Artist rendering of Blue Origin’s spacecraft platform, Blue Ring, which is seen featuring a multitude of payloads and accessories. (Credit: Blue Origin)
The Jeff Bezos-founded aerospace company, Blue Origin, recently announced its new and upcoming Swiss army knife-style spacecraft platform, Blue Ring, which comes after very little public discussion by Blue Origin regarding this project. For example, a January 2023 story broke when Blue Origin briefly announced a job posting for “Blue Ring Senior Program Manager” on its “Careers” page, but the job was pulled less than 24 hours later. Overall, Blue Origin has been quite mum about Blue Ring.
Artist rendition of NASA's next-generation Lunar Terrain Vehicle traversing the lunar surface.
(Credit: NASA)
As Artemis II gets ready to launch in November 2024, NASA recently announced it is pursuing contract proposals from private companies for the development of a next-generation Lunar Terrain Vehicle (LTV) to be used for crewed missions starting with Artemis V, which is currently scheduled for 2029. NASA has set a due date for the proposals of July 10, 2023, at 1:30pm Central Time, with the announcement for rewarded contracts to occur in November 2023.
The core module of Orbital Reef. Credit: Orbital Reef
Blue Origin has certainly stepped up its game of late! After stepping down as the CEO of Amazon, Jeff Bezos has made it his personal mission to take the company he founded in 2000 and turn it into a powerhouse of the commercial space sector. Between some high-profile missions involving the New Shepard – which included passengers like Wally Funk, William Shatner, and even himself and his brother – Bezos has also been outspoken about his long-term vision.
Bezos describes this vision as “building a road to space so our children can build the future.” In the latest step towards achieving this, Blue Origin announced a new partnership with Sierra Space to develop a commercial space station in Low Earth Orbit (LEO), known as “Orbital Reef.” This mixed-use space station, which is to be completed by the end of this decade, will facilitate commerce, research, tourism, and facilitate the commercialization of LEO.
When it comes to the private aerospace sector (aka. NewSpace), some names stand out from the rest. The most obvious of these is SpaceX (the brainchild of Elon Musk and the leading source of innovation in commercial space) and the United Launch Alliance (ULA), a joint venture between Boeing and Lockheed Martin. But what of Blue Origin, the private aerospace company created by Jeff Bezos in 2000?
In recent years, Blue Origin has fallen behind the competition and missed out on several billion dollars worth of contracts. But with Bezos stepping down as CEO of Amazon, industry sources have indicated that this could change soon (according to Eric M. Johnson at Reuters). With all of the opportunities available for commercial space, Bezos is now in a position to take a more hands-on role as the company faces a most pivotal year.
In recent years, one of the most impressive developments for space exploration has been the rise of the commercial space industry (aka. NewSpace). Beyond fulfilling contracts with space agencies like NASA to provide commercial and crewed launch services, private aerospace companies are also fostering innovation that is helping to reduce the cost of sending payloads to space.
Take RocketLab, the US/NZ-based small satellite launch company that has broken new ground with its Electron rocket. In a further bid to reduce the costs of individual launches, RocketLab announced last year that it would begin recovering and reusing the spent boosters of its rockets. Recently, the company took a big step by successfully retrieving the first stage of an Electron after it delivered a payload to orbit.
Artist's impression of the asteroid Psyche 16. Credit: ASU
It has been said that within the next quarter century, the world’s first trillionaires will emerge. It is also predicted that much of their wealth will stem from asteroid mining, a burgeoning space industry where minerals and volatile compounds will be harvested from Near-Earth Asteroids. This industry promises to flood the market with ample supplies of precious metals like gold, silver and platinum.
Beyond Earth, there’s the long-term prospect of the Main Asteroid Belt, which would provide even greater abundance. This is one of the reasons why NASA’s Psyche mission to explore the metal asteroid of the same name in the Main Belt has many people excited. While the exploration of this body could tell us much about the history of the Solar System, it could also be a source of riches someday.
Artist's impression of the asteroid belt. Image credit: NASA/JPL-Caltech
There is no doubt that our world is in the midst of a climate crisis. Between increasing levels of carbon dioxide in our atmosphere, rising temperatures and sea levels, ocean acidification, species extinctions, waste production, diminishing supplies of fresh water, drought, severe weather, and all of the resulting fallout, the “Anthropocene” is not shaping up too well.
It is little wonder then why luminaries like Stephen Hawking, Buzz Aldrin, and Elon Musk believe that we must look off-world to ensure our survival. However, there are those who caution that in so doing, humans will simply shift our burdens onto new locations. Addressing this possibility, two distinguished researchers recently published a paper where they suggest that we should set aside “wilderness” spaces” in our Solar System today.
The inaugural flight of Stratolaunch's Roc air-launch system. Credit: stratolaunch.com
In 2011, Microsoft co-founder Paul G. Allen and Scaled Composites founder Burt Rutan announced the creation of Stratolaunch Systems. With the goal of reducing the associated costs of space launches, the company set out to create the world’s largest air-launch-to-orbit system. After many years, these efforts bore fruit with the unveiling of the massive Scaled Composites Model 351 Stratolaunch air carrier in the Summer of 2017.
Similar in principle to Virgin Galactic’s SpaceShipTwo, this behemoth is designed to deploy rockets from high altitudes so they can send payloads to Low-Earth Orbit (LEO). After multiple tests involving engine preburns and taxiing on the runway, the aircraft made its inaugural flight last weekend (Saturday, April 13th) and flew for two and half hours before safely landing again in the Mojave Desert.
Artist concept of the Terrestrial Return Vehicle (TRV). Credit: Intuitive Machines
Getting to the International Space Station is no easy task. Generally speaking, it involves loading up a space capsule with several tons of cargo and then expending millions of liters of fuel to get it into orbit. This process is time consuming and very expensive. And what if astronauts want to send some things back? Currently, their only option for return capability is provided by the same cargo capsules that are sent up to them.
SpaceX Dragon set to dock at International Space Station on COTS 2/3 mission. Falcon 9 launch of Dragon on COTS 2/3 mission is slated for Feb.7, 2012 from pad 40 at Cape Canaveral, Florida. Artist’s rendition of Dragon spacecraft with solar panels fully deployed on orbit. ISS crew will grapple Dragon and berth to ISS docking port. Credit: NASA
[/caption]
The Dragon has grown its mighty wings
SpaceX’s Dragon spacecraft has gotten its wings and is set to soar to the International Space Station (ISS) in about a month. NASA and SpaceX are currently targeting a liftoff on Feb. 7 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
Dragon is a commercially developed unmanned cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA. The Dragon spacecraft will launch atop a Falcon 9 booster rocket also built by SpaceX, or Space Exploration Technologies.
Dragon’s solar array panels being installed on Dragon’s trunk at the SpaceX hangar in Cape Canaveral,FL.
The Feb. 7 demonstration flight – dubbed COTS 2/3 – represents the first test of NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.
Following the forced retirement of the Space Shuttle after Atlantis final flight in July 2011, NASA has no choice but to rely on private companies to loft virtually all of the US share of supplies and equipment to the ISS.
The Feb. 7 flight will be the first Dragon mission actually tasked to dock to the ISS and is also the first time that the Dragon will fly with deployable solar arrays. The twin arrays are the primary power source for the Dragon. They will be deployed a few minutes after launch, following Dragon separation from the Falcon 9 second stage.
The solar arrays can generate up to 5000 watts of power on a long term basis to run the sensors and communications systems, drive the heating and cooling systems and recharge the battery pack.
SpaceX designed, developed and manufactured the solar arrays in house with their own team of engineers. As with all space hardware, the arrays have been rigorously tested for hundreds of hours under the utterly harsh conditions that simulate the unforgiving environment of outer space, including thermal, vacuum, vibration, structural and electrical testing.
SpaceX engineers conducting an early solar panel test. Hundreds of flood lamps simulate the unfiltered light of the sun. Photo: Roger Gilbertson/ SpaceX
The two arrays were then shipped to Florida and have been attached to the side of the Dragon’s bottom trunk at SpaceX’s Cape Canaveral launch processing facilities. They are housed behind protective shielding until commanded to deploy in flight.
Video Caption: SpaceX testing of the Dragon solar arrays. Credit: SpaceX
I’ve toured the SpaceX facilities several times and seen the Falcon 9 and Dragon capsule launching on Feb. 7. The young age and enthusiasm of the employees is impressive and quite evident.
NASA recently granted SpaceX the permission to combine the next two COTS demonstration flights into one mission and dock the Dragon at the ISS if all the rendezvous practice activities in the vicinity of the ISS are completed flawlessly.
Dragon with the protective fairings installed over the folded solar arrays, at the SpaceX
The ISS crew is eagerly anticipating the arrival of Dragon, for whch they have long trained.
“We’re very excited about it,” said ISS Commander Dan Burbank in a televised interview from on board the ISS earlier this week.
The ISS crew will grapple the Dragon with the station’s robotic arm when it comes within reach and berth it to the Earth-facing port of the Harmony node.
“From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”
Burbank is a US astronaut and captured stunning images of Comet Lovejoy from the ISS just before Christmas, collected here.
Jan 11: Free Lecture by Ken at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL