The Black Hole Ultimate Solar System: a Supermassive Black Hole, 9 Stars and 550 Planets

Shortly after Einstein published his Theory of General Relativity in 1915, physicists began to speculate about the existence of black holes. These regions of space-time from which nothing (not even light) can escape are what naturally occur at the end of most massive stars’ life cycle. While black holes are generally thought to be voracious eaters, some physicists have wondered if they could also support planetary systems of their own.

Looking to address this question, Dr. Sean Raymond – an American physicist currently at the University of Bourdeaux – created a hypothetical planetary system where a black hole lies at the center. Based on a series of gravitational calculations, he determined that a black hole would be capable of keeping nine individual Suns in a stable orbit around it, which would be able to support 550 planets within a habitable zone.

He named this hypothetical system “The Black Hole Ultimate Solar System“, which consists of a non-spinning black hole that is 1 million times as massive as the Sun. That is roughly one-quarter the mass of Sagittarius A*, the super-massive black hole (SMBH) that resides at the center of the Milky Way Galaxy (which contains 4.31 million Solar Masses).

Detection of an unusually bright X-Ray flare from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxy. Credit: NASA/CXC/Stanford/I. Zhuravleva et al.

As Raymond indicates, one of the immediate advantages of having this black hole at the center of a system is that it can support a large number of Suns. For the sake of his system, Raymond chose 9, thought he indicates that many more could be sustained thanks to the sheer gravitational influence of the central black hole. As he wrote on his website:

“Given how massive the black hole is, one ring could hold up to 75 Suns! But that would move the habitable zone outward pretty far and I don’t want the system to get too spread out. So I’ll use 9 Suns in the ring, which moves everything out by a factor of 3. Let’s put the ring at 0.5 AU, well outside the innermost stable circular orbit (at about 0.02 AU) but well inside the habitable zone (from about 2.7 to 5.4 AU).”

Another major advantage of having a black hole at the center of a system is that it shrinks what is known as the “Hill radius” (aka. Hill sphere, or Roche sphere). This is essentially the region around a planet where its gravity is dominant over that of the star it orbits, and can therefore attract satellites. According to Raymond, a planet’s Hill radius would be 100 times smaller around a million-sun black hole than around the Sun.

This means that a given region of space could stably fit 100 times more planets if they orbited a black hole instead of the Sun. As he explained:

“Planets can be super close to each other because the black hole’s gravity is so strong! If planets are little toy Hot wheels cars, most planetary systems are laid out like normal highways (side note: I love Hot wheels).  Each car stays in its own lane, but the cars are much much smaller than the distance between them.  Around a black hole, planetary systems can be shrunk way down to Hot wheels-sized tracks.  The Hot wheels cars — our planets — don’t change at all, but they can remain stable while being much closer together. They don’t touch (that would not be stable), they are just closer together.”

This is what allows for many planets to be placed with the system’s habitable zone. Based on the Earth’s Hill radius, Raymond estimates that about six Earth-mass planets could fit into stable orbits within the same zone around our Sun. This is based on the fact that Earth-mass planets could be spaced roughly 0.1 AU from each other and maintain a stable orbit.

Given that the Sun’s habitable zone corresponds roughly to the distances between Venus and Mars – which are 0.3 and 0.5 AU away, respectively – this means there is 0.8 AUs of room to work with. However, around a black hole with 1 million Solar Masses, the closest neighboring planet could be just 1/1000th (0.001) of an AU away and still have a stable orbit.

Doing the math, this means that roughly 550 Earths could fit in the same region orbiting the black hole and its nine Suns. There is one minor drawback to this whole scenario, which is that the black hole would have to remain at its current mass. If it were to become any larger, it would cause the Hill radii of its 550 planets to shrink down further and further.

Once the Hill radius got down to the point where it was the same size as any of the Earth-mass planets, the black hole would begin to tear them apart. But at 1 million Solar masses, the black hole is capable of supporting a massive system of planets comfortably. “With our million-Sun black hole the Earth’s Hill radius (on its current orbit) would already be down to the limit, just a bit more than twice Earth’s actual radius,” he says.

Illustration of tightly-packed orbits of Earth-mass planets in orbit around the Sun (in black) vs. around a supermassive black hole (green). Credit: Sean Raymond

Lastly, Raymond considers the implications that living in such a system would have. For one, a year on any planet within the system’s habitable zone would be much shorter, owing to the fact their orbital periods would be much faster. Basically, a year would last roughly 1.6 days for planets at the inner edge of the habitable zone and 4.6 days for planets at the outer edge of the habitable zone.

In addition, on the surface of any planet in the system, the sky would be a lot more crowded! With so many planets in close orbit together, they would pass very close to one another. That essentially means that from the surface of any individual Earth, people would be able to see nearby Earths as clear as we see the Moon on some days. As Raymond illustrated:

“At closest approach (conjunction) the distance between planets is about twice the Earth-Moon distance. These planets are all Earth-sized, about 4 times larger than the Moon. This means that at conjunction each planet’s closest neighbor appears about twice the size of the full Moon in the sky. And there are two nearest neighbors, the inner and outer one. Plus, the next-nearest neighbors are twice as far away so they are still as big as the full Moon during conjunction. And four more planets that would be at least half the full Moon in size during conjunction.”

He also indicates that conjunctions would occur almost once per orbit, which would mean that every few days, there would be no shortage of giant objects passing across the sky. And of course, there would be the Sun’s themselves. Recall that scene in Star Wars where a young Luke Skywalker is watching two suns set in the desert? Well, it would a little like that, except way more cool!

According to Raymond’s calculations, the nine Suns would complete an orbit around the black hole every three hours. Every twenty minutes, one of these Suns would pass behind the black hole, taking just 49 seconds to do so. At this point, gravitational lensing would occur, where the black hole would focus the Sun’s light toward the planet and distort the apparent shape of the Sun.

To illustrate what this would look like, he provides an animation (shown above) created by – a planet modeller who develops space graphics for Kerbal and other programs – using Space Engine.

While such a system may never occur in nature, it is interesting to know that such a system would be physically possible. And who knows? Perhaps a sufficiently advanced species, with the ability to tow stars and planets from one system and place them in orbit around a black hole, could fashion this Ultimate Solar System. Something for SETI researchers to be on the lookout for, perhaps?

This hypothetical exercise was the second installment in two-part series by Raymond, titled “Black holes and planets”. In the first installment, “The Black Hole Solar System“, Raymond considered what it would be like if our system orbited around a black hole-Sun binary. As he indicated, the consequences for Earth and the other Solar planets would be interesting, to say the least!

Raymond also recently expanded on the Ultimate Solar System by proposing The Million Earth Solar System. Check them all out at his website, PlanetPlanet.net.

Further Reading: PlanetPlanet

One of the TRAPPIST-1 Planets Has an Iron Core

In February of 2017, a team of European astronomers announced the discovery of a seven-planet system orbiting the nearby star TRAPPIST-1. Aside from the fact that all seven planets were rocky, there was the added bonus of three of them orbiting within TRAPPIST-1’s habitable zone. Since that time, multiple studies have been conducted to determine whether or not any of these planets could be habitable.

In accordance with this goal, these studies have focused on whether or not these planets have atmospheres, their compositions and their interiors. One of the latest studies was conducted by two researchers from Columbia University’s Cool Worlds Laboratory, who determined that one of the TRAPPIST-1 planets (TRAPPIST-1e) has a large iron core – a finding which could have implications for this planet’s habitability.

The study – titled “TRAPPIST-1e Has a Large Iron Core“, which recently appeared online – was conducted by Gabrielle Englemenn-Suissa and David Kipping, a senior undergraduate student and an Assistant Professor of Astronomy at Columbia University, respectively. For the sake of their study, Englemenn-Suissa and Kipping took advantage of recent studies that have placed constraints on the masses and radii of the TRAPPIST-1 planets.

