Flawless Maiden Launch for Europe’s New Vega Rocket

[/caption]

Europe scored a major space success with today’s (Feb. 13) flawless maiden launch of the brand new Vega rocket from Europe’s Spaceport in Kourou, French Guiana.

The four stage Vega lifted off on the VV01 flight at 5:00 a.m. EST (10:00 GMT, 11:00 CET, 07:00 local time) from a new launch pad in South America, conducted a perfectly executed qualification flight and deployed 9 science satellites into Earth orbit.

Vega is a small rocket launcher designed to loft science and Earth observation satellites.

Liftoff of Maiden Vega Rocket on Feb. 13, 2012 on VV01 flight from ESA Spaceport at French Guiana. Credit: ESA

The payload consists of two Italian satellites – ASI’s LARES laser relativity satellite and the University of Bologna’s ALMASat-1 – as well as seven picosatellites provided by European universities: [email protected] (Italy), Goliat (Romania), MaSat-1 (Hungary), PW-Sat (Poland), Robusta (France), UniCubeSat GG (Italy) and Xatcobeo (Spain).

On 13 February 2012, the first Vega lifted off on its maiden flight from Europe's Spaceport in French Guiana. Credits: ESA - S. Corvaja

Three of these cubesats were the first ever satellites to be built by Poland, Hungary and Romania. They were constructed by University students who were given a once in a lifetime opportunity by ESA to get practical experience and launch their satellites for free since this was Vega’s first flight.

The 30 meter tall Vega has been been under development for 9 years by the European Space Agency (ESA) and its partners, the Italian Space Agency (ASI), French Space Agency (CNES). Seven Member States contributed to the program including Belgium, France, Italy, the Netherlands, Spain, Sweden and Switzerland as well as industry.

Vega's first launch, dubbed VV01, occurred on Feb 13, 2012 from Europe's Spaceport in Kourou, French Guiana. It carried nine satellites into orbit: LARES, ALMASat-1 and seven Cubesats. Credits: ESA - J. Huart
ESA can now boast a family of three booster rockets that can service the full range of satellites from small to medium to heavy weight at their rapidly expanding South American Spaceport at the Guiana Space Center.

Vega joins Europe’s stable of launchers including the venerable Ariane V heavy lifter rocket family and the newly inaugurated medium class Russian built Soyuz booster and provides ESA with an enormous commercial leap in the satellite launching arena.

“In a little more than three months, Europe has increased the number of launchers it operates from one to three, widening significantly the range of launch services offered by the European operator Arianespace. There is not anymore one single European satellite which cannot be launched by a European launcher service,” said Jean-Jacques Dordain, Director General of ESA.

“It is a great day for ESA, its Member States, in particularly Italy where Vega was born, for European industry and for Arianespace.”

Dordain noted that an additional 200 workers have been hired in Guiana to meet the needs of Europe’s burgeoning space programs. Whereas budget cutbacks are forcing NASA and its contractors to lay off tens of thousands of people as a result of fallout from the global economic recession.

LARES, ALMASat-1 and CubeSats satellites integration for 1st Vega launch.
Credits: ESA, CNES, Arianespace, Optique Video du CSG, P. Baudon

ESA has already signed commercial contracts for future Vega launches and 5 more Vega rockets are already in production.

Vega’s light launch capacity accommodates a wide range of satellites – from 300 kg to 2500 kg – into a wide variety of orbits, from equatorial to Sun-synchronous.

“Today is a moment of pride for Europe as well as those around 1000 individuals who have been involved in developing the world’s most modern and competitive launcher system for small satellites,” said Antonio Fabrizi, ESA’s Director of Launchers.

ESA’s new Vega rocket fully assembled on its launch pad at Europe’s Spaceport in Kourou, French Guiana.

Spectacular ATV Kepler Launch Photo Captured from Orbiting ISS

[/caption]

Have you ever seen a space launch from orbit ?

Check out the spectacular launch photo (above) of the Johannes Kepler ATV streaking skyward atop an Ariane 5 rocket as captured by astronaut Paolo Nespoli from his unparalleled vantage point looking out the windows aboard the International Space Station (ISS), in orbit some 350 km above Earth.

The launch photo shows the rising exhaust trail from the rocket just minutes after blast off of the Ariane booster on Feb. 16 from the ESA rocket base in Kourou, French Guiana, South America. The rocket was still on a vertical ascent trajectory to orbit. Additional launch photos below from space and Earth.

