There are Probably Many More Earth-Sized Worlds Than Previously Believed

In the past decade, the discovery of extrasolar planets has accelerated immensely. To date, 4,424 exoplanets have been confirmed in 3,280 star systems, with another 7,453 awaiting confirmation. So far, most of these planets have been gas giants, with about 66% being similar to Jupiter or Neptune, while another 30% have been giant rocky planets (aka. “Super-Earths). Only a small fraction of confirmed exoplanets (less than 4%) have been similar in size to Earth.

However, according to new research by astronomers working at NASA Ames Research Center, it is possible that Earth-sized exoplanets are more common than previously thought. As they indicated in a recent study, there could be twice as many rocky exoplanets in binary systems that are obscured by the glare of their parent stars. These findings could have drastic implications in the search for potentially habitable worlds since roughly half of all stars are binary systems.

Continue reading “There are Probably Many More Earth-Sized Worlds Than Previously Believed”

To Take the Best Direct Images of Exoplanets With Space Telescopes, we’re Going to Want Starshades

Between 2021 and 2024, the James Webb (JWST) and Nancy Grace Roman (RST) space telescopes will be launched to space. As the successors to multiple observatories (like Hubble, Kepler, Spitzer, and others), these missions will carry out some of the most ambitious astronomical surveys ever mounted. This will range from the discovery and characterization of extrasolar planets to investigating the mysteries of Dark Matter and Dark Energy.

In addition to advanced imaging capabilities and high sensitivity, both instruments also carry coronagraphs – instruments that suppress obscuring starlight so exoplanets can be detected and observed directly. According to a selection of papers recently published by the Journal of Astronomical Telescopes, Instruments, and Systems (JATIS), we’re going to need more of these instruments if we truly want to really study exoplanets in detail.

Continue reading “To Take the Best Direct Images of Exoplanets With Space Telescopes, we’re Going to Want Starshades”

Most Exoplanets won’t Receive Enough Radiation to Support an Earth-Like Biosphere

To date, astronomers have confirmed the existence of 4,422 extrasolar planets in 3,280 star systems, with an additional 7,445 candidates awaiting confirmation. Of these, only a small fraction (165) have been terrestrial (aka. rocky) in nature and comparable in size to Earth – i.e., not “Super-Earths.” And even less have been found that are orbiting within their parent star’s circumsolar habitable zone (HZ).

In the coming years, this is likely to change when next-generation instruments (like James Webb) are able to observe smaller planets that orbit closer to their stars (which is where Earth-like planets are more likely to reside). However, according to a new study by researchers from the University of Napoli and the Italian National Institute of Astrophysics (INAF), Earth-like biospheres may be very rare for exoplanets.

Continue reading “Most Exoplanets won’t Receive Enough Radiation to Support an Earth-Like Biosphere”

Super-Earth Conditions Simulated in the Lab to Discover if They’re Habitable

Deep inside planet Earth, there is a liquid outer core and a solid inner core that counter-rotate with each other. This creates the dynamo effect that is responsible for generating Earth’s planetary magnetic field. Also known as a magnetosphere, this field keeps our climate stable by preventing Earth’s atmosphere from being lost to space. So when studying rocky exoplanets, scientists naturally wonder if they too have magnetospheres.

Unfortunately, until we can measure an exoplanet’s magnetic fields, we are forced to infer their existence from the available evidence. This is precisely what researchers at the Sandia National Laboratories did with its Z Pulsed Power Facility (PPF). Along with their partners at the Carnegie Institution for Science, they were able to replicate the gravitational pressures of “Super-Earths” to see if they could generate magnetic fields.

Continue reading “Super-Earth Conditions Simulated in the Lab to Discover if They’re Habitable”

Some Stars Could Support as Many as 7 Habitable Planets

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In recent decades, over 4,000 extrasolar planets have been confirmed beyond our Solar System. With so many planets available for study, astronomers have learned a great deal about the types of planets that exist out there and what kind of conditions are prevalent. For instance, they have been able to get a better idea of just how common habitable planets are (at least by our standards).

As it turns out, a surprisingly high number of planets out there could support life. That is the conclusion reached by a team of astronomers and planetary scientists who conducted a study of the possible sizes of habitable zones (HZ) based on stellar classification. After considering many planets could stably orbit within them, they came to the conclusion that stars with no Jupiter-sized gas giants can have as many as seven habitable planets!

Continue reading “Some Stars Could Support as Many as 7 Habitable Planets”

Astronomers Have Found the Star/Exoplanet Combo That’s the Best Twin to the Sun/Earth

At times, it seems like there’s an indundation of announcements featuring discoveries of “Earth-like” planets. And while those announcements are exciting, and scientifically noteworthy, there’s always a little question picking away at them: exactly how Earth-like are they, really?

After all, Earth is defined by its relationship with the Sun.

Continue reading “Astronomers Have Found the Star/Exoplanet Combo That’s the Best Twin to the Sun/Earth”

An Earth-Sized World Orbiting in its Star’s Habitable Zone Was Found in Older Kepler Data

To date, astronomers have confirmed the existence of 4,144 extrasolar planets in 3,074 systems, with a further 5,094 candidates awaiting confirmation. The majority of these planets were found by the Kepler Space Telescope, which spent nine years (between May of 2009 and February of 2018) monitoring distant stars for transit signals – where a planet passing in front of a star causes a dip in brightness.

And yet, even though it is now defunct, the data that Kepler accumulated over the years continues to lead to new discoveries. For instance, a transatlantic team of researchers recently found a signal in Kepler‘s archival data that eluded detection before. This signal indicates that there is a second planet orbiting Kepler-1649, an M-type red dwarf star located 302 light-years away.

Continue reading “An Earth-Sized World Orbiting in its Star’s Habitable Zone Was Found in Older Kepler Data”

Five Snapshots of how the Earth Looked at Key Points in its History Could Help us Find Habitable Exoplanets

In the past few decades, astronomers have confirmed the existence of thousands of planets beyond our Solar System. Over time, the process has shifted from discovery to characterization in the hopes of finding which of these planets are capable of supporting life. For the time being, these methods are indirect in nature, which means that astronomers can only infer if a planet is inhabitable based on how closely it resembles Earth.

To aid in the hunt for “potentially habitable” exoplanets, a team of Cornell researchers recently created five models that represent key points in Earth’s evolution. These “snapshots” of what Earth looked like during various geological epochs could greatly enhance the search for extra-terrestrial life by providing a more complete picture of what a life-bearing planet could look like.

Continue reading “Five Snapshots of how the Earth Looked at Key Points in its History Could Help us Find Habitable Exoplanets”

Two Earth-Like Worlds Found Orbiting a Red Dwarf Only 12.5 Light-Years Away

In the past few decades, there has been an explosion in the number of planets discovered beyond our Solar System. With over 4,000 confirmed exoplanets to date, the process has gradually shifted from discovery towards characterization. This consists of using refined techniques to determine just how likely a planet is to be habitable.

At the same time, astronomers continue to make discoveries regularly, some of which are right in our cosmic backyard. For instance, an international team of researchers recently detected two new Earth-like planets orbiting Teegarden’s Star, an M-type (red dwarf) star located just 12.5 light-years from the Solar System in the direction of the Aries constellation.

Continue reading “Two Earth-Like Worlds Found Orbiting a Red Dwarf Only 12.5 Light-Years Away”