Tales of a ‘Drunken Comet’- Astronomers Detect Alcohol Leaking From 46P/Wirtanen into Space

A close pass of Comet Wirtanen in 2018 offered researchers an unprecedented opportunity.

Comets are full of surprises. Not only do they often under- or very occasionally over- perform versus expectations, but they also offer a glimpse of the remnants of the very early solar system. In December 2018, astronomers had an unprecedented opportunity to study one of these relics of the early solar system up close as Comet 46P/Wirtanen sped by Earth just 30 times the Earth-Moon distance (7.1 million miles away) on its closest passage for this century.

Continue reading “Tales of a ‘Drunken Comet’- Astronomers Detect Alcohol Leaking From 46P/Wirtanen into Space”

Interstellar Comet 2I/Borisov Appears to Have Broken in Half

In 2019, amateur astronomer Gennadiy Borisov discovered a comet, which now bears his name. There’s a long history of amateur astronomers discovering comets, as they approach our inner Solar System on their elongated orbits. But this one was different: it was moving much too fast to be gravitationally bound to the Sun.

It was an interstellar comet. And now, it looks like it has split into two chunks.

Continue reading “Interstellar Comet 2I/Borisov Appears to Have Broken in Half”

NASA’s TESS Watched an Outburst from Comet 46P/Wirtanen

Comet 46P/Wirtanen. Image Credit: By Stub Mandrel at English Wikipedia, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=75160399

TESS, the Transiting Exoplanet Survey Satellite, has imaged an outburst from the comet 46P/Wirtanen. It caught the outburst in what NASA is calling the clearest images yet of a comet outburst from start to finish. A comet outburst is a significant but temporary increase in the comet’s activity, outside of the normal sunlight-driven vaporization of ices that creates a comet’s coma and tail.

Astronomers aren’t certain what causes them, but a new study based on this observation is shedding some light on them.

Continue reading “NASA’s TESS Watched an Outburst from Comet 46P/Wirtanen”

Video of Green Comet 45P Puts You Close To The Action

Comet 45P is seen here on Feb. 8, 2017. The comet appears very spread out and diffuse. While its overall brightness is about magnitude +8.5, the comet appears diffuse and faint. Credit: Chris Schur

This animation of comet 45P/H-M-P is composed of thirteen delay-Doppler images made during 2 hours of observation using the Arecibo Observatory on Feb. 12. Credit: USRA

Comets hide their central engines well. From Earth, we see a bright, fuzzy coma and a tail or two. But the nucleus, the source of all the hubbub, remains deeply camouflaged by dust, at best appearing like a blurry star.

To see one up close, you need to send a spacecraft right into the comet’s coma and risk getting. Or you can do the job much more cheaply by bouncing radio waves off the nucleus and studying the returning echoes to create a shadowy image.

Although crude compared to optical photos of moons and planets, radar images reveal much about an asteroid including surface details like mountains, craters, shape and rotation rate. They’re also far superior to what optical telescopes can resolve when it comes to asteroids, which, as their name implies, appear star-like or nearly so in even large professional telescopes.

On Feb. 11, green-glowing comet 45P/Honda-Mrkos-Pajdusakova, made an unusually close pass of Earth, zipping just 7.7 million miles away. Astronomers made the most of the encounter by pressing the huge 1,000-foot-wide (305 meters) Arecibo radio dish into service to image the comet’s nucleus during and after closest approach.

Arecibo Observatory, the world’s biggest single dish radio telescope, was and is still being used to image comet 45P/H-M-P. Courtesy of the NAIC – Arecibo Observatory, a facility of the NSF

“The Arecibo Observatory planetary radar system can pierce through the comet’s coma and allows us to study the surface properties, size, shape, rotation, and geology of the comet nucleus”, said Dr. Patrick Taylor, USRA Scientist and Group Lead for Planetary Radar at Arecibo.

The two lobes of comet 67P/C-G stand out clearly in this photo taken by ESA’s Rosetta spacecraft while in orbit about the comet on March 6, 2015. Credit: ESA/Rosetta

Does the shape ring a bell? Remember Rubber Ducky? It doesn’t take a rocket scientist to see that the comet’s heart resembles the twin-lobed comet 67P/Churyumov-Gerasimenko orbited by ESA’s Rosetta spacecraft. Using the dish, astronomers have seen bright regions and structures on the comet; they also discovered that the nucleus is a little larger than expected with a diameter of 0.8 mile (1.3 km) and rotates about once every 7.6 hours. Go to bed at 10 and wake up at 6 and the comet will have made one complete turn.

Comet 45P is seen here on Feb. 8, 2017. While its overall brightness is about magnitude +8.5, the comet appears diffuse and rather faint. From dark skies, it remains a binocular object at least for a little while. Credit: Chris Schur

Radio observations of 45P/H-M-P will continue through Feb. 17. Right now, the comet is happily back in the evening sky and still visible with 10×50 or larger binoculars around 10-11 p.m. local time in the east. I spotted it low in Bootes last night about 15 minutes before moonrise under excellent, dark sky conditions. It looked like a faint, smoky ball nearly as big as the full moon or about 30 arc minutes across.

This week, the pale green blob (the green’s from fluorescing carbon), vaults upward from Bootes, crosses Canes Venatici and zooms into Coma Berenices. For maps to help you track and find it night by night, please click here. I suggest larger binoculars 50mm and up or a 6-inch or larger telescope. Be sure to use low power — the comet’s so big, you need a wide field of view to get dark sky around it in order to see it more clearly.

Very few comets pass near Earth compared to the number of asteroids that routinely do. That’s one reason 45P is only the seventh imaged using radar; rarely are we treated to such detailed views!