These and other studies have benefited from the fact that TRAPPIST-1 is a seven planet system, which makes it ideally suited for exoplanet studies. As Professor Kipping told Universe Today via email:

“It’s a wonderful laboratory for exoplanetary science for three reasons. First, the system has a whopping seven transiting planets. The depth of the transits dictates the size of each planet so we can measure they sizes quite precisely. Second, the planets gravitationally interact with one another leading to variations in the times of the transits and these have been used to infer the masses of each planet, again to impressive precision. Third, the star is very small being a late M-dwarf, about an eighth the size of the Sun, and that means transits appear 8^2 = 64 times deeper than they would if the star were Sun-sized. So we have lots of things working in our favor here.”

Together, Englemann-Suissa and Kipping used mass and radius measurements of the TRAPPIST-1 planets to infer the minimum and maximum Core Radius Fraction (CRF) of each planet. This built on a study they had previously conducted (along with Jingjing Chen, a PhD candidate at Columbia University and a member of the Cool Worlds Lab) in which they developed their method for determining a planet’s CRF. As Kipping described the method:

“If you know the mass and radius very precisely, like the TRAPPIST-1 system, you can compare them to that predicted from theoretical interior structure models. The problem is that these models generally comprise of possible four layers, an iron core, a silicate mantle, a water layer and an light volatile envelope (Earth only has the first two, its atmosphere contributes negligible to mass and radius). So four unknowns and two measured quantities is in principle an unconstrained, unsolvable problem.”

This artist’s concept shows what each of the TRAPPIST-1 planets may look like, based on available data about their sizes, masses and orbital distances.Credits: NASA/JPL-Caltech

Their study also took into account previous work by other scientists who have attempted to place constraints on the chemical composition of the TRAPPIST-1 system. In these studies, the authors assumed that the planets’ chemical compositions were connected to that of the star, which can be measured. However, Englemann-Suissa and Kipping took a more “agnostic” approach and simply considered the boundary conditions of the problem.

“We essentially say that given the mass and radius, there are no models with cores smaller than X that can possibly explain the observed mass and radius,” he said. “The core might be bigger than X but has to be at least X since no theoretical models could explain it otherwise. Here, X would therefore correspond to what we could call the minimum core radius fraction. We then play the same game for the maximum limit.”

What they determined was that the minimum core size of six of the TRAPPIST-1 planets was essentially zero. This means that their compositions could be explained without necessarily having an iron core – for instance, a pure silicate mantle could be all that’s there. But in the case of TRAPPIST-1e, they found that its core must comprise at least 50% of the planet by radius, and at most, 78%.

Compare this to Earth, where the solid inner core of iron and nickel and a liquid outer core of a molten iron-nickel alloy comprise 55% of the planet’s radius. Between the upper and lower limit of TRAPPIST-1e’s CRF, they concluded that it must have a dense core, one which is likely comparable to Earth. This finding could mean that of all the TRAPPIST-1 planets, e is the most “Earth-like” and likely to have a protective magnetosphere.

As Kipping indicated, this could have immense implications when it comes to the hunt for habitable exoplanets, and might push TRAPPIST-1e to the top of the list:

“This gets me more excited about TRAPPIST-1e in particular. That planet is a tad smaller than the Earth, sits right in the habitable-zone and now we know has a large iron core like the Earth. We also know it does not possess a light volatile envelope thanks to other measurements. Further, TRAPPIST-1 appears to be a quieter star than Proxima so I’m much more optimistic about TRAPPIST-1e as potential biosphere than Proxima b right now.”

This is certainly good news in light of recent studies that have indicated that Proxima b is not likely to be habitable. Between its star emitting powerful flares that can be seen by the naked eye to the likelihood that an atmosphere and liquid water would not survive long on its surface, the closest exoplanet to our Solar System is currently not considered a good candidate for finding a habitable world or extra-terrestrial life.

In recent years, Kipping and his colleagues have also dedicated themselves and the Cool Worlds Laboratory to the study of possible exoplanets around Proxima Centauri. Using the Canadian Space Agency’s Microvariability and Oscillation of Stars (MOST) satellite, Kipping and his colleagues monitored Proxima Centauri in May of 2014 and again in May of 2015 to look for signs of transiting planets.

While the discovery of Proxima b was ultimately made by astronomers at the ESO using the Radial Velocity Method, this campaign was significant in drawing attention to the likelihood of finding terrestrial, potentially-habitable planets around nearby M-type (red dwarf) stars. In the future, Kipping and his team also hope to conduct studies of Proxima b to determine if it has an atmosphere and determine what its CRF could be.

