The Sun has been quiet recently but early today (04:13 UTC on March 5, 2012) it unleashed a powerful X1-class solar flare and coronal mass ejection. The latest estimates indicate the CME will probably miss Earth, but hit Mercury and Venus. Even so, the science team from the Solar Dynamics Observatory says that high-latitude skywatchers should still be alert for auroras in the nights ahead. There was also an M2-class eruption from the same big and active sunspot, Active Region 1429, on March 4th which produced another, wider CME that might yet intersect Earth. The cloud is expected to deliver a glancing blow to our planet’s magnetic field on March 6th at 04:30 UT (+/- 7 hrs).
As seen here by the Solar Dynamics Observatory, a long duration M3-class flare began erupting on the Sun from sunspot region 1401 at 13:42 UTC (8:42 AM ET) today, Thursday, January 19, 2012, sending a coronal mass ejection (CME) directly towards Earth. Scientists predict the CME will arrive at around 16:00 UTC on January 21, 2012 GMT. Spaceweather.com says strong geomagnetic storms are possible and high-latitude (and possibly middle-latitude) skywatchers can be on the lookout for increased aurora.
Just in time for Valentine’s Day, [and the Stardust flyby of Comet Tempel 1] the Sun erupted with a massive X-Class flare, the most powerful of all solar events on February 14 at 8:56 p.m. EST . This was the first X-Class flare in Solar Cycle 24 and the most powerful X-ray flare in more than four years.
The video above shows the flare as imaged by the AIA instrument at 304 Angstroms on NASA’sSolar Dynamics Observatory. More graphic videos below show the flare in the extreme ultraviolet wavelength of 193 Angstroms and as a composite with SOHO’s coronagraph.
Spaceweather Update: A CME hit Earth’s magnetic field at approximately 0100 UT on Feb. 18th (8:00 pm EST on Feb. 17th). Send me or comment your aurora photos
The eruption registered X2 on the Richter scale of solar flares and originated from Active Region 1138 in the sun’s southern hemisphere. The flare directly follows several M-class and C-class flares over the past few days which were less powerful. The explosion also let loose a coronal mass ejection (CME) headed for Earth’s orbit. It was speeding at about 900 Km/second.
CME’s can disrupt communications systems and the electrical power grid and cause long lasting radiation storms.
According to a new SDO update, the particle cloud from this solar storm is weaker than first expected and may produce some beautiful aurora in the high northern and southern latitudes on Feb. 17 (tonight).
According to spaceweather.com, skywatchers in the high latitudes should be alert for auroras after nightfall Feb. 17 from this moderately strong geomagnetic storm.
Send me your aurora reports and photos to post here
Sources: SDO website, spaceweather.com
NASA SDO – Big, Bright Flare February 15, 2011
Video Caption: Active region 1158 let loose with an X2.2 flare at 0153 UT or 8:50 pm ET on February 15, 2011, the largest flare since Dec. 2006 and the biggest flare so far in Solar Cycle 24. Active Region 1158 is in the southern hemisphere, which has been lagging the north in activity but now leads in big flares! The movie shows a close-up of the flaring region taken by the Solar Dynamics Observatory in the extreme ultraviolet wavelength of 193 Angstroms. Much of the vertical line in the image and the staggered lines making an “X” are caused by the bright flash overwhelming our imager. A coronal mass ejection was also associated with the flare. The movie shows activity over about two days (Feb. 13-15, 2011). Since the active region was facing Earth, there is a good chance that Earth will receive some effects from these events, with some possibility of mid-latitude aurora Feb. 16 – 18. Credit: NASA SDO
X2 flare Video combo from SDO and SOHO
Video caption: The X2 flare of Feb. 15, 2011 seen by SDO (in extreme ultraviolet light) enlarged and superimposed on SOHO’s coronagraph that shows the faint edge of a “halo” coronal mass ejection as it races away from the Sun. The video covers about 11 hours
Update: Well, it turns out that while it looks like Venus and Mercury are getting pummeled by Coronal Mass Ejections, the geometry might not work out, at least not for every day that is included in the video above. UT reader Steven Janowiecki brought it to my attention that just because Mercury and Venus look close to the Sun doesn’t mean they’re actually in the line of fire, as they could be well behind or in front of the solar storm. I checked with STEREO project scientist Dr. Joseph Gurman, who took a look at the data. He put together a plot for August 14, (see below) and said, “It shows that Mercury and Venus are well to the East (left) of the Sun-earth line. The large CME on the 14th originated from an active region near the west limb of the Sun, and since most CME’s are about 60 degrees of heliolongitude in width on average, it’s unlikely that that event actually passed by Mercury or Venus.” There was one large event, however, on August 7, that appeared likely to be headed in the direction of Mercury and Venus.
[/caption]
So, as it happens sometimes in astronomy, things are not always as they appear, and this exemplifies the challenges of estimating distance in astronomy.
Here’s the rest of the article as it ran originally:
Take a look at these Coronal Mass Ejections (CME) from the first part of August 2010, as seen by the two STEREO spacecraft. Here on Earth, we’ve had some aurorae, a result of the recent solar activity. But this STEREO imagery shows Venus and Mercury were blasted by these CMEs.
STEREO consists of two spacecraft – one ahead of Earth in its orbit, the other trailing behind. With this new pair of viewpoints, scientists are able to see the structure and evolution of solar storms as they blast from the Sun and move out through space.
These movies were taken by SECCHI, a suite of remote sensing instruments on both spacecraft consisting of two white light coronagraphs that make up the Sun Centered Imaging Package (SCIP), as well as a Heliospheric Imager (HI).
SECCHI can follow three-dimensional Coronal Mass Ejections (CMEs) from the Sun’s surface, through the corona and interplanetary medium, to impact at Earth. With these instruments, scientists are getting breakthroughs in understanding the origin and consequences of CMEs, in determining their three-dimensional structure, and more, and perhaps be able to predict space weather. Combining STEREO with the new Solar Dynamics Observatory, we’ll be learning more and more about the Sun in the next few years.
As an example of SDO’s capabilities, here’s an SDO image from earlier today showing the Sun’s limb.