Music From Space: DIY Satellite Will Capture Sounds of Ionosphere

[/caption]

For a space geek, the ultimate do-it-yourself project would be building a satellite in your basement. Astronomer and writer Sandy Antunes is doing just that, but there’s an artsy side to this project, as well. His satellite, called Project Calliope, will collect data from the ionosphere and send it back to Earth in sound-based MIDI files, allowing music to be created from space. “It’ll be an ionospheric detector transmitting sonifiable data back to Earth,” said Antunes. “Conceptually, it’s a musical instrument in space, played by space rather than just after-the-fact sonified.”

Antunes decided to embark on this project after the commercial space company InterOrbital began offering small DIY, soda-can-sized picosatellites for the reasonable price of $8,000 – which includes the launch.

One of the major reasons for doing the project is to prove that anyone can build a satellite in their basement – although Antunes admits it is also a fairly cheap midlife crisis expenditure, especially when his boss at the Science 2.0 blog, Hank Campbell, decided to pitch in half of the price.

The skeleton of the Antunes' satellite, assembled. Cat is for scale. Credit: Sandy Antunes.

“When people ask, ‘where did you get your idea?’ that misses the mark,” Antunes told Universe Today. “The question should be, ‘What idea do you have?’ We’re at the point now where a single hobbyist can send something into orbit to do something useful. I think this is a new space age way of thinking. I’d like to see if this inspires people to do something cooler than me. To me that is what science is all about.”

Antunes is documenting his experiences on his blog, The Sky By Day. “I’m making mistakes so that other people won’t have to make them,” he said. “Hopefully I can make the path will be easier for others.”

Plus, Antunes hopes to answer the big question of what space sounds like. The sun interacts with the Earth’s magnetic field in the ionosphere, creating all sorts of activity; there are also changes in temperature and light.

“People don’t know what space sounds like,” he said. “You walk to ocean and close your eyes and you can hear the roar of the waves, the rushing of water, the moments of quiet; and you can get a good idea of what activity is going on. But we don’t know have an idea of the activity of space, or the ionosphere, where this satellite is going. Sonifying the ionosphere will give people an idea of the ebb and flow of it – how there are constant events going on, sometimes catastrophic-type events but there is also a quiescent stage.”

When the data comes back to Earth, Antunes will give musicians free rein. “Musicians can take it and rework it, much like how musicians have ambient noise, nature sounds, or whale songs in a piece,” Antunes said, “but in this case they can take sounds from the ionosphere. We are making it royalty free so anyone can use it.”

The packaged components for InterOrbital's $8,000 DIY satellite. Credit: Sandy Antunes.

Antunes said working with the pre-packaged TubeSat Personal Satellite Kit is different than what he initially imagined. The Hubble Space Telescope, it is not.

“It has a power system that’s basically two lithium AA batteries hooked together, a little stick of gum computer chip, and some very fragile solar cells,” Antunes said. “I thought it would be hard science and tricky engineering and unsolved problems, but everything I’m getting is off the shelf. The sensors are plug-ins, so the primary work is integrating things. So there are very different problems from what I thought, but this tells me that you don’t have to have a PhD to put up a satellite.”

The current liftoff date for the first InterOrbital Tubesat launch is March or April of 2011. The company has built the rocket engines and they are now doing testing and test firings.

Antunes knows that testing a rocket has a lot of ambiguity, and he anticipates some delays, as even when he has been part of a NASA project, he has never had a launch go on time. This being the first launch of InterOrbital’s commercial satellite venture, if it blows up, Antunes will get a chance to refly his satellite.

Project Calliope will go into a short-term polar orbit, and last about 6-12 weeks, so it is a short term experience, Antunes said.

But he will be tweaking his satellite right up until delivery.

“I wanted to do something that NASA cannot, and that a University wouldn’t, combining art and science,” Antunes said. “I like the idea of flying something in space whose purpose is to make music until it dies– music from science.”

Listen to Antunes on the 365 Days of Astronomy explain why his small satellite will not hit you on the head.

First Rickroll in Space

Those pranksters from Zug have now gone to the edge of space, sending their own DIY satellite up to 89,000 feet above Earth, and doing a little Rickrolling along the way. They claim they have now pulled the famous prank on the entire planet. Hmmm, hopefully this wasn’t the source of the radio signals that caused ESA’s Soil Moisture and Ocean Salinity (SMOS) probe to be “blinded from interference.” Surely strains of “Never Gonna Give You Up” could never do that….

The video above is a quick look at their balloon satellite launch and their results; here’s the whole story on Zug.

Awesome: Father & Son DIY Satellite Captures HD Video from 100,000 ft.

This is a great: amateur rocketeers Luke Geissbuhler and his son Max launched their own DIY satellite via a weather balloon from New York, and using an HD video camera captured some amazing video of the contraption’s rise to near the edge of space (closer than a lot of us will ever get, anyway….) and its plummeting fall. You gotta love their enthusiasm and their “flight tests” at the beginning of the video. It might help that the Dad is a photographer that works in Hollywood films, but then again, I think Max’s countdown and lollipop were the real impetus behind the successful mission. They were able to track the device with GPS, and recover the camera. Lucky for us!