Double Disc Found Feeding Each Other In Binary Star System

Deep within the Taurus Dark Cloud complex, one of the closest star-forming regions to Earth has just revealed one of its secrets – an umbilical cord of gas flowing from the expansive outer disc toward the interior of a binary star system known as GG Tau-A. According to the ESO press release, this never-before-seen feature may be responsible for sustaining a second, smaller disc of planet-forming material that otherwise would have disappeared long ago.

A research group led by Anne Dutrey from the Laboratory of Astrophysics of Bordeaux, France and CNRS used the Atacama Large
Millimeter/submillimeter Array (ALMA) to observe the distribution of
dust and gas in the unusual GG Tau-A system. Since at least half of
Sun-like stars are the product of binary star systems, these type of
findings may produce even more fertile grounds for discovering
exoplanets. However, the 450 light year distant GG Tau system is even more complex than previously thought. Through observations taken with the VLTI, astronomers have discovered its primary star – home to the inner disc – is part of a more involved multiple-star system. The secondary star is also a close binary!

“We may be witnessing these types of exoplanetary systems in the midst of formation,” said Jeffrey Bary, an astronomer at Colgate University in Hamilton, N.Y., and co-author of the paper. “In a sense, we are learning why these seemingly strange systems exist.”

Let’s take a look…

This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets.
This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets.

“Like a wheel in a wheel, GG Tau-A contains a large, outer disc
encircling the entire system as well as an inner disc around the main central star. This second inner disc has a mass roughly equivalent to that of Jupiter.” says the research team. “Its presence has been an intriguing mystery for astronomers since it is losing material to its central star at a rate that should have depleted it long ago.”

Thanks to studies done with ALMA, the researchers made an exciting discovery in these disc structures… gas clumps located between the two. This observation could mean that material is being fed from the outer disc to feed the inner. Previously observations done with ALMA show that a single star pulls its materials inward from the outer disc. Is it possible these gas pockets in the double disc GG Tau-A system are creating a sustaining lifeline between the two?

“Material flowing through the cavity was predicted by computer
simulations but has not been imaged before. Detecting these clumps
indicates that material is moving between the discs, allowing one to
feed off the other,” explains Dutrey. “These observations demonstrate that material from the outer disc can sustain the inner disc for a long time. This has major consequences for potential planet formation.”

As we know, planets are created from the materials leftover from
stellar ignition. However, the creation of a solar system occurs at a snail’s pace, meaning that a debris disc with longevity is required for planet formation. Thanks to these new “disc feeding” observations from ALMA, researchers can surmise that other multiple-star systems behave in a similar manner… creating even more possibilities for exoplanet formation.

“This means that multiple star systems have a way to form planets, despite their complicated dynamics. Given that we continue to find interesting planetary systems, our observations provide a glimpse of the mechanisms that enable such systems to form,” concludes Bary.

During the initial phase of planetary searches, the emphasis was placed on Sun-like, single-host stars. Later on, binary systems gave rise to giant Jupiter-sized planets – nearly large enough to be stars on their own. Now the focus has turned to pointing our planetary discovery efforts towards individual members of multiple-systems.

Emmanuel Di Folco, co-author of the paper, concludes: “Almost half the Sun-like stars were born in binary systems. This means that we have found a mechanism to sustain planet formation that applies to a significant number of stars in the Milky Way. Our observations are a big step forward in truly understanding planet formation.”

Original Story Source: Planet-forming Lifeline Discovered in a Binary Star System ALMA Examines Ezekiel-like “Wheel in a Wheel” of Dust and Gas – ESO Science News Release.

Radio Telescopes Help Astronomers Tune In To Nova Generated Gamma Rays

Over two years ago, the Fermi-LAT Collaboration observed an “ear and eye opening” event – the exact location where a stellar explosion called a nova emitted one of the most energentic forms of electromagnetic waves… gamma rays. When it was first detected in 2012, it was something of a mystery, but the findings could very well point to what may cause gamma ray emissions.

“We not only found where the gamma rays came from, but also got a look at a previously-unseen scenario that may be common in other nova explosions,” said Laura Chomiuk, of Michigan State University.

A nova? According to the Fermi researchers, a classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. As it gathers in material, the thermonuclear event expels debris into surrounding space. However, astronomers didn’t expect this “normal” event to produce high energy gamma rays!

