from a nebula of dust and gas roughly 4.56 billion years ago (aka. Nebula Theory). It began when the nebula experienced gravitational collapse at the center, fusing material under tremendous pressure to create the Sun. Over time, the remaining material fell into an extended disk around the Sun, gradually accreting to form planetesimals that grew larger with time. These planetesimals eventually experienced hydrostatic equilibrium, collapsing into spherical bodies to create Earth and its companions.

Based on modern observations and simulations, researchers have been trying to understand what conditions were like when these planetesimals formed. In a new study, geologists from the California Institute of Technology (Caltech) combined meteorite data with thermodynamic modeling to better understand what went into these bodies from which Earth and the other inner planets formed. According to their results, the earliest planetesimals have formed in the presence of water, which is inconsistent with current astrophysical models of the early Solar System.

Continue reading “The Meteorites That Made Earth Were Filled With Water”

Water’s Epic Journey to Earth Began Before the Sun Formed

This artist’s impression shows the planet-forming disc around the star V883 Orionis. New research shows how water starts its journey in the gas cloud that forms the star, and eventually ends its journey on Earth. Image Credit: ESO/L. Calçada

The origins of Earth’s water is a complicated mystery that scientists have been untangling for decades. Life is impossible without water, so the origin of Earth’s life-giving water is a foundational question. As the power of our telescopes grows, researchers have made meaningful headway on the question.

Previous research uncovered links between Earth’s water and the Solar System’s comets and icy planetesimals. But newer research follows the chain back even further in time to when the Sun itself had yet to form.

Continue reading “Water’s Epic Journey to Earth Began Before the Sun Formed”

Earth’s Water is 4.5 Billion Years Old

A protosolar disk is the disk of material around a young stellar object that isn't yet a star. It's called a protoplanetary disk once the star has formed and begun fusion. Planetesimals are the building blocks of planets and are present in both stages of a disk's evolution. Image Credit: NASA/JPL

The origin of Earth’s water has been an enduring mystery. There are different hypotheses and theories explaining how the water got here, and lots of evidence supporting them.

But water is ubiquitous in protoplanetary disks, and water’s origin may not be so mysterious after all.

Continue reading “Earth’s Water is 4.5 Billion Years Old”

There Might Be Water On All Rocky Planets

Artist’s impression of a massive asteroid belt in orbit around a star. Earth's water may not have all come from asteroids and comets, so maybe that's true for exoplanets. Credit: NASA-JPL / Caltech / T. Pyle (SSC)
Artist’s impression of a massive asteroid belt in orbit around a star. Earth's water may not have all come from asteroids and comets, so maybe that's true for exoplanets. Credit: NASA-JPL / Caltech / T. Pyle (SSC)

If you asked someone who was reasonably scientifically literate how Earth got its water, they’d likely tell you it came from asteroids—or maybe comets and planetesimals, too—that crashed into our planet in its early days. There’s detail, nuance, and uncertainty around that idea, but it’s widely believed to be the most likely reason that Earth has so much water.

But a new explanation for Earth’s water is emerging. It says that the water comes along for the ride when Earth formed out of the solar nebula.

If that’s correct, it means that most rocky planets might have water for at least a portion of their lives.

Continue reading “There Might Be Water On All Rocky Planets”

Organic Matter Could Have Delivered Earth’s Water

This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals. Credit: NASA
This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals. Credit: NASA

The origin of Earth’s water is a big piece of the puzzle in Earth’s history. Did it come from comets and asteroids? From water-bearing space dust? The scientific debate is not settled.

Now a new study shows that water could have been delivered to Earth by organic matter.

Continue reading “Organic Matter Could Have Delivered Earth’s Water”

Space Dust Delivered Water to Vesta, Could it Have Done the Same for Earth?

An artful image of dwarf planet Vesta, with an image of micrometeorite overlaid. Image Credit: Ogliore Lab

One of the most enduring questions about Earth regards the origins of its water. Where did it come from? One widely-held theory gives comets the honor of bringing water to Earth. Another one says that Earth’s water came when a protoplanet crashed into early Earth, not only delivering a vast quantity of water, but creating the Moon.

Now a new study shows that the minor planet Vesta got its water from space dust. Could that help explain the origin of Earth’s water?

Continue reading “Space Dust Delivered Water to Vesta, Could it Have Done the Same for Earth?”

The Collision that Created the Moon Might Have Also Brought Water to the Early Earth

It is believed that 4.4 billion years ago, a celestial body (Theia) slammed into Earth and produced the Moon. Image Credit: NASA/JPL-Caltech

Scientists at the University of Munster have discovered that Earth got its water from a collision with Theia. Theia was the ancient body that collided with Earth and formed the Moon. Their discovery shows that Earth’s water is much more ancient than previously thought.