Rock Around the Comet Clock with Hubble

Views of the rotating jet in comet 252P/LINEAR on April 4, 2016. Credit: Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)

These photos, taken on April 4, 2016 over the span of 4 1/2 hours, reveal a narrow, well-defined jet of dust ejected by the comet's icy nucleus. With a diameter of only about a mile, the nucleus is too small for Hubble to see. The jet is illuminated by sunlight and changes direction like the hour hand on a clock as the comet spins on its axis. Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)
These photos, taken on April 4, 2016 over the span of 4 1/2 hours, reveal a narrow, well-defined jet of dust ejected by the comet’s icy nucleus. With a diameter of only about a mile, the nucleus is too small for Hubble to see. The jet is illuminated by sunlight and changes direction like the hour hand on a clock as the comet spins on its axis. Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)

Remember 252P/LINEAR? This comet appeared low in the morning sky last month and for a short time grew bright enough to see with the naked eye from a dark site. 252P swept closest to Earth on March 21, passing just 3.3 million miles away or about 14 times the distance between our planet and the moon. Since then, it’s been gradually pulling away and fading though it remains bright enough to see in small telescope during late evening hours.

252P LINEAR looks like a big fuzzy ball in this photo taken on April 30. The comet is located in Ophiuchus and rises in the eastern sky at nightfall. At this scale, the jet shown in the Hubble photos is too tiny to see. See map below to find the comet yourself. Credit: Rolando Ligustri
252P LINEAR looks like a big fuzzy ball in this photo taken on April 30. The comet is located in Ophiuchus and rises in the eastern sky at nightfall. At this scale, the jet shown in the Hubble photos is too tiny to see. See map below to find the comet yourself. Credit: Rolando Ligustri

While amateurs set their clocks to catch the comet before dawn, astronomers using NASA’s Hubble Space Telescope captured close-up photos of it two weeks after closest approach. The images reveal a narrow, well-defined jet of dust ejected by the comet’s fragile, icy nucleus spinning like a water jet from a rotating lawn sprinkler. These observations also represent the closest celestial object Hubble has observed other than the moon.

Want to get a good look at a comet's tiny nucleus and its jets of vapor and dust? Get up close in the spaceship. This photo was taken by the European Space Agency's Rosetta probe which has been orbiting Comet 67P/Churyumov-Gerasimenko since the fall of 2014. Credit: ESA
Want to get a good look at a comet’s tiny nucleus and its jets of vapor and dust? Get up close in the spaceship. This photo was taken by the European Space Agency’s Rosetta probe which has been orbiting Comet 67P/Churyumov-Gerasimenko since the fall of 2014. Credit: ESA

Sunlight warms a comet’s nucleus, vaporizing ices below the surface. In a confined space, the pressure of the vapor builds and builds until it finds a crack or weakness in the comet’s crust and blasts into space like water from a whale’s blowhole. Dust and other gases go along for the ride. Some of the dust drifts back down to coat the surface, some into space to be shaped by the pressure of sunlight into a dust tail.

This map shows the path -- marked off every five nights -- of 252P/LINEAR along the border of Ophiuchus and Hercules through the end of June. Bright stars are labeled by Greek letter or number. Stars shown to magnitude 8.5. Diagram: Bob King, source: Chris Marriott's SkyMap
This map shows the path — marked off every five nights at 11:30 p.m. CDT (4:30 UT) — of 252P/LINEAR along the border of Ophiuchus and Hercules through the end of June. Bright stars are labeled by Greek letter or number. Stars shown to magnitude 8.5. Click to enlarge. Diagram: Bob King, source: Chris Marriott’s SkyMap

You can still see 252P/LINEAR if you have a 4-inch or larger telescope. Right now it’s a little brighter than magnitude +9 as it slowly arcs along the border of Ophiuchus and Hercules. With the moon getting brighter and brighter as it fills toward full, tonight and tomorrow night will be best for viewing the comet. After that you’re best to wait till after the May 21st full moon when darkness returns to the evening sky. 252P will spend much of the next couple weeks near the 3rd magnitude star Kappa Ophiuchi, a convenient guidepost for aiming your telescope in the comet’s direction.

Orient yourself on the comet's location by using this map, which shows the sky facing southeast around 11-11:30 p.m. local daylight time in mid-May. Mars and Saturn are excellent guides to help you find Kappa Oph, located very near the comet. Diagram: Bob King , source: Stellarium
Get oriented on where to look for the comet by first using this map, which shows the sky facing southeast around 11-11:30 p.m. local daylight time in mid-May. Mars and Saturn make excellent guides to help you find Kappa Oph, located very near the comet. Diagram: Bob King , source: Stellarium

While you probably won’t see any jets in amateur telescopes, they’re there all the same and helped created this comet’s distinctive and large, fuzzy coma. Happy hunting!

The full sequence of images of the spinning jet in 252P/LINEAR seen by Hubble. Credit: NASA, ESA, and Z. Levay (STScI)
The full sequence of images of the spinning jet in 252P/LINEAR seen by Hubble. Credit: NASA, ESA, and Z. Levay (STScI)

 

Comet Catalina Grows Two Tails, Soars at Dawn

Comet C/2013 US10 Catalina shows off a compact green coma and two tails in this photo taken this morning (Nov. 20, 2015) at dawn from Arizona. Credit: Chris Schur

Amateur astronomer Chris Schur of Arizona had only five minutes to observe and photograph Comet Catalina this morning before twilight got the better of the night. In that brief time, he secured two beautiful images and made a quick observation through his 80mm refractor. He writes:

“Very difficult observation on this one. (I observed) it visually with the 35mm Panoptic ocular. It was a round, slightly condensed object with no sign of the twin tails that show up in the images. After five minutes, we lost it visually as it was 2° degrees up in bright twilight. Images show it for a longer time and a beautiful emerald green head with two tails forming a Y shaped fan.” 

Comet Catalina was about 3 high over Lake Superior near Duluth, Minn. IU.S.) at 5:55 a.m. this morning. Stars are labeled with their magnitudes. Details: 200mm lens, f/2.8, ISO 1250, 3-seconds.
Comet Catalina stands some 3° high over Lake Superior near Duluth, Minn. (U.S.) at 5:55 a.m. this morning, Nov. 22. Stars are labeled with their magnitudes. Details: 200mm lens, f/2.8, ISO 1250, 3-seconds. Credit: Bob King

Schur estimated the comet’s brightness at around magnitude +6. What appears to be the dust tail extends to the lower right (southeast) with a narrower ion tail pointing north. With its twin tails, I’m reminded of a soaring eagle or perhaps a turkey vulture rocking back and forth on its wings. While they scavenge for food, Catalina soaks up sunlight.

I also headed out before dawn for a look. After a failed attempt to spot the new visitor on Saturday, I headed down to the Lake Superior shoreline at 5:30 a.m. today and waited until the comet rose above the murk. Using 7×50 binoculars in a similar narrow observing window, I could barely detect it as a small, fuzzy spot 2.5° south of 4th magnitude Lambda Virginis at 5:50 a.m. 10 minutes after the start of astronomical twilight. The camera did better!

Chris's first photo was taken when the comet rose. This one was photographed minutes later with twilight coming on. Credit: Chris Schur
Chris’s first photo was taken when the comet rose. This one was photographed minutes later with twilight coming on. Credit: Chris Schur

With the comet climbing about 1° per day, seeing conditions and viewing time will continue to improve. The key to seeing it is finding a location with an unobstructed view to the southeast — that’s why I chose the lake — and getting out while it’s still dark to allow time to identify the star field and be ready when the comet rises to greet your gaze.

Two views of Comet C/2013 US10 Catalina made around 6:23 a.m. EST (11:23 Universal Time) on Nov. 21st. The left photo is a 30-second exposure with dawn light approaching fast. Exposure at right was 10 seconds.
North is up and east to the left in these two photos of the comet made by Dr. D.T. Durig at 6:23 a.m. EST on Nov. 21st from Cordell-Lorenz Observatory in Sewanee, Tenn. He estimated the coma diameter at ~2 arc minutes with a tail at least 10 arc minutes long . “I get a nuclear magnitude of 10.3 and an total mag of around 7.8, but that is with only 5-10 reference stars,” wrote Durig. Credit: Dr. Douglas T. Durig

Alan Hale, discoverer of Comet Hale-Bopp, also tracked down Catalina this morning with an 8-inch (20-cm) reflector at 47x. He reported its magnitude at ~+6.1 with a 2-arc-minute, well-condensed coma and a faint wisp of tail to the southeast. In an e-mail this morning, Hale commented on the apparent odd angle of the dust tail:

“Since the comet is on the far side of the sun as seen from Earth, with the typical dust tail lagging behind, that would seem to create the somewhat strange direction. It  (the tail) almost seems to be directed toward the Sun, but it’s a perspective effect.”

Venus glares inside the cone of the zodiacal light this morning at the start of astronomical twilight over the shoreline of northern Wisconsin. Jupiter is seen at top and Mars two-thirds of the way from Jupiter to Venus. Credit: Bob King
Venus glares inside the cone of the zodiacal light this morning at the start of astronomical twilight. Jupiter is seen at top and Mars two-thirds of the way from Jupiter to Venus. Arcturus shines at far left. Credit: Bob King

There were side benefits to getting up early today. Three bright planets lit up Leo’s tail and Virgo’s “Cup” and a magnificent display of zodiacal light rose from the lake to encompass not only the comet but all the planets as well.

How to Find Rosetta’s Comet In Your Telescope

This sequence of images, taken with Rosetta's OSIRIS narrow-angle camera on 30 July 2015, show a boulder-sized object close to the nucleus of Comet 67P/Churyumov-Gerasimenko. The images were captured on 30 July 2015, about 185 km from the comet. The object measures between one and 50 m across; however, the exact size cannot be determined as it depends on its distance to the spacecraft, which cannot be inferred from these images. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

How would you like to see one of the most famous comets with your own eyes? Comet 67P/Churyumov-Gerasimenko plies the morning sky, a little blot of fuzzy light toting an amazing visitor along for the ride — the Rosetta spacecraft. When you look at the coma and realize a human-made machine is buzzing around inside, it seems unbelievable. 

Comet 67P/Churyumov-Gerasimenko plows through a rich star field in Gemini on the morning of August 19, 2015. Photos show a short, faint tail to the west not visible to the eye in most amateur telescopes. Credit: Efrain Morales
Comet 67P/Churyumov-Gerasimenko plows through a rich star field in Gemini on the morning of August 20, 2015. Photos show a short, faint tail to the west not visible to the eye in most amateur telescopes. Credit: Efrain Morales

If you have a 10-inch or larger telescope, or you’re an experienced amateur with an 8-inch and pristine skies, 67P is within your grasp. The comet glows right around magnitude +12, about as bright as it will get this apparition. Periodic comets generally appear brightest around and shortly after perihelion or closest approach to the Sun, which for 67P/C-G occurred back on August 13.

The surface of Comet 67P/C-G is extensively fractured likely related to the intense freeze-thaw cycle that occurs during the heat of perihelion vs. the chill experienced in the outer part of its orbit. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The surface of Comet 67P/C-G is extensively fractured due to loss of volatile ices, the expansion and contraction of the comet from solar heating and bitter cold and possibly even tectonic forces. The smaller polygonal shapes outlined by fractures in the lower right photo are just 6-16 feet (2-5 meters) across. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

You’ll be looking for a small, 1-arc-minute-diameter, compact, circular patch of nebulous light shortly before dawn when it’s highest in the east. Rosetta’s Comet will spend the remainder of August slicing across Gemini the Twins north of an nearly parallel to the ecliptic. I spotted 67P/C-G for the first time this go-round about a week ago in my 15-inch (37 cm) reflector. While it appears like a typical faint comet, thanks to Rosetta, we know this particular rough and tumble mountain of ice better than any previous comet. Photographs show rugged cliffs, numerous cracks due to the expansion and contraction of ice, blowholes that serve as sources for jets and smooth plains blanketed in fallen dust.

Geysers of dust and gas shooting off the comet's nucleus are called jets. The material they deliver outside the nucleus builds the comet's coma. Credit: ESA/Rostta/NAVCAM
Geysers of dust and gas shooting off the comet’s nucleus are called jets. The material they deliver outside the nucleus builds the comet’s coma. Credit: ESA/Rostta/NAVCAM

The jets are geyser-like sprays of dust and gas that loft grit and rocks from the comet’s interior and surface into space to create a coma or temporary atmosphere. This is what you’ll see in your telescope. And if you’re patient, you’ll even be able to catch this glowing tadpole on the move. I was surprised at its speed. After just 20 minutes, thanks to numerous field stars that acted as references, I could easily spot the comet’s eastward movement using a magnification of 245x.

Facing east around 4 a.m. local time in late August, you'll see the winter constellations Gemini and Orion. 67P/C-G's path is shown through
Facing east around 4 a.m. local time in late August, you’ll see the winter constellations Gemini and Orion. 67P/C-G’s path is shown through early September. Brighter stars near the path are labeled. Time shown is 4 a.m. CDT. Use this map to get oriented and then switch to the one below for telescope use. Source: Chris Marriott’s SkyMap

Tomorrow morning, 67P/C-G passes very close to the magnitude +5 star Omega Geminorum. While this will make it easy to locate, the glare may swamp the comet. Set your alarm for an hour before dawn’s start to allow time to set up a telescope, dark-adapt your eyes and track down the field where the comet will be that morning using low magnification.

Once you’ve centered 67P/C-G’s position, increase the power to around 100x-150x and use averted vision to look for a soft, fuzzy patch of light. If you see nothing, take it to the next level (around 200-250x) and carefully search the area. The higher the magnification, the darker the field of view and easier it will be to spot it.

Detailed map showing the comet's path through central Gemini daily August 21-28, 2015 around 4 a.m. CDT. Brighter stars are marked with Greek letters and numbers. "48" = 48 Geminorum. Source: Chris Marriott's SkyMap
Detailed map showing the comet’s path through central Gemini daily August 21-28, 2015 around 4 a.m. CDT. Brighter stars are marked with Greek letters and numbers. “57”= 57 Geminorum. North is up, east to the left and stars to magnitude +13.5. Click for a larger version you can print out. Source: Chris Marriott’s SkyMap

Besides being relatively faint, the comet doesn’t get very high in the east before the onset of twilight. Low altitude means the atmosphere absorbs a share of the comet’s light, making it appear even fainter. Not that I want to dissuade you from looking! There’s nothing like seeing real 67P photons not to mention the adventure and sense of accomplishment that come from finding the object on your own.

As we advance into late summer and early fall, 67P/C-G will appear higher up but also be fading. Now through about August 27 and again from September 10-24 will be your best viewing times. That’s when the Moon’s absent from the sky.

Given the comet’s current distance from Earth of 165 million miles and apparent visual size of just shy of 1 arc minute, the coma measures very approximately 30,000 miles across. Rosetta orbits the comet’s 2.5-mile-long icy nucleus at a distance of about 115 miles (186 km), meaning it’s snug up against the nuclear center from our point of view on the ground.

If you do find and follow 67P/C-G, consider sharing your observations with the Pro-Amateur Collaborative Astronomy (PACA) campaign to help increase our knowledge of its behavior. Interested? Sign up HERE.

Dramatic Outburst at Rosetta’s Comet Just Days Before Perihelion

Rosetta’s scientific camera OSIRIS show the sudden onset of a well-defined jet-like feature emerging from the side of the comet’s neck, in the Anuket region. Image Credit: ESA/Rosetta/OSIRIS

A comet on a comet? That’s what it looks like, but you’re witnessing the most dramatic outburst ever recorded at 67P/Churyumov-Gerasimenko by the Rosetta spacecraft. The brilliant plume of gas and dust erupted on July 29 just two weeks before perihelion.

In a remarkable display of how quickly conditions on a comet can change, the outburst lasted only about 18 minutes, but its effects reverberated for days.

A short-lived outburst from Comet 67P/Churyumov–Gerasimenko was captured by Rosetta’s OSIRIS narrow-angle camera on 29 July 2015. The image at left was taken at 13:06 GMT and does not show any visible signs of the jet. It is very strong in the middle image captured at 13:24 GMT. Residual traces of activity are only very faintly visible in the final image taken at 13:42 GMT. The images were taken from a distance of 186 km from the centre of the comet.
In this sequence of images, the one at left was taken at 8:06 a.m. CDT and doesn’t show any visible signs of the jet. 18 minutes later at 8:24, it’s very bright and distinct (middle image) with only residual traces of activity remaining in the final photo made at 8:42.
The photos were taken from a distance of 116 miles (186 km) from the center of the comet. Copyright: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

In a sequence of images taken by Rosetta’s scientific camera OSIRIS, the brilliant, well-defined jet erupts from the side of the comet’s neck in the Anuket region. It was first seen in a photo taken at 8:24 a.m. CDT, but not in one taken 18 minutes earlier, and had faded significantly in an image captured 18 minutes later. The camera team estimates the material in the jet was traveling at a minimum of 22 mph (10 meters/sec), but possibly much faster.

It’s the brightest jet ever seen by Rosetta. Normally, the camera has to be set to overexpose 67P/C-G’s nucleus to reveal the typically faint, wispy jets. Not this one. You can truly appreciate its brilliance because a single exposure captures both nucleus and plume with equal detail.

Comet 67P/Churyumov-Gerasimenko photographed from about 125 miles away on June 5 looks simply magnificent. Only two months from perihelion, the comet shows plenty of jets. One wonders what the chances are of one erupting underneath Philae and sending it back into orbit again. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Jets are normally faint and require special processing or longer exposures to bring out in photos., overexposing the nucleus in the process. Comet 67P/Churyumov-Gerasimenko photographed from about 125 miles away on June 5  Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

We all expected fireworks as the comet approached perihelion in its 6.5 year orbit around the Sun. Comets are brightest at and shortly after perihelion, when they literally “feel the heat”. Solar radiation vaporizes both exposed surface ices and ice locked beneath the comet’s coal-black crust. Vaporizing subsurface ice can created pressurized pockets of gas that seek a way out either through an existing vent or hole or by breaking through the porous crust and erupting geyser-like into space.

Jets carry along dust that helps create a comet’s fuzzy coma or temporary atmosphere, which are further modified into tails by the solar wind and the pressure of sunlight. When conditions and circumstances are right, these physical processes can build comets, the sight of which can fill the human heart with both terror and wonder.

The decrease in magnetic field strength measured by Rosetta’s RPC-MAG instrument during the outburst event on 29 July 2015. This is the first time a ‘diamagnetic cavity’ has been detected at Comet 67P/Churyumov–Gerasimenko and is thought to be caused by an outburst of gas temporarily increasing the gas flux in the comet’s coma, and pushing the pressure-balance boundary between it and incoming solar wind farther from the nucleus than expected under ‘normal’ levels of activity. Credit: ESA/Rosetta/RPC/IGEP/IC
The decrease in magnetic field strength measured by Rosetta’s RPC-MAG instrument during the outburst event on July 29, 2015. This is the first time a ‘diamagnetic cavity’ has been detected at Comet 67P/Churyumov–Gerasimenko and is thought to be caused by an outburst of gas temporarily increasing the gas flux in the comet’s coma, and pushing the pressure-balance boundary between it and incoming solar wind farther from the nucleus than expected under ‘normal’ levels of activity. Credit: ESA/Rosetta/RPC/IGEP/IC

This recent show of activity may be just the start of a round of outbursts at 67P/C-G. While perihelion occurs on this Thursday, a boost in a comet’s activity and brightness often occurs shortly after, similar to the way the hottest part of summer lags behind the date of summer solstice.

Rosetta found that the brief and powerful jet did more than make a spectacle — it also pushed away the solar wind’s magnetic field from around the nucleus as observed by the ship’s magnetometer. Normally, the Sun’s wind is slowed to a standstill when it encounters the gas cloud surrounding the nucleus.

“The solar wind magnetic field starts to pile up, like a traffic jam, and eventually stops moving towards the comet nucleus, creating a magnetic field-free region on the Sun-facing side of the comet called a ‘diamagnetic cavity’,” explained Charlotte Götz, magnetometer team member, on the ESA Rosetta website.

This photo of 67P/C-G's nucleus shows the context for the outburst. Copyright: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The red circle shows the location of the July 29, 2015 outburst on 67P/C-G. Copyright: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Only once before at Halley’s Comet has a magnetically “empty” region like this been observed. But that comet was so much more active than 67P/C-G and up until July 29, Halley’s remained the sole example. But following the outburst on that day, the magnetometer detected a diamagnetic cavity extending out at least 116 miles (186 km) from the nucleus. This was likely created by the outburst of gas, forcing the solar wind to ‘stop’ further away from the comet and thus pushing the cavity boundary outwards beyond where Rosetta was flying at the time.

 

The graph shows the relative abundances of various gases after the outburst, compared with the measurements two days earlier. Copyright: ESA/Rosetta/ROSINA/UBern/ BIRA/LATMOS/LMM/IRAP/MPS/SwRI/TUB/UMich
Pew! The graph shows the relative abundances of various gases after the outburst, compared with the measurements two days earlier. Water remained the same, but CO2 and especially increased dramatically. Copyright: ESA/Rosetta/ROSINA/UBern/ BIRA/LATMOS/LMM/IRAP/MPS/SwRI/TUB/UMich

Soon afterward the outburst, the comet pressure sensor of ROSINA detected changes in the structure of the coma, while its mass spectrometer recorded changes in the composition of outpouring gases. Compared to measurements made two days earlier, carbon dioxide increased by a factor of two, methane by four, and hydrogen sulphide by seven, while the amount of water stayed almost constant. No question about it – with all that hydrogen sulfide (rotten egg smell), the comet stunk! Briefly anyway.

It was also more hazardous. In early July, Rosetta recorded and average of 1-3 dust hits a day, but 14 hours after the event, the number leapt to 30 with a peak of 70 hits in one 4-hour period on August 1. Average speeds picked up, too, increasing from 18 mph (8 m/s) to about 45 mph (20 m/s), with peaks at 67 mph (30 m/s). Ouch!

“It was quite a dust party!” said Alessandra Rotundi, principal investigator of GIADA (Grain Impact Analyzer and Dust Accumulator).

67P/C-G’s little party apparently wasn’t enough to jack up its brightness significantly as seen from Earth, but that doesn’t mean future outbursts won’t. We’ll be keeping an eye on any suspicious activity through perihelion and beyond and report back here.

Sources: 1, 2

Rosetta’s Comet Sparkles with Ice, Blows Dust From Sinkholes

Example of a cluster of bright spots on Comet 67P/Churyumov-Gerasimenko found in the Khepry region. The bright patches are thought to be exposures of water-ice. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Comet 67P/C-G may be tiny at just 2.5 miles (4 km) across, but its diverse landscapes and the processes that shape them astound. To say nature packs a lot into small packages is an understatement.

In newly-released images taken by Rosetta’s high-resolution OSIRIS science camera, the comet almost seems alive. Sunlight glints off icy boulders and pancaking sinkholes blast geysers of dust into the surrounding coma.

Examples of six different bright patches identified on the surface of Comet 67P/Churyumov-Gerasimenko in OSIRIS narrow-angle camera images acquired in September 2014. The insets point to the broad regions in which they were discovered (not to specific locations). In total, 120 bright regions, including clusters of bright features, isolated features and individual boulders, were identified in images acquired during September 2014 when the spacecraft was between 20-50 km from the comet center. The false colour images are red-green-blue composites assembled from monochrome images taken at different times and have been stretched and slightly saturated to emphasis the contrasts of colour such that dark terrains appear redder and bright regions appear significantly bluer compared with what the human eye would normally see. Credit: SA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Examples of six different bright patches identified on the surface of 67P/C-G in images taken last September when Rosetta was 20-50 km from the comet. The center panel points to the broad regions in which they were discovered (not specific locations). 120 bright regions, including clusters of bright features, isolated features and individual boulders, were seen. The false color images were taken at different times and have been stretched and slightly saturated to emphasis color contrasts so that dark terrains appear redder and bright regions appear significantly bluer compared with what the human eye would normally see. Credit: SA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

More than a hundred patches of water ice some 6 to 15 feet across (a few meters) dot the comet’s surface according to a  new study just published in the journal Astronomy & Astrophysics. We’ve known from previous studies and measurements that comets are rich in ice. As they’re warmed by the Sun, ice vaporizes and carries away embedded dust particles that form the comet’s atmosphere or coma and give it a fuzzy appearance.

Examples of icy bright patches seen on Comet 67P/Churyumov-Gerasimenko during September 2014. The two left hand images are subsets of OSIRIS narrow-angle camera images acquired on 5 September; the right hand images were acquired on 16 September. During this time the spacecraft was about 30-40 km from the comet center. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Examples of icy bright patches and clusters seen in September 2014. The two left hand images are crops of OSIRIS narrow-angle camera images acquired on September 5; the right hand images are from September 16. During this time the spacecraft was about 19-25 miles (30-40 km) from the comet center. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Not all that fine powder leaves the comet. Some settles back to the surface, covering the ice and blackening the nucleus. This explains why all the comets we’ve seen up close are blacker than coal despite being made of material that’s as bright as snow.

True brightness comparisons of four different Solar System bodies. At top are Saturn's moon Enceladus, its ice-covered surface making it one of the brightest objects in the Solar System, and Earth. At bottom are the Moon and Comet 67P. Credit: ESA
True brightness comparisons of four different Solar System bodies. At top are Saturn’s moon Enceladus and Earth. At bottom are the Moon and Comet 67P. Enceladus’ ice-covered surface makes it one of the brightest objects in the Solar System. In contrast, 67P is one of the darkest, its icy surface coated in dark mineral dust and organic compounds. Credit: ESA

Scientists have identified 120 regions on the surface of Comet 67P/Churyumov-Gerasimenko that are up to ten times brighter than the average surface brightness. Some are individual boulders, while others form clusters of bright specks. Seen in high resolution, many appear to be boulders with exposures of ice on their surfaces; the clusters are often found at the base of overhanging cliffs and likely got there when cliff walls collapsed, sending an avalanche of icy rocks downhill and exposing fresh ice not covered by dark dust.

An individual boulder about 12 feet across with bright patches on its surface in the Hatmehit region. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
An individual boulder about 12 feet across with bright patches on its surface in the Hatmehit region. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

More intriguing are the isolated boulders found here and there that appear to have no relation to the surrounding terrain.  Scientists think they arrived George Jetson style when they were jetted from the comet’s surface by the explosive vaporization of ice only to later land in a new location. The comet’s exceedingly low gravity makes this possible. Let that image marinate in your mind for a moment.

All the ice-glinting boulders seen thus far were found in shadowed regions not exposed to sunlight, and no changes were observed in their appearance over a month’s worth of observations.

“Water ice is the most plausible explanation for the occurrence and properties of these features,” says Antoine Pommerol of the University of Bern and lead author of the study.

How do we know it’s water ice and not CO2 or some other form of ice? Easy. When the observations were made, water ice would have been vaporizing at the rate of 1 mm per hour of solar illumination. By contrast, carbon monoxide or carbon dioxide ice, which have much lower freezing points, would have rapidly sublimated in sunlight. Water ice vaporizes much more slowly in comparison.

