Instead of Building Structures on Mars, we Could Grow Them With the Help of Bacteria

ISRU system concept for autonomous construction on Mars. Credit: NASA/JPL-Caltech

NASA and the China National Space Agency (CNSA) plan to mount the first crewed missions to Mars in the next decade. These will commence with a crew launching in 2033, with follow-up missions launching every 26 months to coincide with Mars and Earth being at the closest point in their orbits. These missions will culminate with the creation of outposts that future astronauts will use, possibly leading to permanent habitats. In recent decades, NASA has conducted design studies and competitions (like the 3D-Printed Habitat Challenge) to investigate possible designs and construction methods.

For instance, in the Mars Design Reference Architecture 5.0, NASA describes a “commuter” architecture based on a “centrally located, monolithic habitat” of lightweight inflatable habitats. However, a new proposal envisions the creation of a base using organisms that extract metals from sand and rock (a process known as biomineralization). Rather than hauling construction materials or prefabricated modules aboard a spaceship, astronauts bound for Mars could bring synthetic bacteria cultures that would allow them to grow their habitats from the Red Planet itself.

Continue reading “Instead of Building Structures on Mars, we Could Grow Them With the Help of Bacteria”

Using Bacteria to Build a Base on Mars

Credit: TU Delft

When it comes to plans for future missions to space, one of the most important aspects will be the use of local resources and autonomous robots. This process is known as In-Situ Resource Utilization (ISRU), which reduces the amount of equipment and resources that need to be sent ahead or brought along by a mission crew. Meanwhile, autonomous robots can be sent ahead of a crew and have everything prepared for them in advance.

But what about bacteria that can draw iron from extraterrestrial soil, which would then be used to 3D print metal components for a base? That is the idea that is being proposed by PhD candidate Benjamin Lehner of the Delft University of Technology. On Friday (Nov. 22nd), he defended his thesis, which calls for the deployment of an uncrewed mission to Mars that will convert regolith into useable metal using a bacteria-filled bioreactor.

Continue reading “Using Bacteria to Build a Base on Mars”