Explains the Fermi-LAT team: “The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.”

While NASA’s Fermi spacecraft was busy watching a nova called V959 Mon, some 6500 light-years from Earth, other radio telescopes were also busy picking up on the gamma ray incidences. The Karl G. Jansky Very Large Array (VLA) was documenting radio waves coming from the nova. The source of these emissions could be subatomic particles moving at nearly the speed of light interacting with magnetic fields – a condition needed to help produce gamma rays. These findings were backed up by the extremely-sharp radio “vision” of the Very Long Baseline Array (VLBA) and the European VLBI network. They revealed two knots in the radio observations – knots which were moving away from each other. Additional studies were done with e-MERLIN in the UK, and another round of VLA observations in 2014. Now astronomers could begin to piece together the puzzle of how radio knots and gamma rays are produced.

According to the NRAO news release, the white dwarf and its companion give up some of their orbital energy to boost some of the explosion material, making the ejected material move outward faster in the plane of their orbit. Later, the white dwarf blows off a faster wind of particles moving mostly outward along the poles of the orbital plane. When the faster-moving polar flow hits the slower-moving material, the shock accelerates particles to the speeds needed to produce the gamma rays, and the knots of radio emission.

“By watching this system over time and seeing how the pattern of radio emission changed, then tracing the movements of the knots, we saw the exact behavior expected from this scenario,” Chomiuk said.

A nova does not explode like an expanding ball, but instead throws out gas in different directions at different times and different speeds. When this gas inevitably crashes together, it produces shocks and high-energy gamma-ray photons. The complex explosion and gas collisions in nova V959 Mon is illustrated here. In the first days of the nova explosion, dense, relatively slow-moving material is expelled along the binary star system's equator (yellow material in left panel). Over the next several weeks, fast winds pick up and are blown off the binary, but they are funneled along the binary star system's poles (blue material in central panel). The equatorial and polar material crashes together at their intersection, producing shocks and gamma-ray emission (red regions in central panel). Finally, at later times, the nova stops blowing a wind, and the material drifts off into space, the fireworks finished (right panel).  CREDIT: Bill Saxton, NRAO/AUI/NSF
A nova does not explode like an expanding ball, but instead throws out gas in different directions at different times and different speeds. When this gas inevitably crashes together, it produces shocks and high-energy gamma-ray photons. The complex explosion and gas collisions in nova V959 Mon is illustrated here. In the first days of the nova explosion, dense, relatively slow-moving material is expelled along the binary star system’s equator (yellow material in left panel). Over the next several weeks, fast winds pick up and are blown off the binary, but they are funneled along the binary star system’s poles (blue material in central panel). The equatorial and polar material crashes together at their intersection, producing shocks and gamma-ray emission (red regions in central panel). Finally, at later times, the nova stops blowing a wind, and the material drifts off into space, the fireworks finished (right panel). CREDIT: Bill Saxton, NRAO/AUI/NSF

But the V959 Mon observations weren’t the end of the story. According to Fermi-LAT records, in 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations.

“This mechanism may be common to such systems. The reason the gamma rays were first seen in V959 Mon is because it’s close,” Chomiuk said. Because the type of ejection seen in V959 Mon also is seen in other binary-star systems, the new insights may help astronomers understand how those systems develop. This “common envelope” phase occurs in all close binary stars, and is poorly understood. “We may be able to use novae as a ‘testbed’ for improving our understanding of this critical stage of binary evolution,” explains Chomiuk.

Original Story Source: Radio Telescopes Unravel Mystery of Nova Gamma Rays from National Radio Astronomy Observatory. Chomiuk worked with an international team of astronomers. The researchers reported their findings in the scientific journal “Nature”.

Can Tatooine Be Real?

We’re familiar with the sky on Tatooine with its twin suns. But could a planet actually orbit two stars at the same time? Could you have a planet in a multiple star system with 4, 6 or more suns?

Hey kids, you remember Star Wars right? Tatooine ring any bells? Lots of sand Tusken raiders walking single file. Banthas sweating all over the place like some crazy mammoth-goat breeding experiment gone horribly awry?
Tatooine was an arid desert planet, it had 2 suns and 3 moons. It’s not the only fictional planet to orbit multiple suns. In Nightfall by Isaac Asimov, planet Lagash had 6 suns. Could something like this be possible?

Interestingly, most stars in the Milky Way are in multiple star systems. You can easily have double, triple, or quadruple systems. There are even star clusters with hundreds or even thousands of stars. Just imagine the crazy chaotic gravitational interactions in a multiple star system.

So, could they have planets? Yes. There are circumbinary systems, where stars orbit each other their planets orbit outside, circling them both. Since the stars orbit one another so closely, it’s the gravitational equivalent of a single star. From an orbiting planet, the stars would always appear together in the sky.

To date, we have discovered 17 of these systems. Then there are wide binary systems, which are far more dangerous for planets. Here the planets orbit one main star, and there’s another star which maintains a distant orbit much further out. You don’t want to live there. The gravitational interactions are chaotic and lead to mayhem. In simulations, planets which aren’t tightly orbiting a star are ejected out of the system, or crashed into other planets or stars.

Artist's impression of the Cygnus-X1 binary. Credit: NASA / Honeywell Max-Q Digital Group / Dana Berry
Artist’s impression of the Cygnus-X1 binary. Credit: NASA / Honeywell Max-Q Digital Group / Dana Berry

We might already be detecting highly elliptical orbits from disrupted planets just like these. A triple star system was recently discovered in the constellation Cygnus: HD 188753. Here, a pair of stars are tightly bound, and these are in a wide binary arrangement with a sun-mass star. A planet closely orbits the primary star, but all other planets were likely ejected.

In the year 2012, a planet was found around Alpha Centauri B, and PH1 was the first quadruple star system to be discovered to have a planet. Kepler 47 is a multi-star, multi-planet system. Two stars orbit one another every 7.45 days. Here, the gas giant Kepler 47c orbits the stars every 303 days and is even located in the habitable zone. This sounds like perfect concept art for a Vin Diesel film, or artwork airbrushed on the side of a van.

Kepler-16b is but one example of an uncanny world.  It orbits two suns. Credit: Discovery
Kepler-16b is but one example of an uncanny world. It orbits two suns. Credit: Discovery

Finally, In 2011, the Kepler-16 system was found to have a circumbinary planet in the habitable zone. So, two stars, closely orbiting each other and a Saturn-mass, Kepler 16b orbiting the two. Astronomers informally called this a real Tatooine.

What do you think? Would you want to live on a desert world like Tatooine or Arrakis? Tell us your thoughts in the comments below.

Rare White Dwarf Systems Do A Doubletake

For those of us who remain forever fascinated by astronomy, nothing could spark our imaginations more than a cosmic curiosity. In this case, the unusual object is a star cataloged as AM Canum Venaticorum (AM CVn) located in the constellation of Canes Venatici. What makes this dual star system of interest? Try the fact that the pair revolve completely around each other in a brief 18 minutes. What’s more, they are the stuff of which Einstein dreamed… creators of ripples in space-time known as gravitational waves.

Like other astronomical anomalies, AM CVn became the forerunner of a new class of stellar objects. It is a white dwarf, a sun-like star which has exhausted its fuel and collapsed to around the size of Earth. Yet it also has a white dwarf companion – a very compact orb which is delivering matter to its neighbor. AM Canum Venaticorum is not alone, however. There are similar systems where the stellar pairs complete their rotations in about an hour and even as rapidly as five minutes! Can you imagine the crackling amount of energy a system like this produces?!

Even though we have been aware of systems like AM CVn for almost five decades, no one is quite sure how they originate. Now, through the use of X-ray and optical observations, astronomers are taking a look at newly evolved double stars systems which one day might become a dueling duo dwarf. Heading their list are two binary systems, J0751 and J1741. These candidates were observed in the X-ray part of the electromagnetic spectrum by NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton telescope. In addition, observations at optical wavelengths were made using the McDonald Observatory’s 2.1-meter telescope in Texas, and the Mt. John Observatory 1.0-meter telescope in New Zealand.

dual_dwarf“The artist’s illustration depicts what these systems are like now and what may happen to them in the future. The top panel shows the current state of the binary that contains one white dwarf (on the right) with about one-fifth the mass of the Sun and another much heavier and more compact white dwarf about five or more times as massive (unlike Sun-like stars, heavier white dwarfs are smaller).” says the Chandra X-ray Observatory news release.

What’s happening here? As the pair of white dwarf stars whip around each other, they are releasing gravitational waves which constrict the orbit. In time, the heavier, diminutive dwarf will begin stripping material from its lighter, larger companion (as seen in the middle panel). This material consumption will continue for perhaps a 100 million years, or until the collected matter reaches a critical mass and releases a thermonuclear explosion.

Another scenario is the thermonuclear explosion could annihilate the larger white dwarf completely in what astronomers call a Type Ia supernova. An event like this is well-known and gives a measurement in standard candles for cosmic distance. However, chances are better the explosion will happen on the surface of the star – an event known as .Ia supernovae. While .Ia supernovae events have been recorded in other galaxies, J0751 and J1741 are the first binary stars which have the potential to erupt in .Ia supernovae.

“The optical observations were critical in identifying the two white dwarfs in these systems and ascertaining their masses. The X-ray observations were needed to rule out the possibility that J0751 and J1741 contained neutron stars.” says the Chandra team. “A neutron star – which would disqualify it from being a possible parent to an AM CVn system – would give off strong X-ray emission due to its magnetic field and rapid rotation. Neither Chandra nor XMM-Newton detected any X-rays from these systems.”

Are AM CVn systems riding the gravitational wave? While astronomers haven’t been able to detect them yet, these new observations are highly important because equipment to verify their presences is currently being developed. It won’t be long until we can see the wave and have a whole new way of looking at the Universe!

Original Story Source: Chandra Observatory News Release.

A Rare Opportunity to Watch a Blue Straggler Forming

A unique and enigmatic variety of stars known as blue stragglers appear to defy the normal stellar aging process. Discovered in globular clusters, they appear much younger than the rest of the stellar population. Since their discovery in 1953, astronomers have been asking the question: how do these stars regain their youth?

For years, two theories have persisted. The first theory suggests that two stars collide, forming a single more massive star. The second theory proposes that blue stragglers emerge from binary pairs. As the more massive star evolves and expands, it blows material onto the smaller star. In both theories, the star grows steadily more massive and bluer – it regains its youth.

But now, a surprising finding may lend credence to the second theory. Astronomers at the Nicolaus Copernicus Astronomical Center in Poland recently observed a blue straggler caught in the midst of forming!

The binary system that was studied, known as M55-V60, is located within the globular cluster M55. Dr. Michal Rozyczka, one of the research scientists on the project, told Universe Today, “The system is a showcase example of a blue straggler formed via the theoretically predicted peaceful mass exchange between its components.”

The team used both photometric (the overall light from the system) and spectroscopic (the light spread out into a range of wavelengths) observations. The photometric data revealed the light curve – the change in brightness due to one star passing in front of the other – of the system. This provided evidence that the astronomers were looking at a binary system.

From the spectroscopic data, shifts in wavelength reveal the velocity (along the line of sight) of a source. The research team noted that the system’s center of mass was moving with respect to the binary system. This will occur in a semi-detached binary system, where mass transfers from one star to the other. As it does this, the center of mass will follow the mass-transfer.

From both photometric and spectroscopic observations (which covered more than 10 years!) the team was able to verify that this object is not only a binary, but a semi-detached binary, residing at the edge of M55.

An artist's conception of how a blue straggler may form from a binary system. Credit:NASA/ESA
An artist’s conception of how a blue straggler may form from a binary system. Credit: NASA/ESA

“The system is semi-detached with the less massive (secondary) component filling its Roche lobe,” explained Dr. Rozyczka. “The secondary has a tearlike shape, with the tip of the tear directed toward the more massive primary. A stream of gas flows out of the tip along a curved path and hits the primary.”

How do we know that it is in fact a blue straggler? The simple answer is that the secondary star, with is gaining mass, appears bluer than normal. This blue straggler is clearly in the process of forming. It is the second observation of such a formation, with the first being V228 in the globular cluster: 47 Tuc.

This research verifies that semi-detached binaries are a viable formation mechanism for blue stragglers. The binary was discovered by happenstance, in a project aimed at determining accurate ages and distances of nearby clusters. It’s certainly a surprising result from the survey.

The results will be published in Acta Astronomica, a peer-reviewed scientific journal located in Poland (preprint available here).