Lab tests using ice mixed with different minerals under simulated sunlight revealed that it only took a few hours of sublimation to produce a dust layer only a few millimeters thick. But it was enough to conceal any sign of ice. They also found that small chunks of dust would sometimes break away to expose fresh ice beneath.

“A 1 mm thick layer of dark dust is sufficient to hide the layers below from optical instruments,” confirms Holger Sierks, OSIRIS principal investigator at the Max Planck Institute for Solar System Research.

Comet 67P/C-G on June 21, 2015. The nucleus is a mixture of frozen ices and dust. As the comet approaches the Sun, sunlight warms its surface, causing the ices to boil away. This gas streams away carrying along large amounts of dust, and together they build up the coma. Copyright: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0
Comet 67P/C-G on June 21, 2015. The nucleus is a mixture of frozen ices and dust. As the comet approaches the Sun, sunlight warms its surface, causing the ices to boil away. This gas streams away carrying along large amounts of dust, and together they build up the coma. Copyright: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0

It appears then that Comet 67P’s surface is mostly covered in dark dust with small exposures of fresh ice resulting from changes in the landscape like crumbling cliffs and boulder-tossing from jet activity. As the comet approaches perihelion, some of that ice will become exposed to sunlight while new patches may appear. You, me and the Rosetta team can’t wait to see the changes.

High-resolution view of active regions in Seth as seen with Rosetta’s OSIRIS narrow-angle camera on 20 September 2014 from a distance of about 26 km from the surface. The image scale is about 45 cm/pixel. The Seth_01 pit is seen close to centre and measures approximately 220 m across and 185 m deep. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
High-resolution view of an active pit photographed last September from a distance of about 16 miles  (26 km) from the comet’s surface in the Seth region. The image scale is about 45 cm a pixel. The Seth_01 pit measures approximately 720 feet (220 m) across and 605 feet (85 m) deep. Note the smooth deposits of dust around the pit. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Ever wonder how a comet gets its jets? In another new study appearing in the science journal Nature, a team of researchers report that 18 active pits or sinkholes have been identified in the comet’s northern hemisphere. These roughly circular holes appear to be the source of the elegant jets like those seen in the photo above. The pits range in size from around 100 to 1,000 feet (30-100 meters) across with depths up to 690 feet (210 meters). For the first time ever, individual jets can be traced back to specific pits.

In specially processed photos, material can be seen streaming from inside pit walls like snow blasting from a snowmaking machine. Incredible!

Active pits detected in the Seth region of Comet 67P/Churyumov¬Gerasimenko can be seen in the lower right portion of this OSIRIS wide-angle camera image. The contrast of the image has been deliberately stretched to reveal the details of the fine-structured jets against the shadow of the pit, which are interpreted as dusty streams rising from the fractured wall of the pit. The image was acquired on 20 October 2014 from a distance of 7 km from the surface of the comet. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Active pits detected in the Seth region of the comet. The contrast of the image has been stretched to reveal the details of the fine-structured jets against the shadow of the pit, which are interpreted as dusty streams rising from the fractured wall of the pit. The image was acquired on October 20, 2014 from a distance of 4.3 miles (7 km) from the surface of the comet. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“We see jets arising from the fractured areas of the walls inside the pits. These fractures mean that volatiles trapped under the surface can be warmed more easily and subsequently escape into space,” said Jean-Baptiste Vincent from the Max Planck Institute for Solar System Research, lead author of the study.

Similar to the way sinkholes form on Earth, scientists believe pits form when the ceiling of a subsurface cavity becomes too thin to support its own weight. With nothing below to hold it place, it collapses, exposing fresh ice below which quickly vaporizes. Exiting the hole, it forms a collimated jet of dust and gas.

Pits Ma’at 1, 2 and 3 on Comet 67P/Churyumov–Gerasimenko show differences in appearance that may reflect their history of activity. While pits 1 and 2 are active, no activity has been observed from pit 3. The young, active pits are particularly steep-sided, whereas pits without any observed activity are shallower and seem to be filled with dust. Middle-aged pits tend to exhibit boulders on their floors from mass-wasting of the sides. The image was taken with the OSIRIS narrow-angle camera from a distance of 28 km from the comet surface. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Pits Ma’at 1, 2 and 3 show differences in appearance that may reflect their history of activity. While pits 1 and 2 are active, no activity has been observed from pit 3. The young, active pits are very steep-sided; pits without any observed activity are shallower and seem to be filled with dust. Middle-aged pits tend to have boulders on their floors from mass-wasting of the sides.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The paper’s authors suggest three ways for pits to form:

* The comet may contain voids that have been there since its formation. Collapse could be triggered by either vaporizing ice or seismic shaking when boulders ejected elsewhere on the comet land back on the surface.
* Direct sublimation of pockets of volatile (more easily vaporized) ices like carbon dioxide and carbon monoxide below the surface as sunlight warms the dark surface dust, transferring heat below.
* Energy liberated by water ice changing its physical state from amorphous to its normal crystalline form and stimulating the sublimation of the surrounding more volatile carbon dioxide and carbon monoxide ices.

Graphic explaining how Comet 67P/Churyumov–Gerasimenko’s pits may form through sinkhole collapse. The graphic shows a dusty surface layer covering a mixture of dust and ices. 1. Heat causes subsurface ices to sublimate (blue arrows), forming a cavity (2). When the ceiling becomes too weak to support its own weight, it collapses, creating a deep, circular pit (3, red arrow). Newly exposed material in the pit walls sublimates, accounting for the observed activity (3, blue arrows).
Graphic showing how pits may form through sinkhole collapse in the comet’s dusty surface layer covering a mixture of dust and ices. 1. Heat causes subsurface ices to sublimate (blue arrows), forming a cavity. 2.When the ceiling becomes too weak to support its own weight, it collapses, creating a deep, circular pit (orange arrow). Newly exposed material in the pit walls sublimates (blue arrows). Credit: ESA/Rosetta/J-B Vincent et al (2015)

The researchers think they can use the appearance of the sinkholes to age-date different parts of the comet’s surface — the more pits there are in a region, the younger and less processed the surface there is. They point to 67P/C-G’s southern hemisphere which receives more energy from the Sun than the north and at least for now, shows no pit structures.

The most active pits have steep sides, while the least show softened contours and are filled with dust. It’s even possible that a partial collapse might be the cause of the occasional outbursts when a comet suddenly brightens and enlarges as seen from Earth. Rosetta observed just such an outburst this past April. And these holes can really kick out the dust! It’s estimated a typical full pit collapse releases a billion kilograms of material.

With Rosetta in great health and perihelion yet to come, great things lie ahead. Maybe we’ll witness a new sinkhole collapse, an icy avalanche or even levitating boulders!

Sources: 1, 2

Dust Whirls, Swirls and Twirls at Rosetta’s Comet

Montage of four single-frame images of Comet 67P/C-G taken by Rosetta’s Navigation Camera (NAVCAM) at the end of February 2015. The images were taken on 25 February (top left), 26 February (top right) and on two occasions on 27 February (bottom left and right). Exposure times are 2 seconds each and the images have been processed to bring out the details of the comet's many jets. Credits: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Tell me this montage shouldn’t be hanging in the Lourve Museum. Every time I think I’ve seen the “best image” of Rosetta’s comet, another one takes its place. Or in this case four! When you and I look at a comet in our telescopes or binoculars, we’re seeing mostly the coma, the bright, fluffy head of the comet composed of dust and gas ejected by the tiny, completely invisible, icy nucleus.

As we examine this beautiful set of photos, we’re  privileged to see  the individual fountains of gas and dust that leave the comet to create the coma. Much of the outgassing comes from the narrow neck region between the two lobes. 

This photo taken on Feb. 27 shows the comet with peacock-like display of dusty jets. Below center is a streak that may be a dust particle that traveled during the exposure. Credits:
This photo taken on Feb. 27 shows the comet with peacock-like display of dusty jets. Below center is a streak that may be a dust particle that traveled during the exposure. Other small white spots are also likely dust or bits of comet that have broken off. Credits: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

All were taken between February 25-27 at distances around 50-62 miles (80 to 100 km) from the center of Comet 67P/Churyumov-Gerasimenko. Looking more closely, the comet nucleus appears to be “glowing” with a thin layer of dust and gas suspended above the surface. In the lower left Feb. 27 image, a prominent streak is visible. While this might be a cosmic ray zap, its texture hints that it could also be a dust particle captured during the time exposure. Because it moved a significant distance across the frame, the possible comet chunk may be relatively close to the spacecraft. Just a hunch.

Another close-up individual image from Rosetta's NAVCAM. Credit:
Another close-up individual image from Rosetta’s NAVCAM. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

While most of Rosetta’s NAVCAM images are taken for navigation purposes, these images were obtained to provide context in support of observations performed at the same time with the Alice ultraviolet (UV) imaging spectrograph on Rosetta. Observing in ultraviolet light, Alice determines the composition of material in coma, the nucleus and where they interface. Alice will also monitor the production rates of familiar molecules like H2O, CO (carbon monoxide) and CO2 as they leave the nucleus and enter 67P’s coma and tail.

Alice makes its observations in UV light through a long, narrow slit seen here superimposed on a graphic of comet 67P/ C-G. Credit: ESA/NASA
Alice makes its observations in UV light through a long, narrow slit seen here superimposed on a graphic of comet 67P/ C-G. Credit: ESA/NASA

From data collected so far, the Alice team has discovered that the comet is unusually dark in the ultraviolet, and that its surface shows no large water-ice patches. Water however has been detected as vapor leaving the comet as it’s warmed by the Sun. The amount varies as the nucleus rotates, but the last published measurements put the average loss rate at 1 liter (34 ounces) per second with a maximum of 5 liters per second. Vapors from sublimating carbon monoxide and carbon dioxide ice have also been detected. Sometimes one or another will dominate over water, but overall, water remains the key volatile material outgassed in the greatest quantity.

Particularly striking and collimated jets emerge from the comet's Hathor region in the neck between the two lobes. Credit:
Particularly striking and collimated jets emerge from the comet’s shadowed Hathor region between the two lobes. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

A separate image taken on Feb. 28. According to ESA, The curved shape of the outflowing material likely results from a combination of several factors, including the rotation of the comet, differential flows of near-surface gas, and gravitational effects arising due to the uneven shape of the comet. The viewing perspective of the image might also distort the true shape of the outflowing material. Credit:
Look at those spirals! In this separate image, taken Feb. 28, ESA suggests the curved shape of the outflowing material likely results from a combination of several factors, including the rotation of the comet, differential flows of near-surface gas, and gravitational effects arising due to the uneven shape of the comet. The viewing perspective of the image might also distort the true shape of the outflowing material. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

That and dust. In fact, 67P is giving off about twice as much dust as gas. We see the comet’s dual emissions by reflected sunlight, but because there’s so much less material in the jets than what makes up the nucleus, they’re fainter and require longer exposures and special processing to bring out without seriously overexposing the comet’s core.

67P’s coma will only grow thicker and more intense as it approaches perihelion on August 13.