Cosmic Dust Could Spread Life from World to World Across the Galaxy

Could life spread throughout the galaxy on tiny grains of dust? It would be a perilous journey, but new research shows its possible and calculates how long it would take to spread. Image Credit: ESO

Does life appear independently on different planets in the galaxy? Or does it spread from world to world? Or does it do both?

New research shows how life could spread via a basic, simple pathway: cosmic dust.

Continue reading “Cosmic Dust Could Spread Life from World to World Across the Galaxy”

Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More

Astronomers have used JWST to study the environments around 30 young protostars and found a vast collection of icy organic molecules. A recent survey identified methane, sulfur dioxide, ethanol, formaldehyde, formic acid, and many more. Image Credit: NASA/ESA/STScI

In the quest to understand how and where life might arise in the galaxy, astronomers search for its building blocks. Complex Organic Molecules (COMs) are some of those blocks, and they include things like formaldehyde and acetic acid, among many others. The JWST has found some of these COMs around young protostars. What does this tell astronomers?

Continue reading “Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More”

Seeing the Moment Planets Start to Form

ALMA captured this high-resolution image of the protoplanetary disk surrounding DG Taurus at a 1.3 mm wavelength. The young star is still embedded in its disk, and the smooth appearance, absent of ring-like structures, indicates a phase shortly before planets form. Credit: ALMA (ESO/NAOJ/NRAO), S. Ohashi, et al.

Nature makes few duplicates, and planets are as distinct from one another as snowflakes are. But planets all start out in the same circumstances: the whirling disks of material surrounding young stars. ALMA’s made great progress imaging these disks and the telltale gaps excavated by young, still-forming planets.

But new images from ALMA (Atacama Large Millimeter/submillimeter Array) show a star and disk so young that there are no telltale gaps in the disk. Is this the moment that planets start to form?

Continue reading “Seeing the Moment Planets Start to Form”

Even More Complex Organic Molecules Have Been Found in a Protoplanetary Disc. Was Life Inevitable?

This artist's concept a protoplanetary disk around a young star. Researchers at the Leiden Observatory found the large organic molecule dimethyl ether in a protoplanetary disk for the first time. Credit: NASA/JPL-Caltech

Will we ever understand life’s origins? Will we ever be able to put our finger on the exact moment and circumstances that lead to living matter? Will we ever pinpoint the spark? Who knows.

But what we can do is find out how widespread the conditions for life are and how widespread the molecular constituents for life are.

Continue reading “Even More Complex Organic Molecules Have Been Found in a Protoplanetary Disc. Was Life Inevitable?”

A Star’s Outburst is Releasing Organic Molecules Trapped in the ice Around it

Artist’s impression of the protoplanetary disk around a young star V883 Ori. The outer part of the disk is cold and dust particles are covered with ice. ALMA detected various complex organic molecules around the snow line of water in the disk. Credit: National Astronomical Observatory of Japan

According to widely-accepted theories, the Solar System formed roughly 4.6 billion years ago from a massive cloud of dust and gas (aka. Nebular Theory). This process began when the nebula experienced a gravitational collapse in the center that became our Sun. The remaining dust and gas formed a protoplanetary disk that (over time) accreted to form the planets.

However, scientists remain unsure about when organic molecules first appeared in our Solar System. Luckily, a new study by an international team of astronomers may be able to help answer that question. Using the Atacama Large Millimeter-submillimeter Array (ALMA), the team detected complex organic molecules around the young star V883 Ori, which could someday lead to the emergence of life in that system.

Continue reading “A Star’s Outburst is Releasing Organic Molecules Trapped in the ice Around it”