Once again, it appears that one of the many rocky planets orbiting a red dwarf star (and which is closer to Earth) might just be a prime candidate for habitability studies! Future surveys, which will benefit from the introduction of next-generation telescopes (like the James Webb Space Telescope) will no doubt reveal more about this  system and any potentially habitable worlds it has.

Further Reading: arXiv

Another Nearby Red Dwarf Star System, Another Possible Exoplanet Discovered!

In the past few years, there has been no shortages of extra-solar planets discoveries which orbit red dwarf stars. In 2016 and 2017 alone,  astronomers announced the discovery of a terrestrial (i.e. rocky) planet around Proxima Centauri (Proxima b), a seven-planet system orbiting TRAPPIST-1, and super-Earths orbiting the nearby stars of LHS 1140 (LHS 1140b), and GJ 625 (GJ 625b).

In what could be the latest discovery, physicists at the University of Texas Arlington (UTA) recently announced the possible discovery of an Earth-like planet orbiting Gliese 832, a red dwarf star just 16 light years away. In the past, astronomers detected two exoplanets orbiting Gliese 832. But after conducting a series of computations, the UTA team indicated that an additional Earth-like planet could be orbiting the star.

The study which details their findings, titled “Dynamics of a Probable Earth-mass Planet in the GJ 832 System“, recently appeared in The Astrophysical Journal. Led by Dr. Suman Satyal – a physics researcher, lecturer and laboratory supervisor at UTA – the team sought to investigate the stability of planetary orbits around Gliese 832 using a numerical and detailed phase-space analysis.

Artistic representation of the potentially habitable exoplanet Gliese 832c as compared with Earth. Credit: PHL/UPR Arecibo.

As indicated, two other exoplanets had been discovered around Gliese 832 in the past, including a Jupiter-like gas giant (Gliese 832b) in 2008, and the super-Earth (Gliese 832c) in 2014. In many ways, these planets could not be more different. In addition to their disparity in mass, they vary widely in terms of their orbits – with Gliese 832b orbiting at a distance of about 0.16 AU and Gliese 832c orbiting at a distance of 3 to 3.8 AU.

Because of this, the UTA team sought to determine if perhaps there was a third planet with a stable orbit between the two. To this end, they conducted numerical simulations for a three and four body system of planets with elliptical orbits around the star. These simulations took into account a large number of initial conditions, which allowed for  all possible states (aka. s phase-space simulation) of the planet’s orbits to be represented.

They then included the radial velocity measurements of Gliese 832, accounting for them based on the presence of planets with 1 to 15 Earth masses. The Radial Velocity (RV) method, it should be noted, determines the existence of planets around a star based on variations in the star’s velocity. In other words, the fact that a star is moving back and forth indicates that it is being influenced by the presence of a planetary system.

Simulating the star’s RV signal using a hypothetical system of planets also allowed the UTA team to constrain the average distances at which these planets would orbit the star (aka. their semi-major axes) and their upper mass-limits. In the end, their results provided strong indications for the existence of a third planet. As Dr. Satyal explained in a UTA press release:

“We also used the integrated data from the time evolution of orbital parameters to generate the synthetic radial velocity curves of the known and the Earth-like planets in the system. We obtained several radial velocity curves for varying masses and distances indicating a possible new middle planet.”

Diagram showing the possible orbit of a third exoplanet around Gliese 832, a star system located just 16 light years away. Credit: uta.edu/Suman Satyal

Based on their computations, this possible planet of the Gliese 832 system would be between 1 and 15 Earth masses and would orbit the star at a distance ranging from 0.25 to 2.0 AU. They also determined that it would likely have a stable orbit for about 1 billion years. As Dr. Satyal indicated, all signs coming from the Gliese 832 system point towards there being a third planet.

“The existence of this possible planet is supported by long-term orbital stability of the system, orbital dynamics and the synthetic radial velocity signal analysis,” he said. “At the same time, a significantly large number of radial velocity observations, transit method studies, as well as direct imaging are still needed to confirm the presence of possible new planets in the Gliese 832 system.”

Alexander Weiss, the UTA Physics Chair, also lauded the achievement, saying:

“This is an important breakthrough demonstrating the possible existence of a potential new planet orbiting a star close to our own. The fact that Dr. Satyal was able to demonstrate that the planet could maintain a stable orbit in the habitable zone of a red dwarf for more than 1 billion years is extremely impressive and demonstrates the world class capabilities of our department’s astrophysics group.”

Artist’s impression of a Super-Earth orbiting close to a red dwarf star. Credit: M. Weiss/CfA

Another interesting tidbit is that this planet’s orbit would place it beyond or just within Gliese 832’s habitable zone. Whereas the Super-Earth Gliese 832c has an eccentric orbit that places it at the inner edge of this zone, this third planet would skirt its outer edge at the nearest. In this sense, Gliese 832’s two Super-Earths could very well be Venus-like and Mars-like in nature.

Looking ahead, Dr. Satyal and his colleagues will be naturally be looking to confirm the existence of this planet, and other institutions are sure to conduct similar studies. This star system is yet another that is sure to be the subject of follow-up studies in the coming years, most likely from next-generation space telescopes like the James Webb Space Telescope.

Further Reading: University of Texas Arlington, The Astrophysical Journal

New Study Claims There are Four Exoplanets Around Nearest Sun-Like Star!

It has been an exciting time for the field of exoplanet studies lately! Last summer, researchers from the European Southern Observatory (ESO) announced the discovery of an Earth-like planet (Proxima b) located in the star system that is the nearest to our own. And just six months ago, an international team of astronomers announced the discovery of seven rocky planets orbiting the nearby star TRAPPIST-1.

But in what could be the most encouraging discovery for those hoping to find a habitable planet beyond Earth, an an international team of astronomers just announced the discovery of four exoplanet candidates in the tau Ceti system. Aside from being close to the Solar System – just 12 light-years away – this find is also encouraging because the planet candidates orbit a star very much like our own!

The study that details these findings – “Color difference makes a difference: four planet candidates around tau Ceti” – recently appeared online and has been accepted for publication in the Astrophysical Journal. Led by researchers from the Center for Astrophysics Research (CAR) at the University of Hertfordshire, the team analyzed tau Ceti using a noise-eliminating model to determine the presence of four Earth-like planets.

This illustration compares the four planets detected around the nearby star tau Ceti (top) and the inner planets of our solar system (bottom). Credit: Fabo Feng/CAR/Univ. of Hertfordshire

This discovery was made possible thanks to ongoing improvements in instrumentation, observation and data-sharing, which are allowing for surveys of ever-increasing sensitivity. As Steven Vogt, a professor of astronomy and astrophysics at UC Santa Cruz and a co-author on the paper, said in a UCSC press release:

“We are now finally crossing a threshold where, through very sophisticated modeling of large combined data sets from multiple independent observers, we can disentangle the noise due to stellar surface activity from the very tiny signals generated by the gravitational tugs from Earth-sized orbiting planets.”

This is the latest in a long-line of surveys of tau Ceti, which has been of interest to astronomers for decades. By 1988, several radial velocity measurements were conducted of the star system that ruled out the possibility of massive planets at Jupiter-like distances. In 2012, astronomers from UC Santa Barabara presented a study that indicated that tau Ceti might be orbited by five exoplanets, two of which were within the star’s habitable zone.

The team behind that study included several members who produced this latest study. At the time, lead author Mikko Tuomi (University of Hertfordshire, a co-author on the most recent one) was leading an effort to develop better data analysis techniques, and used this star as a benchmark case. As Tuomi explained, theses efforts allowed them to rule out two of the signals that has previously been identified as planets:

“We came up with an ingenious way of telling the difference between signals caused by planets and those caused by star’s activity. We realized that we could see how star’s activity differed at different wavelengths and use that information to separate this activity from signals of planets.”

Artist’s impression of the Tau Ceti system, based on data retrieved in 2012. Credit: J. Pinfield/Univ. of Hertfordshire

For the sake of this latest study – which was led by Fabo Feng, a member of the CAR – the team relied on data provided by the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph at the ESO’s La Silla Observatory in Chile, and the High Resolution Echelle Spectrometer (HIRES) instrument at the W. M. Keck Observatory in Mauna Kea, Hawaii.

From this, they were able to create a model that removed “wavelength dependent noise” from radial velocity measurements. After applying this model to surveys made of tau Ceti, they were able to obtain measurements that were sensitive enough to detect variations in the star’s movement as small as 30 cm per second. In the end, they concluded that tau Ceti has a system of no more than four exoplanets.

As Tuomi indicated, after several surveys and attempts to eliminate extraneous noise, astronomers may finally have a clear picture of how many planets tau Ceti has, and of what type. “[N]o matter how we look at the star, there seem to be at least four rocky planets orbiting it,” he said. “We are slowly learning to tell the difference between wobbles caused by planets and those caused by stellar active surface. This enabled us to essentially verify the existence of the two outer, potentially habitable planets in the system.”

They further estimate from their refined measurements that these planets have masses ranging from four Earth-masses (aka. “super-Earths”) to as low as 1.7 Earth masses, making them among the smallest planets ever detected around a nearby sun-like star. But most exciting of all is the fact that that two of these planets (tau Ceti e and f) are located within the star’s habitable zone.

Recent studies have shown that rocky planets orbiting red dwarf stars will be tidally-locked and subject to intense radiation, reducing their chances of being habitable. Credit: M. Weiss/CfA

The reason for this is because tau Ceti is a G-type (yellow dwarf) star, which makes it similar to our own Sun – about 0.78 times as massive and half as bright. In contrast, many recently discovered exoplanets – such as Proxima b and the seven planets of TRAPPIST-1 – all orbit M-type (red dwarf) stars. Compared to our Sun, these stars are variable and unstable, increasing their chances of stripping the atmospheres of their respective planets.

In addition, since red dwarfs are much dimmer than our Sun, a rocky planet would have to orbit very closely to them  in order to be within their habitable zones. At this kind of distance, the planet would likely be tidally-locked, meaning that one side would constantly be facing towards the sun. This too makes the odds of life emerging on any such planet pretty slim.

Because of this, astronomers have been looking forward to finding more exoplanets around stars that are closer in size, mass and luminosity to our own. But before anyone gets too excited, its important to note these worlds are Super-Earths – with up to four times the mass of Earth. This means that (depending on their density as well) any life that might emerge on these planets would be subject to significantly increased gravity.

In addition, a massive debris disc surrounds the star, which means that these outermost planets are probably subjected to intensive bombardment by asteroids and comets. This not doesn’t exactly bode well for potential life on these planets! Still, this study is very encouraging, and for a number of reasons. Beyond finding strong evidence of exoplanets around a Sun-like star, the measurements that led to their detection are the most sensitive to date.

Artist’s impression of how an infant earth might look. Credit: ESO.

At the rate that their methods are improving, researchers should be getting to the 10-centimeter-per-second limit in no time at all. This is the level of sensitively required for detecting Earth analogs – aka. the brass ring for exoplanet-hunters. As Feng indicated:

“Our detection of such weak wobbles is a milestone in the search for Earth analogs and the understanding of the Earth’s habitability through comparison with these analogs. We have introduced new methods to remove the noise in the data in order to reveal the weak planetary signals.”

Think of it! In no time at all, exoplanet-hunters could be finding a plethora of planets that are not only very close in size and mass to Earth, but also orbiting within their stars habitable zones. At that point, scientists are sure to dispense with decidedly vague terms like “potentially habitable” and “Earth-like” and begin using terms like “Earth-analog” confidently. No more ambiguity, just the firm conviction that Earth is not unique!

With an estimated 100 billion planets in our galaxy alone, we’re sure to find several Earths out here. One can only hope they have given rise to complex life like our own, and that they are in the mood to chat!

Further Reading: UCSC, arXiv

Researchers Think They Know Why Venus Doesn’t Have as Many Volcanoes as Earth

The surface of Venus has been a mystery to scientists ever since the Space Age began. Thanks to its dense atmosphere, its surface is inaccessible to direct observations. In terms of exploration, the only missions to penetrate the atmosphere or reach the surface were only able to transmit data back for a matter of hours. And what we have managed to learn over the years has served to deepen its mysteries as well.

For instance, for years, scientists have been aware of the fact that Venus experiences volcanic activity similar to Earth (as evidenced by lighting storms in its atmosphere), but very few volcanoes have been detected on its surface. But thanks to a new study from the School of Earth and Environmental Sciences (SEES) at the University of St. Andrews, we may be ready to put that particular mystery to bed.

The study was conducted by Dr. Sami Mikhail, a lecturer with the SEES, with the assistance of researchers from the University of Strasbourg. In examining Venus’ geological past, Mikhail and his colleagues sought to understand how it is that the most Earth-like planet in our Solar System could be considerably less geologically-active than Earth. According to their findings, the answer lies in the nature of Venus’ crust, which has a much higher plasticity.

Image of the “pancake volcanoes” located in the Eistla region, taken by the Magellan space probe. Credit: NASA/JPL

This is due to the intense heat on Venus’ surface, which averages at 737 K (462 °C; 864 °F) with very little variation between day and night or over the course of a year. Given that this heat is enough to melt lead, it has the effect of keeping Venus’ silicate crust in a softened and semi-viscous state. This prevents lava magmas from being able to move through cracks in the planets’ crust and form volcanoes (as they do on Earth).

In fact, since the crust is not particularly solid, cracks are unable to form in the crust at all, which causes magma to get stuck in the soft, malleable crust. This is also what prevents Venus from experiencing tectonic activity similar to what Earth experiences, where plates drift across the surface and collide, occasionally forcing magma up through vents. This cycle, it should be noted, is crucial to Earth’s carbon cycle and plays a vital role in Earth’s climate.

Not only do these findings explain one of the larger mysteries about Venus’ geological past, but they also are an important step towards differentiating between Earth and it’s “sister planet”. The implications of this goes far beyond the Solar System. As Dr. Mikhail said in a St. Andrews University press release:

“If we can understand how and why two, almost identical, planets became so very different, then we as geologists, can inform astronomers how humanity could find other habitable Earth-like planets, and avoid uninhabitable Earth-like planets that turn out to be more Venus-like which is a barren, hot, and hellish wasteland.”

Volcanoes and lava flows on Venus. Credit: NASA/JPL

In terms of size, composition, structure, chemistry, and its position within the Solar System (i.e. within the Sun’s habitable zone), Venus is the most-Earth like planet discovered to date. And yet, the fact that it is slightly closer to our Sun has resulted in it having a vastly different atmosphere and geological history. And these differences are what make it the hellish, uninhabitable place that is today.

Beyond our Solar System, astronomers have discovered thousands of exoplanets orbiting various types of stars. In some cases, where the planets exist close to their sun and are in possession of an atmosphere, the planets have been designated as being “Venus-like“. This naturally sets them apart from the planets that are of particular interest to exoplanet hunters – i.e. the “Earth-like” ones.

Knowing how and why these two very similar planets can differ so dramatically in terms of their geological and environmental conditions is therefore key to being able to tell the difference between planets that are conducive to life and hostile to life. That can only come in handy when we begin to study multiple-planet systems (such as the seven-planet system of TRAPPIST-1) more closely.

Further Reading: University of St. Andrews

How Do We Terraform Jupiter’s Moons?

Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present to our guide to terraforming Jupiter’s Moons. Much like terraforming the inner Solar System, it might be feasible someday. But should we?

Fans of Arthur C. Clarke may recall how in his novel, 2010: Odyssey Two (or the movie adaptation called 2010: The Year We Make Contact), an alien species turned Jupiter into a new star. In so doing, Jupiter’s moon Europa was permanently terraformed, as its icy surface melted, an atmosphere formed, and all the life living in the moon’s oceans began to emerge and thrive on the surface.

As we explained in a previous video (“Could Jupiter Become a Star“) turning Jupiter into a star is not exactly doable (not yet, anyway). However, there are several proposals on how we could go about transforming some of Jupiter’s moons in order to make them habitable by human beings. In short, it is possible that humans could terraform one of more of the Jovians to make it suitable for full-scale human settlement someday.

Continue reading “How Do We Terraform Jupiter’s Moons?”