Continue reading “The Collision that Created the Moon Might Have Also Brought Water to the Early Earth”

Not all the Earth’s Water Came From Comets

This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals. Credit: NASA
This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals. Credit: NASA

We have comets and asteroids to thank for Earth’s water, according to the most widely-held theory among scientists. But it’s not that cut-and-dried. It’s still a bit of a mystery, and a new study suggests that not all of Earth’s water was delivered to our planet that way.

Continue reading “Not all the Earth’s Water Came From Comets”

What Percent of Earth is Water?

Earth - Western Hemisphere
Earth - Western Hemisphere

The Earth is often compared to a majestic blue marble, especially by those privileged few who have gazed upon it from orbit. This is due to the prevalence of water on the planet’s surface. While water itself is not blue, water gives off blue light upon reflection.

For those of us confined to living on the surface, the fact that our world is mostly covered in water is a well known fact. But how much of our planet is made up of water, exactly? Like most facts pertaining to our world, the answer is a little more complicated than you might think, and takes into account a number of different qualifications.

Sources of Water:

In simplest terms, water makes up about 71% of the Earth’s surface, while the other 29% consists of continents and islands. To break the numbers down, 96.5% of all the Earth’s water is contained within the oceans as salt water, while the remaining 3.5% is freshwater lakes and frozen water locked up in glaciers and the polar ice caps.

Of that fresh water, almost all of it takes the form of ice: 69% of it, to be exact. If you could melt all that ice, and the Earth’s surface was perfectly smooth, the sea levels would rise to an altitude of 2.7 km.

Illustration showing all of Earth's water, liquid fresh water, and water in lakes and rivers. Credit: Howard Perlman/USGS/Jack Cook/WHOI
Illustration showing all of Earth’s water, liquid fresh water, and water in lakes and rivers. Credit: Howard Perlman, USGS/illustraion by Jack Cook, WHOI

Aside from the water that exists in ice form, there is also the staggering amount of water that exists beneath the Earth’s surface. If you were to gather all the Earth’s fresh water together as a single mass (as shown in the image above) it is estimated that it would measure some 1,386 million cubic kilometers (km3) in volume.

Meanwhile, the amount of water that exists as groundwater, rivers, lakes, and streams would constitute just over 10.6 million km3, which works out to a little over 0.7%. Seen in this context, the limited and precious nature of freshwater becomes truly clear.

Volume vs. Mass:

But how much of Earth is water – i.e. how much water contributes to the actual mass of the planet? This includes not just the surface of the Earth, but inside as well. In terms of volume, all of the water on Earth works out to about 1.386 billion cubic kilometers (km³) or 332.5 million cubic miles (mi³) of space.

But in terms of mas, scientists calculate that the oceans on Earth weight about 1.35 x 1018 metric tonnes (1.488 x 1018 US tons), which is the equivalent of 1.35 billion trillion kg, or 2976 trillion trillion pounds. This is just 1/4400 the total mass of the Earth, which means that while the oceans cover 71% of the Earth’s surface, they only account for 0.02% of our planet’s total mass.

Many theories about the origins of water on Earth attribute it to collisions with comets and asteroids. Credit: NASA/JPL/Caltech
Many theories about the origins of water on Earth attribute it to collisions with comets and asteroids. Credit: NASA/JPL/Caltech

Source of Earth’s Water:

The origin of water on the Earth’s surface, as well as the fact that it has more water than any other rocky planet in the Solar System, are two of long-standing mysteries concerning our planet. Not that long ago, it was believed that our planet formed dry some 4.6 billion years ago, with high-energy impacts creating a molten surface on the infant Earth.

According to this theory, water was brought to the world’s oceans thanks to icy comets, trans-Neptunian objects or water-rich meteoroids (protoplanets) from the outer reaches of the main asteroid belt colliding with the Earth.

However, more recent research conducted by the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Massachusetts, has pushed the date of these origins back further. According to this new study, the world’s oceans also date back 4.6 billion years, when all the worlds of the inner Solar System were still forming.

This conclusion was reached by examining meteorites thought to have formed at different times in the history of the Solar System. Carbonaceous chondrite, the oldest meteorites that have been dated to the very earliest days of the Solar System, were found to have the same chemistry as those originating from protoplanets like Vesta. This includes a significance presence of water.

These meteorites are dated to the same epoch in which water was believed to have formed on Earth – some 11 million years after the formation of the Solar System. In short, it now appears that meteorites were depositing water on Earth in its earliest days.

While not ruling out the possibility that some of the water that covers 71 percent of Earth today may have arrived later, these findings suggest that there was enough already here for life to have begun earlier than thought.

We’ve written many articles about the oceans for Universe Today. Here’s How Many Oceans are there in the World?, Earth Has Less Water Than You Think, Where Did Earth’s Water Come From?, Why Doesn’t Earth Have More Water?, Rethinking the Source of Earth’s Water.

If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth and Episode 363: Where Did Earth’s Water Come From?

Sources: