S.S Gene Cernan Honoring Last Moonwalker Arrives at International Space Station Carrying Tons of Research Gear and Supplies

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The S.S. Gene Cernan Cygnus spacecraft named in honor of the Apollo 17 lunar landing commander and launched by Orbital ATK from the eastern shore of Virgina at breakfast time Sunday, Nov. 12, arrived at the International Space Station early Tuesday morning, Nov 14, carrying over 3.7 tons of research equipment and supplies for the six person resident crew.

Soon thereafter at 5:04 a.m., Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik successfully captured Orbital ATK’s Cygnus cargo freighter using the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Nespoli and Bresnik were working at a robotics work station inside the seven windowed domed Cupola module that offers astronauts the most expansive view outside to snare Cygnus with the robotic arms end effector.

The Cygnus cargo freighter – named after the last man to walk on the Moon – reached its preliminary orbit nine minutes after blasting off early Sunday atop the upgraded 230 version of the Orbital ATK Antares rocket from NASA’s Wallops Flight Facility in Virginia.

The flawless liftoff of the two stage Antares rocket took place shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Sunday’s spectacular Antares launch delighted spectators – but came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a completely reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.

After a carefully choreographed series of intricate thruster firings to raise its orbit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

With Cygnus firmly in the grip of the robots hand, ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, maneuvered the arm towards the exterior hull and berth the cargo ship at the Earth-facing port of the stations Unity module.

1st stage capture was completed at 7:08 a. EST Nov 14.

After driving in the second stage gang of bolts, hard mate and capture were completed at 7:15 a.m.

The station was flying 252 miles over the North Pacific in orbital night at the time of berthing.

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

NASA TV provided live coverage of the rendezvous and grappling.

Including Cygnus there are now five visiting vehicle spaceships parked at the space station including also the Russian Progress 67 and 68 resupply ships and the Russian Soyuz MS-05 and MS-06 crew ships.

International Space Station Configuration. Five spaceships are parked at the space station including the Orbital ATK Cygnus after Nov. 14, 2017 arrival, the Progress 67 and 68 resupply ships and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

On this flight, the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cernan was commander of Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Apollo17, NASA’s final lunar landing mission, on December 7, 1972, as seen from the KSC press site. Credit: Mark and Tom Usciak

………….

Ken’s upcoming outreach events:

Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 16, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Nov 15, 17: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com
The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/Kenkremer.com
Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com
Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

Russian Space Freighter Hauling Fresh Fruit Blasts Off for ISS Crew

“Fresh fruit is on the way! Here are some of the best pics taken from @Space_Station during today’s (March 31, 2016) #Progress launch.” Credit: NASA/Jeff Williams
“Fresh fruit is on the way! Here are some of the best pics taken from @Space_Station during today’s (March 31, 2016) #Progress launch.” Credit: NASA/Jeff Williams

An unmanned Russian space freighter hauling fresh fruit and over three tons of food, water, supplies and science experiments blasted off today, Thursday, March 31, from the Baikonur Cosmodrome in Kazakhstan, commencing a two-day orbital trek to the six person crew living aboard the International Space Station (ISS).

The successful nighttime liftoff of the Progress 63 cargo ship atop a three stage Soyuz 2.1a booster took place at 12:23 p.m. EDT (10:23 p.m. local time in Baikonur) from Site 31 at Baikonur as the orbiting outpost was flying about 251 miles (400 km) above northeast Iraq.

The Russian Progress 63 spacecraft launches on a Soyuz booster on a two-day trip to the International Space Station. Credit: Roscosmos
The Russian Progress 63 spacecraft launches on a Soyuz booster on a two-day trip to the International Space Station. Credit: Roscosmos

NASA astronaut and Expedition 47 crew member Jeff Williams captured several elegant views of the Progress launch from his heavenly perch on the station inside the Cupola.

“Fresh fruit is on the way! Here are some of the best pics taken from @Space_Station during today’s #Progress launch,” Williams said on his social media accounts from space.

“Today’s #Progress launch occurred about 5 minutes before we passed over the launch site in Baikonur.”

“Sunset occurred for us about a minute later and shortly after we caught site of the rocket ahead and below us from the Cupola. We continued to catch up to it until it was directly below. We saw the flash of 3rd stage ignition and the subsequent 3rd stage was spectacular. Here are some of the best shots taken from the International Space Station. (note the one taken just after the moment of engine cutoff!) Spectacular!” Williams elaborated.

The Russian Progress 63 spacecraft launch on a Soyuz booster to the International Space Station on March 31, 2016, as photographed by NASA astronaut and Expedition 47 crew member Jeff Williams from onboard the orbiting outpost.  Credit: NASA/Jeff Williams
The Russian Progress 63 spacecraft launch on a Soyuz booster to the International Space Station on March 31, 2016, as photographed by NASA astronaut and Expedition 47 crew member Jeff Williams from onboard the orbiting outpost. Credit: NASA/Jeff Williams

The Progress 63 resupply ship, also known by its Russian acronym as Progress MS-02, is due to arrive at the station on April 2 for an automated docking to the aft port of the Russian Zvezda Service Module.

After a picture perfect eight and a half minute climb to its initial orbit, the Progress MS-02 separated from the Soyuz third stage and deployed its pair of solar arrays and navigational antennas as planned.

“This was a flawless ascent to orbit for the Progress 63 cargo craft carrying just over three tons of supplies,” said NASA launch commentator Rob Navius during a live launch webcast on NASA TV. “Everything was right on the money.”

“All stages of the Soyuz booster performed to perfection.”

The planned longer two-day and 34 orbit journey rather than a faster 3 or 4 orbit rendezvous and docking is designed to help engineers test out new computer software and vehicle communications gear on this new version of the Progress.

“The two-day rendezvous for the Progress is deliberately planned to enable Russian flight controllers to test new software and communications equipment for the new vehicle configuration that will be standard for future Progress and piloted Soyuz spacecraft,” according to NASA officials.

Gantry towers surround the Progress 63 rocket at its launch pad at the Baikonur Cosmodrome in Kazakhstan. Credit: RSC Energia
Gantry towers surround the Progress 63 rocket at its launch pad at the Baikonur Cosmodrome in Kazakhstan. Credit: RSC Energia

Docking to the orbiting laboratory is set for approximately 2 p.m. Saturday, April 2.

NASA TV will provide live docking coverage of the Progress 63 arrival starting at 1:15 p.m. on Saturday.

Today’s Progress launch counts as the second of a constellation of three resupply ships from the US and Russia launching to the station over a three successive weeks.

The Orbital ATK ‘SS Rick Husband’ Cygnus resupply spacecraft that launched last week on Tuesday, March 22, 2016 was at the vanguard of the cargo ship trio – as I reported here from on site at the Kennedy Space Center in Florida.

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Cygnus was successfully berthed at the Earth-facing port of the Unity module this past Saturday, March 26 – as I reported here.

Following Progress is the SpaceX Return To Flight (RTF) mission dubbed SpaceX CRS-8.

It is slated to launch on April 8 and arrive at the ISS on April 10 for berthing to the Earth-facing port of the Harmony module – at the end of the station where NASA space shuttles formerly docked. It carries another 3.5 tons of supplies.

So altogether the trio of international cargo ships will supply over 12 tons of station supplies in rapid succession over the next 3 weeks.

This choreography will set up America’s Cygnus and Dragon resupply craft to simultaneously be present and reside attached at adjacent ports on the ISS for the first time in history.

Plans currently call for Cygnus to stay at station for approximately two months until May 20th., when it will be unbolted and unberthed for eventual deorbiting and reentry.

Progress 63 will remain at the station for six months.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orion, SLS, ISS, NASA Mars rovers, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html

Dream Chaser Spaceplane Gets ‘GO’ as NASA Awards Trio of Space Station Cargo Contracts

SNC's Dream Chaser Spacecraft and Cargo Module attached to the ISS. Credit: SNC
SNC’s Dream Chaser Spacecraft and Cargo Module attached to the ISS. Credit: SNC

A shuttle will soar again from American soil before this decade is out, following NASA’s announcement today (Jan 14) that an unmanned version of the Dream Chaser spaceplane was among the trio of US awardees winning commercial contracts to ship essential cargo to the International Space Station (ISS) starting in 2019.

In addition to the Dream Chaser mini-shuttle built by Sierra Nevada Corporation of Sparks, Nevada, NASA decided to retain both of the current ISS commercial cargo vehicle providers, namely the Cygnus from Orbital ATK of Dulles, Virginia and the cargo Dragon from SpaceX of Hawthorne, California. Continue reading “Dream Chaser Spaceplane Gets ‘GO’ as NASA Awards Trio of Space Station Cargo Contracts”

Cygnus Freighter Fueled and Loaded to Resume American Cargo Launches to Space Station

First enhanced Orbital ATK Cygnus commercial cargo ship is fully assembled and being processed for blastoff  to the ISS on Dec. 3, 2015 on an ULA Atlas V rocket. This view shows the Cygnus, named the SS Deke Slayton II, and twin payload enclosure fairings inside the Kennedy Space Center clean room.   Credit: Ken Kremer/kenkremer.com
First enhanced Orbital ATK Cygnus commercial cargo ship is fully assembled and being processed for blastoff to the ISS on Dec. 3, 2015 on a ULA Atlas V rocket. This view shows the Cygnus, named the SS Deke Slayton II, and twin payload enclosure fairings inside the Kennedy Space Center clean room. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The largest and most advanced version of the privately developed Cygnus cargo freighter ever built by Orbital ATK is fueled, loaded and ready to go to orbit – signifying a critical turning point towards resuming American commercial cargo launches to the space station for NASA that are critical to keep it functioning.

The enhanced and fully assembled commercial Cygnus was unveiled to the media, including Universe Today, during an exclusive tour inside the clean room facility on Friday, Nov. 13, where it is undergoing final prelaunch processing at the Kennedy Space Center (KSC).

Blastoff of Cygnus atop a United Launch Alliance (ULA) Atlas V rocket on the OA-4 resupply mission under contract to NASA is anticipated on Continue reading “Cygnus Freighter Fueled and Loaded to Resume American Cargo Launches to Space Station”

NASA Again Postpones Space Station Commercial Cargo Contract Awards, Boeing Out

Will NASA renew SpaceX and Orbital ATK as the favored contractors for the commercial cargo flights absolutely essential to keeping the International Space Station (ISS) amply stocked with science experiments and supplies through 2024 for the multinational crews now celebrating 15 years of continuous human occupation?

Or will a trio of other American aerospace competitors vying for the new government contracts somehow break through? That’s the multi Billion dollar question since the cargo awards are potentially valued at 3 to 4 Billion dollars or more each.

Well despite widespread expectations that the winners of NASA’s Commercial Resupply Services (CRS) 2 contract for the orbiting outpost would be announced by week’s end, nearly everyone involved will have to wait a few more months while agency officials again postponed a decision in order to ponder the long term implications of “a complex procurement.”

NASA says it needs more time to “assess proposals” and determine which of five private companies will be awarded the governments CRS 2 contracts for the ISS resupply missions.

Although NASA had planned to award contracts to at least two winners on Thursday, Nov. 5, the agency just announced another significant delay for the CRS 2 contract via its procurement website because the decision is “complex.”

“The anticipated CRS2 award is now no later than January 30, 2016 to allow additional time for the Government to assess proposals,” NASA announced on its procurement website.

“CRS2 is a complex procurement.

This new delay follows several earlier postponements already announced this past year.

The two companies currently holding Commercial Resupply Services (CRS) contracts from NASA, namely SpaceX and Orbital ATK, are dueling with new bids from Boeing, Sierra Nevada Corp. (SNC) and Lockheed Martin.

SpaceX Dragon berthing at ISS on March 3, 2013.  Credit: NASA
SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Altogether, those five companies are known to have submitted bids for the CRS-2 procurement by the due date of March 21, 2014. Awards were expected in June 2015 but the timing was repeatedly revised.

In the past year, both Orbital ATK and SpaceX suffered unexpected catastrophic launch failures during their most recent resupply flights in October 2014 and June 2015 respectively, which ended in total loss of all the payloads aboard the Cygnus and Dragon cargo freighters. I witnessed and reported on both rocket launch disasters for Universe Today from NASA Wallops in Virginia and the Kennedy Space Center in Florida.

Each company was originally expected to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware spread out over multiple cargo delivery flights to the ISS under the initial CRS contract.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

So NASA truly has a lot on the line while considering CRS 2 and postponing a decision may be wise until after both firms successfully complete their upcoming ‘Return to Flight’ missions – now scheduled for Dec. 3 by Orbital ATK and early January 2016 for SpaceX.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

“The anticipated award date has been revised to no later than January 30, 2016 to allow time to complete a thorough proposal evaluation and selection,” says NASA.

When asked for a comment and explanation on the decisions and delay, a NASA spokesperson responded to me as follows:

“This is all we’ll be able to say, for right now.”

“Since the agency is in the process of evaluating proposals, we are in a procurement communications blackout. For that reason, NASA cannot answer.”

However, Boeing has been told by NASA that they are out of the running for CRS 2. Earlier reports indicated that Lockheed Martin is also out of the competition.

But there is still plenty of really good news for Boeing since they were already awarded a commercial crew contract in September 2014 to develop the Starliner space taxi to launch astronauts to the ISS.

The first Boeing CST-100 Starliner capsule is already being manufactured at the Kennedy Space Center, as I detailed earlier on site – here.

For the CRS 2 contract, Boeing submitted a bid to convert Starliner into an unmanned cargo freighter.

Meanwhile Sierra Nevada Corp told Universe Today that their Dream Chaser space plane “remains in contention.”

Dream Chaser is a winged mini shuttle that lost out in NASA commercial crew program competition. SNC submitted a proposal involving an unmanned version of Dream Chaser for the CRS 2 cargo competition building on what they already developed.

“SNC received notification that NASA has delayed the award decision related to Commercial Resupply Services 2 to no later than January 30, 2016,” SNC spokesperson Krystal Scordo told Universe Today.

“SNC remains part of the competitive range. We are proud of our Dream Chaser® Program team and are pleased to remain in contention for this important work in space.”

Unmanned version of Sierra Nevada Corporation (SNC) Dream Chaser space plane proposal for NASA cargo resupply contract docks at the International Space Station. Credit: Sierra Nevada Corporation
Unmanned version of Sierra Nevada Corporation (SNC) Dream Chaser space plane proposal for NASA cargo resupply contract docks at the International Space Station. Credit: Sierra Nevada Corporation

Neither SpaceX or Orbital will comment about the details of their CRS 2 procurement proposals to Universe Today beyond stating to me that they submitted bids and await NASA’s decision.

The CRS 2 contract is a follow on to the original CRS contract which was to run through at least 2016.

In the meantime, NASA opted to extend the original CRS contract to around 2018 by granting additional interim cargo flights to both SpaceX and Orbital under terms allowed by the contract.

SpaceX was granted five additional Dragon flights and Orbital ATK was given three additional Cygnus flights, for a total of 10 Cygnus resupply missions through about 2018.

The CRS-2 contract is valued at between $1.0 Billion and $1.4 Billion per year and NASA requires this service from approximately 2018 through 2024 according to the RFI.

NASA expects delivery of 14,250 to 16,750 kilograms per year of pressurized cargo as well as 1,500 to 4,000 kg per year of unpressurized cargo and return or disposal of up to 14,250 to 16,750 kg per year of pressurized cargo under CRS 2.

Watch for my onsite reports from the Kennedy Space Center press site for the Orbital Atlas OA-4 cargo liftoff on Dec. 3.

“We are anxious to get flying again not only for our own sake, but really for NASA and the crew!” Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems Programs, said in an interview with Universe Today.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus Cargo Craft Comes Together for Space Station ‘Return to Flight’ Blastoff in December

Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled Ultraflex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida.    Credit: Orbital ATK
Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled UltraFlex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida. Credit: Orbital ATK
See OA-4 mission patch and hardware photos below

The biggest and heaviest Cygnus commercial cargo craft ever built by Orbital ATK is coming together at the Kennedy Space Center as the launch pace picks up steam for its critical ‘Return to Flight’ resupply mission to the space station for NASA. Cygnus is on target for an early December blastoff from Florida and the Orbital ATK team is “anxious to get flying again.”

“We are very excited about the upcoming [OA-4] cargo mission and returning to flight,” said Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems Programs, in an exclusive interview with Universe Today. Continue reading “Cygnus Cargo Craft Comes Together for Space Station ‘Return to Flight’ Blastoff in December”

Falcon 9 Rocket Failure a Huge Blow to SpaceX: Musk

In his first public comments since the surprise disintegration of the commercial SpaceX Falcon 9 rocket some two minutes after last week’s liftoff on June 28, SpaceX CEO Elon Musk said today (July 7) that the launch failure was a “huge blow” to his company and the cause remains elusive and is under intense investigation.

“The accident was a huge blow to SpaceX,” Musk told the opening session of the International Space Station Research & Development Conference being held in Boston, Mass, during an on-stage conversation with NASA’s International Space Station manager Mike Suffredini.

The private SpaceX Falcon 9 booster broke up just minutes after a picture perfect blastoff from Cape Canaveral on a crucial logistics flight for NASA, carrying a SpaceX Dragon cargo freighter that was headed to the International Space Station (ISS).

Dragon was chock full of over two tons of research experiments and much needed supplies and gear for the multinational crews serving aboard.

“There’s still no clear theory that fits with all the data,” Musk said. “We take these missions incredibly seriously.”

The cargo ships function as a railroad to space and the lifeline to keep the station continuously crewed and functioning. Without periodic resupply by visiting vehicles the ISS cannot operate.

The SpaceX Falcon 9 and Dragon were destroyed just over two minutes after a stunning liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in sunny Florida at 10:21 a.m. EDT.