Photo captured on 16 February 2011 from the real-time video from the Ariane 5 launcher during the flight V200 during the time of jettisoning the boosters.

The photo vividly illustrates the maturity of the European space effort since the launch base, Ariane booster rocket, Kepler payload and astronaut Nespoli all stem from Europe and are crucial to the future life of the ISS.

Ariane 5 rocket at the Launch pad at Europe's Spaceport in Kourou, French Guiana with Johannes Kepler ATV bolted on top prior to Feb. 16 blast off.

Kepler is set to dock at the ISS on Feb. 24 and an on time arrival is essential because of an impending orbital traffic jam.

Space Shuttle Discovery is due to link up with the ISS just six hous after Kepler if the orbiter launches according to schedule on Feb. 22.

Everything is nominal with Kepler’s spacecraft systems and orbital performance at this time say European Space Agency (ESA) officials, including the deployment of ATV’s four large solar wings.

Ariane 5 liftoff with Johannes Kepler ATV

The ATV, or Automated Transfer Vehicle, is a European built resupply vessel designed to transport essential cargo and provisions to the ISS. It is Europe’s contribution to stocking up the ISS.

Kepler is carrying carries more than seven metric tons of supplies and cargo for the ISS and will be used to reboost the outpost to a higher orbit during its planned four month mission.

“ATV is a truly European spacecraft. Flying it requires experts from ESA, partner agencies and industry across half a dozen countries,” said ESA’s Bob Chesson, Head of the Human Spaceflight Operations Department.

“Getting it built, into orbit and operating it in flight to docking requires a lot of hard work and dedication from hundreds of people.”

The ATV is named after Johannes Kepler (1571-1630), the German astronomer and mathematician who is best known for discovering the laws of planetary motion. NASA also named its powerful new planet hunting space telescope after Kepler, which recently discovered the first earth sized planets orbiting inside the habitable zone.

After the shuttle is forcibly retired later this year in 2011, the very survival and continued use of the ISS will be completely dependent on a steady train of cargo and payloads lofted by unmanned resupply vessels including the ATV from Europe, HTV from Japan, Progress from Russia and commercial carriers such as SpaceX and Orbital Sciences.

Photos of Ariane rockets rising exhaust trail from Feb. 16 ATV launch photographed from the ISS. Credits: ESA/ NASA

European Space Agency (ESA) astronaut Paolo Nespoli, Expedition 26 flight engineer, conducts a test run with the French/CNES neuroscientific research experiment 3D-Space (SAP) in the Columbus laboratory of the International Space Station.

ATV Successfully Launches to Space Station

Here’s a chance to practice your French countdown skills: watch today’s successful launch of the European Space Agency’s Automated Transfer Vehicle “Johannes” on a Arianespace Ariane 5 rocket blasted off on Feb. 16, 2011, carrying the “Johannes Kepler” cargo-carrying vehicle to the International Space Station. It will take eight days for the ATV to arrive and dock to the aft end of the International Space Station’s Zvezda Service Module. This is the second of ESA’s resupply vehicles, and is loaded with about seven tons of supplies and propellant for use by the six crew members on the ISS.

After yesterday’s scrub of Johannes Kepler, NASA had said that a launch of the ATV today (Wednesday) might delay the launch of space shuttle Discovery for STS-133. However, today, NASA said that might not be the case. Officials will decide Discovery’s launch date at the Flight Readiness Review on February 18. Currently, STS-133’s launch is scheduled for Feb. 24.

ATV ‘Johannes Kepler’ Launch to Space Station Delayed to Wednesday

The European Space Agency’s Automated Transfer Vehicle-2 (ATV-2) “Johannes Kepler” launch that was scheduled for Tuesday Feb. 15 was scrubbed due to a technical issue on the launch pad, and the slip could affect which day space shuttle Discovery launches for STS-133. Technicians at Launch Complex 3 in Kourou, French Guiana are looking at the problem, but preliminary details indicate some erroneous data on the status of the tank levels for fuel on the Ariane 5 rocket. They will go over the data carefully and if everything looks good they try again on Wednesday, Feb. 16.

This launch slip could change the launch date for STS-133, which is now scheduled for Feb. 24. If the ATV does launch on Wednesday (or on Thursday or Friday of this week), the launch of STS-133 will move to Feb. 25. But if the ATV launch slips beyond Friday means that the STS-133 launch stays on Feb. 24.

You can watch the launch attempt on Wednesday on NASA TV, and coverage will begin at 4:15 EST (21:15 GMT), with launch time at 4:50 pm EST (21:50 GMT). This is second launch of an ATV, and the 200th Ariane 5 launch.

In the meantime, find out more about the building of the ATV in this great video from ESA.
Continue reading “ATV ‘Johannes Kepler’ Launch to Space Station Delayed to Wednesday”

Ares-1 Rocket Could Be Re-born as “Liberty”

[/caption]

An idea too good to die, or a case of recycle, reuse, reduce? Two rocket companies are joining forces to use part of the Ares-1 rocket and combine it with elements of the Ariane 5 launcher to create a new launch system called Liberty that they say will “close the US human spaceflight gap.” US company ATK (Alliant Techsystems) and the European firm Astrium announced their collaboration today on a 90-meter (300-ft) rocket that would fit under NASA’s Commercial Crew Development-2 (CCDev-2) procurement. The companies say the new rocket could be ready by 2013.

“This team represents the true sense of international partnership in that we looked across borders to find the best for our customers,” said Blake Larson, President of ATK Aerospace Systems Group in a press release. “Together we combine unique flight-proven systems and commercial experience that allows us to offer the market’s most capable launch vehicle along with flexibility to meet a wide variety of emerging needs. Liberty provides greater performance at less cost than any other comparable launch vehicle.”

The partners say Liberty would be much cheaper than the Ares I, because the unfinished upper stage of the Ares I would be replaced with the first stage of the Ariane 5, which has been launched successfully 41 consecutive times. The lower stage of the Liberty, a longer version of the shuttle booster built by ATK, would be almost the same as what was built for Ares-1.

he new Liberty launch vehicle will use existing infrastructure at Kennedy Space Center, such as the Mobile Launcher shown here. (PRNewsFoto/ATK)

Since both stages were designed for human-rating, the collaborators say this “would enable unmatched crew safety.” The team has planned an initial flight by the end of 2013, a second test flight in 2014, and operational capability in 2015.

Liberty would be able to deliver 20,000 kg (44,500 lbs) to the International Space Station’s orbit, which would give it a launch capability to carry any crew vehicle in development. This is less payload capability, however, than the 25-ton payload that the Ares-1 was advertised to deliver to the ISS.

With the announcement of the collaboration (and quick turn-around) the companies are hoping to be the recipient of some of the $200 million in funding NASA is planning to give out in March 2011 to private companies that are developing space taxis. Smaller NewSpace companies like SpaceX and , Orbital, along with big companies Lockheed Martin and Boeing are all vying for the CCDev-2 contracts.

With some space experts and Congress expressing concern about the length of time it might take for commercial companies to provide reliable transportation to space, as well as concerns about relying on the Russian Soyuz vehicles, this new collaboration could fit NASA’s needs nicely. Plus, the collaborators are hoping the new Liberty rocket will be a bargain compared to other contenders. They are targeting a price of $180 million per launch, which is slightly less than the Atlas V rocket launches by the Boeing-Lockheed Martin United Launch Alliance, ($187 million).

The two companies have touted the new rockets’ ability to carry a wide array of spacecraft and satellites.

“The Liberty initiative provides tremendous value because it builds on European Ariane 5 launcher heritage, while allowing NASA to leverage the mature first stage,” said former NASA astronaut Charlie Precourt, Vice President and General Manager of ATK Space Launch Systems. “We will provide unmatched payload performance at a fraction of the cost, and we will launch it from the Kennedy Space Center using facilities that have already been built. This approach allows NASA to utilize the investments that have already been made in our nation’s ground infrastructure and propulsion systems for the Space Exploration Program.”

If NASA chooses the Liberty system and it works well, it could mean that the money NASA spent on the Ares rocket was not wasted after all.

ATK has put together this video about “Liberty”

Source: ATK

Ariane 5 Rocket Lifts Off for Final Launch of 2010

One final rocket launch in 2010 took place as Arianespace successfully launched the Hispasat 1E and KOREASAT 6 telecommunication satellites aboard an Ariane 5 ECA rocket from the Kourou spaceport in French Guiana. Liftoff was at 4:27 p.m. EST (21:27 GMT).

KOREASAT 6 is a commercial telecommunications satellite of the KT Corporation of the Republic of Korea and was built by Orbital Sciences Corporation. Hispasat 1E is a telecommunications satellite designed to expand Hispasat’s coverage in Europe, the Americas, and North Africa.

This is the sixth and final flight of the year for Arianespace’s heavy-lift rocket.