NASA Premiers New Countdown Clock for Orion’s First Launch

KENNEDY SPACE CENTER – Just in the nick of time, NASA powered up its new countdown clock at the Press Site to tick down towards blastoff of the first launch of the agency’s new Orion crew capsule on Dec. 4 that will carry a new generation of explorers to exciting new destinations further into deep space than ever before.

Without any fanfare, NASA premiered the new digital clock today, Monday, Dec. 1, to replace the world famous analog clock – seen by countless billions across the globe – that was recently retired and detailed in my story – here.

Check out and compare the new and old countdown clocks in my exclusive photos herein.

“We were in a race against time to remove the old clock and replace it with the new clock over the Thanksgiving holiday period,” said NASA Kennedy Space Center spokesman George Diller in an exclusive interview with Universe Today on Monday.

“The plan was to have it ready in time for the first launch of Orion on Dec. 4,” Diller told me.

A new countdown display has been constructed in the place of the former analog countdown clock at the Press Site at NASA's Kennedy Space Center in Florida for Orion’s first launch. The display is a modern, digital LED display akin to stadium monitors. It allows television images to be shown along with numbers.  Credit: Ken Kremer – kenkremer.com
A new countdown display has been constructed in the place of the former analog countdown clock at the Press Site at NASA’s Kennedy Space Center in Florida for Orion’s first launch. The display is a modern, digital LED display akin to stadium monitors. It allows television images to be shown along with numbers. Credit: Ken Kremer – kenkremer.com

A team was working during the holiday.

Why replace the old clock?

“It was getting harder and harder to find the spare parts needed to fix the clock”.

“The original clock was designed in the 1960s”, Diller explained. It has been counting down launches, both manned and unmanned, for more than four decades.

“The clock has been in use since the Apollo 12 moon landing mission in November 1969.”

NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
NASA’s 135th, and final, shuttle mission takes flight on July 8, 2011, at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

It was used continuously throughout the remaining Apollo launches and then for all 135 shuttle launches until the final shuttle mission STS-135 blastoff in July 2011. Since then it has been used exclusively on a plethora of unmanned NASA science launches and resupply missions to the International Space Station.

The old countdown clock was last used in September 2014 during the SpaceX CRS-4 launch to the ISS, which I attended along with the STS-135 launch.

The clock and adjacent US flag are officially called “The Press Site: Clock and Flag Pole” and were listed in the National Register of Historic Places on Jan. 21, 2000.

In the past few days workers dismantled and hauled off the old clock and installed the new one in place.

But the original base was left in place. The new clock is about the same length as the historic one, with a screen nearly 26 feet wide by 7 feet high.

While not true high-definition, the video resolution will be 1280 x 360.The new countdown clock sports a widescreen capability utilizing the latest breakthroughs in outdoor LED display technology, says NASA.

Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com
Space Shuttle Endeavour blasts off on her 25th, and final, mission from Pad 39 A on May 16, 2011, at 8:56 a.m. View from the world famous countdown clock at T-Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com

The display can provide images from multiple sources, as well as the countdown launch time. It was cool to see the new clock in action today.

As currently envisaged, the historic Countdown Clock was moved to the nearby Kennedy Space Center Visitor Complex (KSCVC).

It will be placed on permanent display for the public to see for the first time at the KSCVC main entrance sometime early next year, Diller explained.

The new countdown clock in contact view with the VAB, Launch Control Center (LCC), US Flag and SLS Mobile Launcher at the Press Site at the Kennedy Space Center in Florida used for the first time with Orion’s first launch on Dec. 4, 2014.   Credit: Ken Kremer – kenkremer.com
The new countdown clock in contact view with the VAB, Launch Control Center (LCC), US Flag, and SLS Mobile Launcher at the Press Site at the Kennedy Space Center in Florida will be used for the first time with Orion’s first launch on Dec. 4, 2014. Credit: Ken Kremer – kenkremer.com

NASA TV will provide several hours of live Orion EFT-1 launch coverage with the new countdown clock – starting at 4:30 a.m. on Dec. 4.

Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer
………….
Learn more about Orion, SpaceX, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 1-5: “Orion EFT-1, SpaceX CRS-5, Antares Orb-3 launch, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Iconic Kennedy Space Center Countdown Clock Retires

Iconic Kennedy Space Center Countdown Clock seen here retires
NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
Story updated and more photos[/caption]

In another sign of dramatically changing times since the end of NASA’s Space Shuttle program, the world famous Countdown Clock that ticked down to numerous blastoffs at the Kennedy Space Center Press Site and was ever present to billions of television viewers worldwide, has been retired.

Years of poor weather and decades of unforgiving time have visibly taken their toll on the iconic Countdown Clock beloved by space enthusiasts across the globe – as I have personally witnessed over years of reporting on launches from the KSC Press Site.

It was designed in the 1960s and has been counting down launches both manned and unmanned since the Apollo 12 moon landing mission in November 1969. And it continued through the final shuttle mission liftoff in July 2011 and a variety of unmanned NASA launches since then.

The countdown clock’s last use came just two months ago in September 2014 during the SpaceX CRS-4 launch to the ISS, which I attended along with the STS-135 launch.

The clock is located just a short walk away from another iconic NASA symbol – the Vehicle Assembly Building (VAB) – which assembled the Apollo/Saturn and Space Shuttle stacks for which it ticked down to blastoff. See photo below.

A new clock should be in place for NASA’s momentous upcoming launch of the Orion crew capsule on its inaugural unmanned test flight on Dec. 4, 2014.

Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com
Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com

Because of its age, it has become harder to replace broken pieces.

“Maintaining the clock was becoming problematic,” NASA Press spokesman Allard Beutel told Universe Today.

It displays only time in big bold digits. But of course in this new modern digital era it will be replaced by one with a modern multimedia display, similar to the screens seen at sporting venues.

“The new clock will not only be a timepiece, but be more versatile with what we can show on the digital display,” Beutel told me.

The countdown clock is a must see for journalists, dignitaries and assorted visitors alike. Absolutely everyone, and I mean everyone !! – wants a selfie or group shot with it in some amusing or charming way to remember good times throughout the ages.

And of course, nothing beats including the countdown clock and the adjacent US flag in launch pictures in some dramatic way.

Indeed the clock and flag are officially called “The Press Site: Clock and Flag Pole” and are were listed in the National Register of Historic Places on Jan. 21, 2000.

The clock was officially powered down for the last time at 3:45 p.m. EDT on Nov. 19, 2014.

Famous KSC Press Site Countdown Clock and US Flag with VAB during SpaceX CRS-5 launch in September 2014. Credit: Ken Kremer – kenkremer.com
Famous KSC Press Site Countdown Clock and US Flag with VAB during SpaceX CRS-4 launch in September 2014. Credit: Ken Kremer – kenkremer.com

“The countdown clock at Kennedy’s Press Site is considered one of the most-watched timepieces in the world and may only be second in popularity to Big Ben’s Great Clock in London, England. It also has been the backdrop for a few Hollywood movies,” noted a NASA press release announcing the impending shutdown of the iconic clock.

“It is so absolutely unique — the one and only — built for the world to watch the countdown and launch,” said Timothy M. Wright, IMCS Timing, Countdown and Photo Services. “From a historical aspect, it has been very faithful to serve its mission requirements.”

The famous landmark stands nearly 6 feet (70 inches) high, 26 feet (315 inches) wide is 3 feet deep and sits on a triangular concrete and aluminum base.

Each numerical digit (six in all) is about 4 feet high and 2 feet wide. Each digit uses 56 40-watt light bulbs, the same ones found at the local hardware store. There are 349 total light bulbs in the clock, including the +/- sign (nine) and pair of colons (four), according to a NASA statement.

The new clock will be about the same size.

Fortunately for space fans, there is some good news!

The Countdown Clock will be moved to the nearby Kennedy Space Center Visitor Complex (KSCVC) and placed on permanent display for public viewing.

Details soon!

Space Shuttle Discovery awaits blast off on her final mission from Pad 39 A on the STS-133 mission, its 39th and final flight to space on February 24, 2011.  Prelaunch twilight view from the countdown clock at the KSC Press Site. Credit: Ken Kremer – kenkremer.com
Space Shuttle Discovery awaits blast off on her final mission from Pad 39 A on the STS-133 mission, its 39th and final flight to space on February 24, 2011. Prelaunch twilight view from the countdown clock at the KSC Press Site. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

What Does The Apollo 11 Moon Landing Site Look Like Today?

Forty-five years ago yesterday, the Sea of Tranquility saw a brief flurry of activity when Neil Armstrong and Buzz Aldrin dared to disturb the ancient lunar dust. Now the site has lain quiet, untouched, for almost half a century. Are any traces of the astronauts still visible?

The answer is yes! Look at the picture above of the site taken in 2012, two years ago. Because erosion is a very gradual process on the moon — it generally takes millions of years for meteors and the sun’s activity to weather features away — the footprints of the Apollo 11 crew have a semi-immortality. That’s also true of the other five crews that made it to the moon’s surface.

In honor of the big anniversary, here are a few of NASA’s Lunar Reconnaissance Orbiter’s pictures of the landing sites of Apollo 11, Apollo 12, Apollo 14, Apollo 15, Apollo 16 and Apollo 17. (Apollo 13 was slated to land on the moon, but that was called off after an explosion in its service module.)

The Apollo 12 and Surveyor 3 landing sites in the Ocean of Storms on the moon. Visible is the descent stage of Intrepid (the lunar module) and the robotic craft Surveyor 3, which the astronauts took a sample from while they were on the surface. Also labelled are craters the astronauts visited. Credit: NASA/Goddard/Arizona State University
The Apollo 12 and Surveyor 3 landing sites in the Ocean of Storms on the moon. Visible is the descent stage of Intrepid (the lunar module) and the robotic craft Surveyor 3, which the astronauts took a sample from while they were on the surface. Also labelled are craters the astronauts visited. Credit: NASA/Goddard/Arizona State University
The Apollo 14 landing site imaged by the Lunar Reconnaissance Orbiter in 2011. At right is the descent stage of Antares, the lunar module. At far left, beside the cart tracks and marked by an arrow, is the Apollo Lunar Surface Experiment Package. Credit: NASA/GSFC/Arizona State University
The Apollo 14 landing site at Fra Mauro, imaged by the Lunar Reconnaissance Orbiter in 2011. At right is the descent stage of Antares, the lunar module. At far left, beside the cart tracks and marked by an arrow, is the Apollo Lunar Surface Experiment Package. Credit: NASA/GSFC/Arizona State University
The Apollo 15 landing site at Hadley plains, taken by the Lunar Reconnaissance Orbiter from an altitude of 15.5 miles (25 kilometers) in 2012. Visible is the descent stage of Falcon (the lunar module), the Lunar Roving Vehicle (LRV) and the Apollo Lunar Surface Experiment Package (ALSEP). The site is marked by rover tracks. Credit: NASA Goddard/Arizona State University
The Apollo 15 landing site at Hadley plains, taken by the Lunar Reconnaissance Orbiter from an altitude of 15.5 miles (25 kilometers) in 2012. Visible is the descent stage of Falcon (the lunar module), the Lunar Roving Vehicle (LRV) and the Apollo Lunar Surface Experiment Package (ALSEP). The site is marked by rover tracks. Credit: NASA Goddard/Arizona State University
The Apollo 16 landing site in the Descartes Highlands, taken by the Lunar Reconnaissance Orbiter in 2010. Visible is the descent stage of Orion, the lunar module (LM), the "parking spot" of the Lunar Roving Vehicle (LRV), the Apollo Lunar Science Experiment Package (ALSEP), a radioisotope generator (RTG) and the geophone line, which is part of the mission's Active Seismic Experiment. Credit: NASA's Goddard Space Flight Center/Arizona State University
The Apollo 16 landing site in the Descartes Highlands, taken by the Lunar Reconnaissance Orbiter in 2010. Visible is the descent stage of lunar module (LM) Orion, the “parking spot” of the Lunar Roving Vehicle (LRV) and its tracks, the Apollo Lunar Science Experiment Package (ALSEP), a radioisotope generator (RTG) and the geophone line, which is part of the mission’s Active Seismic Experiment. Credit: NASA’s Goddard Space Flight Center/Arizona State University
The Apollo 17 landing site at Taurus-Littrow taken by the Lunar Reconnaissance Orbiter in 2011. Visible is the descent stage of the lunar module Challenger, the Lunar Roving Vehicle (LRV) and its tracks, the Apollo Lunar Surface Experiment Package (ALSEP) and Geophone Rock. Credit: NASA's Goddard Space Flight Center/ASU
The Apollo 17 landing site at Taurus-Littrow taken by the Lunar Reconnaissance Orbiter in 2011. Visible is the descent stage of the lunar module Challenger, the Lunar Roving Vehicle (LRV) and its tracks, the Apollo Lunar Surface Experiment Package (ALSEP) and Geophone Rock. Credit: NASA’s Goddard Space Flight Center/ASU