The upper stage of the rocket suddenly exploded due to an as yet unexplained anomaly as the nine first stage Merlin 1D engines kept firing. Moments later it vaporized into a grayish cloud at supersonic speed, raining debris down into the Atlantic Ocean.

Although the second stage appears to be the culprit in the disaster, Musk said that there is still not a coherent cause and explanation of the data and was hard to interpret.

“Whatever happened is clearly not a sort of simple, straightforward thing,” he explained. “In this case, the data does seem to be quite difficult to interpret.”

“So we want to spend as much time as possible just reviewing the data. No clear theory fits all the data.”

The Falcon 9 was transmitting data on over 3,000 channels of flight data streams.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

Virtually since the moment of the mishap approximately 139 seconds after the otherwise successful launch, SpaceX engineers have been pouring over the data to try and determine the root cause of the accident.

“Everyone that can engage in the investigation at SpaceX is very, very focused on that,”Musk elaborated. “We want to spend as much time as possible just reviewing the data.”

From the beginning Musk indicated that there was some type of over pressure event in the upper stage liquid oxygen tank and he elaborated a bit at the conference.

“At this point, the only thing that’s really clear was there was some kind of over-pressure event in the upper stage liquid oxygen tank, but the exact cause and sequence of events, there’s still no clear theory that fits with all the data.”

“So we have to determine if some of the data is a measurement error of some kind, or if there’s actually a theory that matches what appear to be conflicting data points.”

SpaceX is conducting an intense and thorough investigation with the active support of various government agencies including the FAA, NASA and the U.S. Air Force.

“The interaction with NASA has been great so far,” Musk said. “The biggest challenge is that there are a lot of inquiries coming in simultaneously, so it’s hard to keep responding to everyone right away.”

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

The accident investigation is in full swing both at the Cape and SpaceX headquarters in Hawthorne, Ca.

Hans Koenigsmann, SpaceX VP of Mission Assurance, is leading the accident investigation for SpaceX.

“The process for determining the root cause of Sunday’s mishap is complex, and there is no one theory yet that is consistent with the data,” SpaceX spokesman John Taylor told me earlier.

“Our engineering teams are heads down reviewing every available piece of flight data as we work through a thorough fault tree analysis in order to identify root cause.”

Umbilicals away and detaching from SpaceX Falcon 9 launch  from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter.  Credit: Ken Kremer/kenkremer.com
Umbilicals away and detaching from SpaceX Falcon 9 launch from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter. Credit: Ken Kremer/kenkremer.com

The June 28 launch was the 19th overall for the Falcon 9 booster and the first failure in an otherwise hugely successful program by the new space company founded by Musk and headquartered in Hawthorne, CA. Musk’s oft stated goals include radically slashing the cost of access to space to enable much wider participation in the space frontier by entrepreneurs and individuals and foster much greater exploration that will aid human missions to the Red Planet.

SpaceX may have more to say publicly later this week.

“I think we’ll be able to say something more definitive towards the end of the week,” Musk noted.

In the meantime all SpaceX launches are on hold for several months at least.

The SpaceX CRS-7 cargo launch failure was the second of two back to back cargo delivery launch failures run to the space station, including both American and Russian rockets since April, and the third in the past eight months that significantly crimped the stations stockpiles and abruptly impacted upcoming crew rotations and launches throughout the remainder of 2015.

Fortunately, the string of launch failures with the successful launch the Russian Progress 60 cargo freighter on July 3, five days after the SpaceX CRS-7 failure. Progress 60 docked at the ISS on July 5 with three tons of supplies, to the relief of the station partners worldwide.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Mike Suffredini,  NASA International Space Station manager and Hans Koenigsmann, SpaceX VP of Mission Assurance discuss Space CRS-7 mission to the ISS at media briefing at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Mike Suffredini, NASA International Space Station manager and Hans Koenigsmann, SpaceX VP of Mission Assurance discuss SpaceX CRS-7 mission to the ISS at media briefing at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Russian Progress Supply Freighter Docks at Space Station, Ending String of International Launch Failures

Over three tons of much needed supplies and equipment finally reached the crew living aboard the International Space Station (ISS), when an unmanned and highly anticipated Russian Progress cargo ship successfully docked at the orbiting outpost early this morning, Sunday July 5, at 3:11 a.m. EDT (10:11 MSK, Moscow local time)- to all the partners relief.

This follows two straight international resupply launch failures that significantly crimped the stations stockpiles and abruptly impacted upcoming crew rotations and station launches throughout the remainder of 2015.

