Crescent Earth as Seen by Comet Chasing Spacecraft

Title this one “Rich Blue Crescent” (as opposed to Pale Blue Dot.) This spectacular image of our home planet was captured by the OSIRIS instrument on ESA’s Rosetta comet chaser today (November 12) at 12:28 GMT from about 633,000 km as the spacecraft approached Earth for the third and final swingby. Closest approach is due at 07:45 GMT, on November 13. You can follow Rosetta’s progress at ESA’s Rosetta site and the Rosetta Blog.

Deep Impact

[/caption]
Deep Impact is the name of a NASA space mission whose primary objective was to study Comet Tempel 1 (a.k.a. 9P/Tempel). It was launched on 12 January, 2005, and the smart impactor crashed into the comet on 4 July, 2005.

Oh, and yes, Deep Impact is also the name of a movie … but the two have no connection (the science team came up with their name independently of the Hollywood studio), other than that they both concern a comet!

Comets had been the focus of several space probes before Deep Impact, perhaps the most famous of which is the ESA’s Giotto flyby of Comet Halley. However, flybys could not, and cannot, tell us much about what’s beneath the cometary surface; in particular, what the relative amounts of ices and dust is, how porous the comet body is, and so on. The Deep Impact mission was designed to address many of these unknowns.

The space probe consisted of two parts, a 370 kg copper Smart Impactor – that smashed into the comet – and the Flyby section, which watched the impact from a safe distance. In addition, many ground-based telescopes – including those of thousands of amateurs – and some space-based ones, watched the event from an even safer distance.

The mission was a great success in that the heavy copper section did, in fact, smash into the comet, and the other section did observe the impact up-close-and-personal, but safely. A great deal was learned about this comet – its composition and mechanical strength, etc – and comets in general. However, the plume which resulted from the impact was much denser than expected, so the Flyby did not get any images of the impact crater itself.

After the encounter with Comet Tempel 1, an extended mission for the Flyby was designed and implemented, called EPOXI, after its two objectives: the Extrasolar Planet Observation and Characterization (EPOCh) and the Deep Impact Extended Investigation (DIXI) … hence Extrasolar Planet Observation and Deep Impact Extended Investigation. The former uses the larger telescope on the space probe to look for exoplanet transits; the latter is a flyby of another comet, Hartley 2, now expected on 11 October, 2010.

There are several official Deep Impact websites, including NASA’s, JPL’s (Jet Propulsion Laboratory), and the University of Maryland’s on EPOXI.

The Deep Impact mission resulted in lots of Universe Today stories, far too many to mention here. Some of the best are Deep Impact Smashes into Temple 1, What the Ground Telescopes Saw During Deep Impact, Deep Impact Turns Up Cometary Ice, and Deep Impact Begins Searching for Extrasolar Planets.

Comets, our Icy Friends from the Outer Solar System is a good Astronomy Cast episode which gives a good background on comets.

Source: NASA

Comet, Cometary Dust Formed in Different Parts of Solar System

stardust_wild2.thumbnail.jpg

Scientists studying the particles of comet dust brought to Earth by the Stardust spacecraft have uncovered a bit of a mystery. Research on the particles seem to indicate that while the comet formed in the icy fringes of the solar system, the dust appears to have been formed close to the sun and was bombarded by intense radiation before being flung out beyond Neptune and trapped in the comet. The finding opens the question of what was going on in the early life of the solar system to subject the dust to such intense radiation and hurl them hundreds of millions of miles from their birthplace.

The Stardust spacecraft flew to Comet Wild-2 in 2004, coming approximately 150 miles from the comet’s nucleus, and captured particles of dust and gases from the comet’s coma and then returned those particles to Earth in 2006.

Researchers from the University of Minnesota and Nancy University in France analyzed gases locked in the tiny dust grains, which are about a quarter of a billionth of a gram in weight. They were looking for helium and neon, two noble gases that don’t combine chemically with other elements, and therefore would be in the same condition as when the comet dust formed.

The analysis of the helium and neon isotopes suggests that some of the Stardust grains match a special type of carbonaceous material found in meteorites. The gases most likely came from a hot environment exposed to magnetic flares that must have been close to the young sun.

About 10 percent of the mass of Wild 2 is estimated to be from particles transported out from hot inner zones to the cold zone where Wild 2 formed. Earlier research showed that the comet formed in the Kuiper Belt, outside the orbit of Neptune, and only recently entered the inner regions of the solar system.

“Somehow these little high-temperature particles were transported out very early in the life of the solar system,” said Bob Pepin from the University of Minnesota. “The particles probably came from the first million years or even less, of the solar system’s existence.” That would be close to 4.6 billion years ago. If our middle-aged sun were 50 years old, then the particles were born in the first four days of its life.

The studies of cometary dust are part of a larger effort to trace the history of our celestial neighborhood.
“We want to establish what the solar system looked like in the very early stages,” said Pepin. “If we establish the starting conditions, we can tell what happened in between then and now.”

Stardust launched in February 1999, began collecting interstellar dust in 2000 and met up with Wild-2 in January 2004. It’s tennis raquet-sized collector made of an ultra-light material called aerogel, trapped aggregates of fine particles that hit at 13,000 miles per hour and split on impact. It is the first spacecraft to bring cometary dust particles back to Earth.

This study also has relevance in learning about the history of our own planet. “Because some scientists have proposed that comets have contributed these gases to the atmospheres of Earth, Venus and Mars, learning about them in comets would be fascinating,” Pepin said.

The research appears in the Jan. 4 issue of the journal Science

Original News Sources: University of Minnesota Press Release, Lawrence Livermore National Laboratory Press Release