Watch All The Apollo Saturn V Rockets Blast Off At The Same Time

Editor’s note: We posted this yesterday only to find that the original video we used had been pulled. Now, we’ve reposted the article with a new and improved version of the video, thanks to Spacecraft Films.

To the moon! The goal people most remember from the Apollo program was setting foot on the surface of our closest neighbor. To get there required a heck of a lot of firepower, bundled in the Saturn V rocket. The video above gives you the unique treat of watching each rocket launch at the same time.

Some notes on the rockets you see:

  • Apollos 4 and 6 were uncrewed test flights.
  • Apollo 9 was an Earth-orbit flight to (principally) test the lunar module.
  • Apollo 8 and 10 were both flights around the moon (with no lunar landing).
  • Apollo 13 was originally scheduled to land on the moon but famously experienced a dangerous explosion that forced the astronauts to come back to Earth early — but safely.
  • Apollos 11, 12, 14, 15, 16 and 17 safely made it to the moon’s surface and back.
  • Skylab’s launch was also uncrewed; the Saturn V was used in this case to send a space station into Earth’s orbit that was used by three crews in the 1970s.
  • You don’t see Apollo 7 pictured here because it did not use the Saturn V rocket; it instead used the Saturn IB. It was an Earth-orbiting flight and the first successful manned one of the Apollo program. (Apollo 1 was the first scheduled crew, but the three men died in a launch pad fire.)

And if this isn’t enough firepower for you, how about all 135 space shuttle launches at the same time?

Read more about the Saturn V at NASA and the Smithsonian National Air and Space Museum.

(h/t Sploid)

All Saturn V Launches At Once from Spacecraft Films on Vimeo.

Astronaut Does A ‘Moon’ Walk In The Sea. Better Yet, It’s Just One Of Many Recent Underwater Missions

The black-and-white tones of this photo evoke a famous Moon walk of 1969, but in reality it was taken in Mediterranean waters just a few days ago.

For the “Apollo 11 Under The Sea” project, European Space Agency astronaut Jean-François Clervoy (pictured above) and ESA astronaut instructor Hervé Stevenin took on the roles of Neil Armstrong and Buzz Aldrin, the first two men to walk on the moon during Apollo 11.

A major goal was to test the Comex-designed Gandolfi spacewalk training suit (based on the Russian Orlan spacesuits) during the sojourn. The mission was considered the first step (literally and figuratively) to figuring out how Europeans can train their astronauts for possible Moon, asteroid and Mars missions in the decades to come.

“The Gandolfi suit is bulky, has limited motion freedom, and requires some physical effort – just like actual space suits. I really felt like I was working and walking on the Moon,” Clervoy stated.

Even the photos come pretty darn close to the real thing. Compare this picture of Apollo 12 commander Pete Conrad during his Moon walk in 1969:

Apollo 12 commander Pete Conrad on the moon in 1969. The glow is due to the sun being at a low angle, NASA says. Credit: NASA
Apollo 12 commander Pete Conrad on the moon in 1969. The glow is due to the sun being at a low angle, NASA says. Credit: NASA

Water is considered a useful training tool for spacewalk simulations. NASA in fact has a ginormous pool called the Neutral Buoyancy Laboratory. Inside are duplicate International Space Station modules. Astronauts are fitted with weights and flotation devices to make them “float” similarly to how they would during spacewalks.

With trained divers hovering nearby, the astronauts practice the procedures they’ll need so that it’s second nature by the time they get into orbit. (NASA astronaut Mike Massimino once told Universe Today that one thing he wasn’t prepared for was how spectacular the view was during his spacewalk. Guess it beats the walls of a pool.)

The first tests for the Apollo 11 underwater simulations began at a pool run by Comex, a deep diving specialist in France, before the big show took place in the Mediterranean Sea off Marseille on Sept. 4. The crew members used tools similar to the Apollo 11 astronauts to pick up soil samples from the ground.

ESA astronaut Jean-François Clervoy collecting a rock sample underwater off the coast of Marseille, France. He was simulating the Apollo 11 mission underwater  to prepare for future missions to the Moon, Mars or an asteroid. Credit: Alexis Rosenfeld
ESA astronaut Jean-François Clervoy collecting a rock sample underwater off the coast of Marseille, France. He was simulating the Apollo 11 mission underwater to prepare for future missions to the Moon, Mars or an asteroid. Credit: Alexis Rosenfeld

“Comex will make me relive the underwater operations of [Neil] Armstrong on the moon, but with an ESA-Comex scuba suit and European flag,” Clervoy wrote in French on Twitter on June 4, several weeks ahead of the mission.

And ESA promises there is more to come: “Further development for planetary surface simulations in Europe will be co-financed by the EU [European Union] as part of the Moonwalk project,” the agency wrote.

Clervoy isn’t the only European astronaut working in water these days. Starting Tuesday (Sept. 9), Andreas Mogensen and Thomas Pesquet joined an underwater lab as part of a five-person crew. Called Space Environment Analog for Testing EVA Systems and Training (SEATEST), it also includes NASA astronauts Joe Acaba and Kate Rubins, as well as Japanese Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi.

JAXA astronaut Soichi Noguchi underwater during the September 2013 SEATEST mission in the Atlantic Ocean about seven miles from Key Largo, Fla. Credit: Soichi Noguchi (Twitter)
JAXA astronaut Soichi Noguchi underwater during the September 2013 SEATEST mission in the Atlantic Ocean about seven miles from Key Largo, Fla. Credit: Soichi Noguchi (Twitter)

“The crew will spend five days in Florida International University’s Aquarius Reef Base undersea research habitat, conducting proof-of-concept engineering demonstrations and refining techniques in team communication. Additional test objectives will look at just-in-time training applications and spacewalking tool designs,” NASA stated on Sept. 6.

“We made it to Aquarius n [sic] did our first “spacewalk” today. From the ocean floor to space: Aquanaut to Astronaut. It is quite the adventure,” Acaba wrote on Twitter on Sept. 10. He walked twice in space on shuttle mission STS-119 in March 2009.

You can follow the livestream here (it runs intermittently until Sept. 17).

And a few days ago, ESA astronauts Alexander Gerst and Reid Wiseman, both bound for the station in 2014, were doing underwater training in the Neutral Buoyancy Laboratory. “Worked with @astro_reid in the pool today, and guess who we met?”, Gerst said on Twitter Sept. 5 while posting this picture below.

"Worked with @astro_reid [ESA astronaut Reid Wiseman] in the pool today, and guess who we met?" joked ESA astronaut Alexander Gerst on Twitter on Sept. 5, 2013. Presumably the joke referred to the protagonist in WALL-E, a 2008 Pixar-animated film that features space exploration. Credit: Alexander Gerst/Twitter
“Worked with @astro_reid [ESA astronaut Reid Wiseman] in the pool today, and guess who we met?” joked ESA astronaut Alexander Gerst on Twitter on Sept. 5, 2013. Presumably the joke referred to the protagonist in WALL-E, a 2008 Pixar-animated film that features space exploration. Credit: Alexander Gerst/Twitter

This Day in Space History: Apollo 12 and SCE to AUX

43 years ago today, on November 14, 1969, Apollo 12 successfully launched to the Moon. But it wasn’t without a little drama. The weather that day at Cape Canaveral in Florida was overcast with light rain and winds, but at 11:22 am EST, the spacecraft, carrying astronauts Pete Conrad, Dick Gordon, and Alan Bean, blasted off into the clouds. Thirty-seven seconds into launch, all hell broke loose.

“What the hell was that?” asked Gordon. Twenty seconds of confusion ensued, and then another disturbance occurred.

“Okay, we just lost the platform gang,” reported Conrad, “I don’t know what happened here. We had everything in the world drop out.”

The crew and Mission Control didn’t know what had happened, and only later determined the Saturn V rocket had been struck by lighting – twice.

Were it not for flight controller John Aaron, the mission might have been aborted. Aaron may be remembered more for being instrumental in helping to save Apollo 13, but the part he played in Apollo 12 was just as crucial.

When he saw the unusual telemetry readings from Apollo 12, he remembered a flight simulation that took place about a year earlier, where similar telemetry showed up. He recalled this simulated anomaly concerned an obscure system called Signal Conditioning Equipment (SCE), and remembered normal readings were restored by putting the SCE on its auxiliary setting, which meant that it would run even under low-voltage conditions.

So when he quickly called out the recommendation, “Flight, try SCE to ‘AUX'”, most of his mission control colleagues had no idea what he was talking about. Both the flight director and the CapCom asked him to repeat the recommendation. Pete Conrad’s response to the order was, “What the hell is that?”

Fortunately Alan Bean was familiar with the location of the SCE switch inside the capsule, and flipped it to auxiliary. Telemetry was immediately restored, allowing the mission to continue.

This was just one instance that earned Aaron the compliment of being called a “steely-eyed missile man,” the absolute highest of NASA compliments. And even today — among us geeks — the phrase “SCE to AUX” used to describe a situation where one narrowly averts a catastrophe by coming up with an ingenious plan.

Lightning bolt during the launch of the Apollo 12 lunar landing mission

Lightning bolt during the launch of Apollo 12. Credit: NASA

After all the systems and telemetry had been restored, Conrad wondered if they had been struck by lightning, and it later was confirmed. Conrad remarked, “Think we need to do a little more all-weather testing.”

In February of 1970, the Apollo 12 incident report about the lightning strikes concluded that atmospheric electrical hazards needed to be considered in greater depth for future Apollo flights.

According to the report, the lightning was most likely triggered by an electrical conduction path created by the spacecraft and its exhaust plume as it entered into the electric field of the weather system above. The possibility that lightning could strike a launch vehicle had not previously been considered.

The report’s suggested corrective actions included actions to “minimize the probability of a lightning discharge by avoiding flight operations into conditions, which may contain high electrical fields.” It also provided the following launch restrictions, that later would be expanded upon for the space shuttle program:

No launch when flight will go through cumulonimbus (thunderstorm) cloud formation. In addition, no launch if flight will be within 5 miles of thunderstorms cloud or 3 miles of associated anvil.

Do not launch through cold-front of squall-line clouds which extend above 10,000 feet.

Do not launch through middle cloud layers 6,000 feet or greater in depth where the freeze level is in the clouds.

Do not launch through cumulus clouds with tops at 10,000 feet or higher.

Ten minutes after the second lightning strike, when operations returned to normal and Apollo 12 was heading towards the Moon, Conrad said, “Well, I’ll tell you one thing. This is a first-class ride, Houston.”

Over the next ten days, the crew of Apollo 12 would go to the Moon and back. The lunar module performed a mostly automatic landing at the Ocean of Storms, a first at the time. They inspected and retrieved parts of the 1967 Surveyor 3 spacecraft, brought back lunar rocks, and set up experiments to measure various aspects of the Moon. The three astronauts safely returned home, splashing down on November 24, 1969.

You can download a 4 minute audioclip of the Apollo 12 launch here (via NASA)

The lead video is taken from the documentary “Failure Is Not An Option.”

Image: John Aaron on console in Mission Control. Credit: NASA

Best Views Yet of Historic Apollo Landing Sites

[/caption]

Just over 42 years after Neil and Buzz became the first humans to experience the “stark beauty” of the lunar surface, the Lunar Reconnaissance Orbiter captured the remnants of their visit in the image above, acquired Nov. 5, 2011 from an altitude of only 15 miles (24 km). This is the highest-resolution view yet of the Apollo 11 landing site!

The Lunar Module’s descent stage, a seismic experiment monitor, a laser ranging reflector (LRRR, still used today to measure distances between Earth and the Moon) and its cover, and a camera can be discerned in the overhead image… as well as the darker trails of the astronauts’ bootprints, including Armstrong’s jaunt eastward to the rim of Little West crater.

The crater was the furthest the Apollo astronauts ventured; in fact, if you take the total area Neil and Buzz explored it would easily fit within the infield of a baseball diamond!

Neil Armstrong’s visit to the crater’s edge was an unplanned excursion. He used the vantage point to capture a panoramic image of the historic site:

Panorama of the Apollo 11 site from Little West crater. (NASA)

“Isn’t that something! Magnificent sight out here.” Armstrong had stated before he was joined by Aldrin on the lunar surface. “It has a stark beauty all its own. It’s like much of the high desert of the United States. It’s different, but it’s very pretty out here.”

Previously the LROC captured the Apollo 15 landing site, which included the tracks of the lunar rover — as well as the rover itself! And, just yesterday, the LROC site operated by Arizona State University featured the latest similarly high-resolution view of the Apollo 12 site. This location has the honor of being two landing sites in one: Apollo 12 and the Surveyor 3 spacecraft, which had landed on April 20, 1967 – two and a half years earlier!

The Apollo 12 landing site in Oceanus Procellarum. (NASA/GSFC/Arizona State University)

Even though the US flag planted by Apollo 12 astronauts Pete Conrad and Alan Bean isn’t itself visible, the shadow cast by it is.

Apollo 12 was the only mission to successfully visit the site of a previous spacecraft’s landing, and it also saw the placement of the first Apollo Lunar Surface Experiments Package (ALSEP), which included a seismometer and various instruments to measure the lunar environment.

Read more about this image on the LROC page here, and check out the video tour below of the Apollo 12 site.

Images and video courtesy of NASA/GSFC/Arizona State University

The Artist of Apollo 12


40 years ago today, Apollo 12 launched on their mission to the Moon. On board was Pete Conrad, Dick Gordon and Alan Bean. Bean is a gifted artist who has shared his experiences on the Moon like no other astronaut has through his paintings, which offer a unique look at both real and imagined events during all the different astronaut’s moonwalks. (Check out his website to see a gallery of his amazing artwork.) And enjoy this great interview that Miles O’Brien did recently with Alan Bean.

NASA also has an interactive Apollo 12 feature.