Today’s arrival of Russia’s Progress 60 (Progress M-28M) logistics vehicle ended a string of Russian and American resupply mission failures that began some two months ago with the devastating Soyuz rocket launch failure of the prior Progress 59 ship on April 28, and continued with the mid-air explosion of a commercial SpaceX Falcon 9 and unpiloted SpaceX Dragon CRS-7 cargo ship exactly one week ago on June 28.

The Progress 60 was automatically docked at an earth facing port on the Russian “Pirs” docking module on the Russian segment of the ISS – that finally puts the station on the road to recovery with a stockpile of 6100 pounds (2770 kg) of new fuel, food, oxygen, research experiments and gear.

“The operation was carried out in an automated mode,” according to Russian Mission Control near Moscow.

The docking operation was conducted under the guidance of the Russian ISS Expedition 44 commander Gennady Padalka and flight engineer Mikhail Kornienko as well as experts at the Russian Mission Control Center, as the vehicles were soaring about 251 miles (400 km) over the south Pacific, southeast of New Zealand. NASA astronaut Scott Kelly is also aboard, rounding out the current three man crew.

The ISS Progress 60 cargo craft is seen just a few minutes away from docking to the International Space Station. Credit: NASA TV
The ISS Progress 60 cargo craft is seen just a few minutes away from docking to the International Space Station. Credit: NASA TV

The successful docking came two days after the blastoff of the unmanned Progress 60 cargo freighter atop a Soyuz-U booster from the Baikonur Cosmodrome on July 3. This signifies the restoration of Russia’s critical cargo lifeline to the ISS and was like celebrating Christmas in July.

“Guys, congratulations. your cargo vehicle has arrived,” said Russian flight director Vladimir Solovyev from Russian mission control.

“We congratulate you as well,” cosmonaut Gennady Padalka replied from inside the station’s Russian-built Zvezda command module. “Thanks so much for sending it our way. It feels like Christmas in July.”

The station is totally dependent on a regular train of supply runs from the partner nations on Earth to operate with a crew and conduct research investigations that will aid in sending humans to deep space destinations.

The ISS Progress 60 cargo craft is now docked to the Pirs docking compartment. Credit: NASA TV
The ISS Progress 60 cargo craft is now docked to the Pirs docking compartment shown in this schematic. Credit: NASA TV

America’s cargo lifeline is currently on hold following the dual launch failures of both US commercial supply trains to low Earth orbit- involving the SpaceX Falcon 9 last week and the catastrophic Orbital ATK Antares/Cygnus Orb-3 mission launch disaster on October 28, 2014 which I saw at NASA Wallops.

The SpaceX Falcon 9 and Dragon exploded barely two minutes after liftoff from Cape Canaveral. The rocket disintegrated in mere moments as I watched from the roof of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.

All told, an unprecedented trio of launch failures with three different American and Russian rockets took place over the past eight months.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

Progress 60 resupply ship was loaded with over three tons of food, fuel, oxygen, science experiments, water and supplies on a crucial mission for the International Space Station crew to keep them stocked with urgently needed life support provisions and science experiments in the wake of the twin launch failures in April and June.

The ISS Progress M-28M (Progress 60) cargo craft is seen just a few minutes away from successful docking to the International Space Station. Credit: Roscosmos
The ISS Progress M-28M (Progress 60) cargo craft is seen just a few minutes away from successful docking to the International Space Station. Credit: Roscosmos
The ship delivered approximately 1,146 pounds (520 kg) of propellant, 105 pounds (48 kg) of oxygen, 926 pounds (420 kg) of water and 3,071 pounds (1393 kg) pounds of crew supplies, provisions, research equipment, science experiments, student experiments, tools and spare parts and parcels for the crew.

The Progress was stuffed with 100 kg of additional food stocks to make up for the losses suffered from the twin Russian Progress 59 and SpaceX CRS-7 failures.

“As for food, 430 kilos of foodstuffs will be delivered to the ISS or 100 kilos more than the amount delivered by the previous spacecraft,” noted Mission Control.

“The Progress space freighter will deliver more food than usual so that it will suffice for everyone,” Alexander Agureyev, chief of the ISS crew nourishment department at the Institute of Medical and Biological Problems, told the Russian news agency TASS.

Progress 60 is scheduled to remain docked to Pirs for the next four months.

In the wake of the trio of American and Russian launch failures, the crew currently enjoys only about four months of reserves compared to the more desirable six months stockpile in case of launch mishaps.

Progress 60 will extend the station supplies by about a month’s time.

The next cargo ship now slated to launch is the Japanese HTV-5 on August 16.

Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos

The SpaceX CRS-7 Dragon was packed with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko.

The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis being built by Boeing and SpaceX to dock at the ISS starting in 2017.

The next crewed launch to the station is set for July 22 aboard a Soyuz capsule with with an international trio comprising NASA astronaut Kjell Lindgren, Oleg Kononenko of the Russian Federal Space Agency and Kimiya Yui of the Japan Aerospace Exploration Agency. Their flight was delayed from May 26 after the Progress 59 launch failure to ensure that there are no issues with the Soyuz rocket booster that will boost them to the ISS.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Russian Progress Launch Restores Critical Cargo Lifeline to Space Station

Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
Story updated[/caption]

A sigh of relief was heard worldwide with today’s (July 3) successful launch to orbit of the unmanned Progress 60 cargo freighter atop a Soyuz-U booster from the Baikonur Cosmodrome, signifying the restoration of Russia’s critical cargo lifeline to the International Space Station (ISS), some two months after the devastating launch failure of the prior Progress 59 spaceship on April 28.

Friday’s triumphant Progress launch also comes just five days after America’s cargo deliveries to the ISS were put on hold following the spectacular failure of a commercial SpaceX Falcon 9 rocket launched from the Florida Space Coast on Sunday, June 28, carrying the unpiloted SpaceX Dragon CRS-7 which broke up in flight.

The Progress 60 resupply ship, also known as Progress M-28M, was loaded with over three tons of food, fuel, oxygen, science experiments, water and supplies on a crucial mission for the International Space Station crew to keep them stocked with urgently needed life support provisions and science experiments in the wake of the twin launch failures in April and June.

The Soyuz-U carrier rocket launched Progress into blue skies at 10:55 a.m. local time in Baikonur (12:55 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. The launch was webcast live on NASA TV.

“Everything went by the book,” said NASA commentator Rob Navias during the webcast. “Everything is nominal.”

The ISS Progress 60 resupply ship streak to orbit after on time launch from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
The ISS Progress 60 resupply ship streak to orbit after on time launch from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos

The International Space Station was flying about 249 miles over northwestern Sudan, near the border with Egypt and Libya, at the moment of liftoff. Note: See an exquisite photo of the Egyptian pyramid photographed from the ISS in my recent story – here.

After successfully separating from the third stage Progress reach its preliminary orbit less than 10 minutes after launch from Baikonur and deployed its solar arrays and navigational antennas as planned.

Live video was received from Progress after achieving orbit showing a beautiful view of the Earth below.

A camera from the Progress spacecraft shows the Earth below as it begins its two day trip to the space station. Credit: NASA TV
A camera from the Progress spacecraft shows the Earth below as it begins its two day trip to the space station. Credit: NASA TV

A two day chase of 34 orbits of Earth over the next two days will bring the cargo craft to the vicinity of the station for a planned docking to the Russian segment of the orbiting laboratory at 3:13 a.m. Sunday, July 5.

NASA TV will provide live coverage of the arrival and docking operation to the Pirs Docking Compartment starting at 2:30 a.m. EDT on Sunday, July 5.

Watch live on NASA TV and online at http://www.nasa.gov/nasatv

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka are currently living and working aboard the station as the initial trio of Expedition 44 following the safe departure and landing of the three person Expedition 43 crew in mid June.

Kelly and Kornienko comprise the first ever 1 Year Crew to serve aboard the ISS and are about three months into their stay in space.

In the span of just the past eight months, three launches of unmanned cargo delivery runs to the space station have failed involving both American and Russian rockets.

The cargo ships function as a railroad to space and function as the lifeline to keep the station continuously crewed and functioning. Without periodic resupply by visiting vehicles from the partner nations the ISS cannot continue to operate.

The Orbital Sciences Antares/Cygnus Orb 3 mission exploded in a massive and frightening fireball on October 28, 2014 which I witnessed from the press site from NASA Wallops in Virginia.

The Russian Soyuz/Progress 59 mission failed after the cargo vessel separated from the Soyuz booster rockets third stage and spun wildly out of control on April 28, 2015 and eventually crashed weeks later during an uncontrolled plummet back to Earth over the ocean on May 8. The loss was traced to an abnormal third stage separation event.

Roscosmos, the Russian Federal Space Agency, switched this Progress vehicle to an older version of the Soyuz rocket which had a different third stage configuration that was not involved in the April failure.

The ISS Progress 60 resupply ship launches on time from the Baikonur Cosmodrome. Credit: NASA TV
The ISS Progress 60 resupply ship launches on time from the Baikonur Cosmodrome. Credit: NASA TV

Russian officials decided to move up the launch by about a month from its originally planned launch date in August in order to restock the station crew with critically needed supplies as soon as practical.

Following Sundays SpaceX cargo launch failure, the over 6100 pounds of new supplies on Progress are urgently needed more than ever before. Loaded aboard are 1,146 pounds (520 kg) of propellant, 105 pounds (48 kg) of oxygen, 926 pounds (420 kg) of water and 3,071 pounds (1393 kg) pounds of crew supplies, provisions, research equipment, science experiments, tools and spare parts and parcels for the crew.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

In the wake of the trio of American and Russian launch failures, the crews current enjoy only about four month of supplies reserves compared to the more desirable six months stockpile in case of launch mishaps.

Progress 60 will extend the station supplies by about a month’s time.

The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising Kelly and Kornienko.

The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis to dock at the ISS starting in 2017.

The three cargo launch failures so close together are unprecedented in the history of the ISS program over the past two decades.

The next cargo ship now slated to launch is the Japanese HTV-5 on August 16.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Cause of SpaceX Falcon 9 Rocket Failure Unknown; Launch Explosion Photos

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
Story and photos expanded[/caption]

KENNEDY SPACE CENTER, FL – The root cause of Sundays (June 28) devastating launch failure of the commercial SpaceX Falcon 9 rocket is “still unknown” says SpaceX CEO and founder Elon Musk, following the loss of the NASA contracted resupply mission carrying crucial gear and research experiments to the crew serving aboard the Earth orbiting International Space Station (ISS).

Meanwhile, search and recovery teams from SpaceX and the Coast Guard are scouring the ocean and beaches along the Florida Space Coast for any signs of potentially dangerous Falcon rocket debris that rained down from the sky into the Atlantic Ocean after the sudden explosion unexpectedly destroyed the vehicle barely two minutes after a sun drenched liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT.

All appeared normal as the Falcon 9 booster and Dragon resupply spaceship were streaking skywards through majestically blue Florida skies when catastrophe struck at approximately 148 seconds after blastoff and the rocket exploded violently- utterly destroying the rocket ship and its two ton load of critical supplies heading to the astronauts and cosmonauts living on board the ISS.

The upper stage appeared to break up in flight as the nine first stage Merlin 1D engines were firing as planned and the rocket was arcing over.

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

But why that happened and the vehicle disintegrated in mere seconds is still a mystery which will take some time to resolve.

“Cause still unknown after several thousand engineering-hours of review. Now parsing data with a hex editor to recover final milliseconds,” tweeted SpaceX CEO Elon Musk.

Although the cause is unknown, Musk also announced that the failure might be related to a problem with the Falcon 9 upper stage. since the first stage engines were still firing as planned.

“There was an overpressure event in the upper stage liquid oxygen tank. Data suggests counterintuitive cause,” tweeted Musk.

SpaceX Falcon 9 rocket and Dragon resupply spaceship streaking skywards until explosion about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship streaking skywards until explosion about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

The rocket was traveling about 5000 km/h at an altitude of 45 kilometers at the time of the mishap.

“Falcon 9 experienced a problem shortly before first stage shutdown. Will provide more info as soon as we review the data,” tweeted SpaceX CEO Elon Musk soon after the explosion.

The pressurized section of the Dragon was packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45 on the ISS.

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Sunday’s launch was the 19th launch of the Falcon 9 rocket and the first failure after 18 straight successes.

SpaceX formed a failure investigation board immediately following the launch failure of the SpaceX Commercial Resupply Services 7 (CRS-7) mission bound for the ISS. The FAA and NASA will assist in the investigation.

The launch was the sixth for SpaceX this year, which had been picking up its launch pace dramatically compared to 2014.

SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral Air Force Station, Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral Air Force Station, Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

It was the third launch failure of a cargo delivery run to the space station in the past half year -including both American and Russian rockets.

The Orbital Sciences Antares/Cygnus Orb 3 mission exploded in a massive an frightening fireball on October 28, 2014 which I witnessed from the press site from NASA Wallops in Virginia.

The Russian Soyuz/Progress 59 mission failed after the cargo vessel separated from the booster rockets third stage and spun wildly out of control in April 2015 and eventually crashed.

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Myself and other members of the media were watching and photographing the SpaceX Falcon 9 launch from atop the iconic Vehicle Assembly Building (VAB) when the launch mishap occurred.

See a galley of my launch failure explosion photos herein.

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer