Musk Confirms how “Mechazilla” Will Catch and Assemble Starship and Super Heavy for Rapid Reuse

In January of 2021, Elon Musk announced SpaceX’s latest plan to increase the number of flights they can mount by drastically reducing turnaround time. The key to this was a new launch tower that would “catch” first stage boosters after they return to Earth. This would forego the need to install landing legs on future Super Heavy boosters and potentially future Starship returning to Earth.

Musk shared this idea in response to a Tweet made by an animator who goes by the Twitter handle Erc X, who asked if his latest render (of a Starship landing next to its launch tower) was accurate. As usual, Musk responded via Twitter, saying:

“We’re going to try to catch the Super Heavy Booster with the launch tower arm, using the grid fins to take the load… Saves mass & cost of legs & enables immediate repositioning of booster on to launch mount—ready to refly in under an hour.”

Continue reading “Musk Confirms how “Mechazilla” Will Catch and Assemble Starship and Super Heavy for Rapid Reuse”

Animation Shows how Saturn’s Rings Move at Different Speeds

Saturn’s rings are one of the most recognized and revered celestial objects known to the human race. From a distance, they look like a disk of layered crystal or multicolored disks within disks that wrap around Saturn’s hazy umber face. When viewed up close, we see that these rings are actually particles of water ice (from microns to icebergs), as well as silicates, carbon dioxide, and ammonia.

We would also noticed that the rings have some interesting orbital mechanics. In fact, each ring has a different orbit that is the result of its proximity to Saturn (i.e., the closer they are, the faster they orbit). To illustrate what this complex system look like, NASA Fellow Dr. James O’Donoghue created a stunning animation that shows how each of Saturn’s major ring segments (A-Ring to F-Ring) orbit together around the planet.

Continue reading “Animation Shows how Saturn’s Rings Move at Different Speeds”

Ride Along with New Horizons on its Pluto Flyby

On July 14, 2015, after nine and a half years journeying across the Solar System, NASA’s New Horizons spacecraft made its historic close pass of Pluto and its moon Charon. Traveling a relative velocity of nearly 13.8 km/s (that’s almost 31,000 mph!) New Horizons passed through the Pluto system in a matter of hours but the views it captured from approach to departure held the world spellbound with their unexpected beauty. Those images and data – along with a bit of imagination – have been used by space imaging enthusiast Björn Jónsson to create an animation of New Horizons’ Pluto pass as if we were traveling along with the spacecraft – check it out above.

You can find more science images and discoveries about Pluto and Charon from New Horizons here, and see more renderings and animations by Jónsson on his website here.

An Even Closer View of Ceres Shows Multiple White Spots Now

NASA’s Dawn spacecraft has acquired its latest and closest-yet snapshot of the mysterious dwarf planet world Ceres. These latest images, taken on Feb. 4, from a distance of about 90,000 miles (145,000 km) clearly show craters – including a couple with central peaks –  and a clearer though still ambiguous view of that wild white spot that has so many of us scratching our heads as to its nature.

Get ready to scratch some more. The mystery spot has plenty of company.

Take a look at some still images I grabbed from the video which NASA made available today. In several of the photos, the white spot clearly looks like a depression, possibly an impact site. In others, it appears more like a rise or mountaintop. But perhaps the most amazing thing is that there appear to be not one but many white dabs and splashes on Ceres’ 590-mile-wide globe. I’ve toned the images to bring out more details:

Here the spot appears more like a depression. Frost? Ice? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Here the spot appears more like a depression. Frost? Ice? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Here the white spot is at the asteroid's left limb. You can also see additional smaller spots that remind me of rayed lunar craters. Credit:
Here the white spot is at the asteroid’s left limb. You can also see lots of additional smaller spots that remind me of rayed lunar craters. Of course, they may be something else entirely.  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Look down along the lower limb to spot a crater with a cool central peak. Credit:
Look down along the lower limb to spot a crater with a cool central peak. Note also how many white spots are now visible on Ceres. The mystery spot is a little right of center in this view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Our mystery white spot is further right of center. Is it a rise or a hole? Credit:
Our mystery white spot is further right of center. Is it a rise or a hole?Are the streaks rays for fresh material from an impact the way the lunar crater Tycho appears from Earth?  Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Yet another view of the mystery spot. Credit:
Yet another view of the mystery spot. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA


Animation made from images taken by Dawn on Feb. 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Animation made from images taken by Dawn on Feb. 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Now let’s take a look at an additional NASA animation of Ceres made using processed images. As the spot first rounds the limb it looks like a depression. But just before it disappears around the backside a pointed peak seems to appear. Intriguing, isn’t it?

On Scarves, Squirrels, and the Fate of the Universe

Are you scared of the dark, personal failure, or just feeling a tad nihilistic? Maybe you’re worried about asteroids, solar flares, or the heat death of the Universe… or perhaps you’ve just misplaced your favorite winter accessory and it’s driving you… er, nuts. If any of these are applicable (or even if none is) be sure to watch the ridiculously award-winning video above by animator Eoin Duffy. (And if you’re wondering why I’m sharing this on Universe Today, well… you’ll see.)

Click. Play. Now.

Credit: Eoin Duffy. HT to the Observation Deck @io9.

Watch Pluto and Charon Engage in Their Orbital Dance

Now here’s something I guarantee you’ve never seen before: a video of the dwarf planet Pluto and its largest moon Charon showing the two distinctly separate worlds actually in motion around each other! Captured by the steadily-approaching New Horizons spacecraft from July 19–24, the 12 images that comprise this animation were acquired with the Long Range Reconnaissance Imager (LORRI) instrument from distances of 267 million to 262 million miles (429 million to 422 million km) and show nearly a full orbital rotation. Absolutely beautiful!

For a close-up video of the two worlds in motion, click below:

Pluto and Charon rotation movie from New Horizons (enlarged view)
Pluto and Charon rotation movie from New Horizons (enlarged view)

Pluto and Charon are seen circling a central gravitational point known as the barycenter, which accounts for the wobbling motion. Since Charon is 1/12th the mass of Pluto the center of mass between the two actually lies a bit outside Pluto’s radius, making their little gravitational “dance” readily apparent.

(The same effect happens with the Earth and Moon too, but since the barycenter lies 1,700 km below Earth’s surface it’s not nearly as obvious.)

“The image sequence showing Charon revolving around Pluto set a record for close range imaging of Pluto—they were taken from 10 times closer to the planet than the Earth is,” said New Horizons mission Principal Investigator Alan Stern, of the Southwest Research Institute. “But we’ll smash that record again and again, starting in January, as approach operations begin.”

Fastest Spacecraft
Artist concept of the New Horizons spacecraft. Credit: NASA

Launched January 19, 2006, New Horizons is now in the final year of its journey to the Pluto system. On August 25 it will pass the orbit of Neptune – which, coincidentally, is 25 years to the day after Voyager 2’s closest approach – and then it’s on to Pluto and Charon, which New Horizons will become the first spacecraft to fly by on July 14, 2015, at distances of 10,000 and 27,000 km respectively. Find out where New Horizons is right now here.

Source: New Horizons

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Once Upon a Time There Was a Spacecraft Called Rosetta…

…and that time is now! ESA’s Rosetta spacecraft is just over a mere two weeks away from its arrival at Comet 67P/Churyumov-Gerasimenko (which has recently surprised everyone with its binary “rubber duckie” shape) and the excitement continues to grow — and rightfully so, since after ten years traveling through the Solar System Rosetta is finally going to achieve its goal of being the first spacecraft to orbit a comet!

As part of the “Are We There Yet” campaign to encourage public participation in this historic space exploration event, ESA has released the next installment of Rosetta’s story in adorable animated format. Check it out above, and feel free to fall in love with a solar-powered spacecraft.

Keep up with Rosetta’s journey on the ESA website here, and enter the #RosettaAreWeThereYet contest by sharing your photos here (you could win a trip to ESA’s Operations Center in Darmstadt, Germany in November for Philae’s landing party!)

Video: ESA

Rosetta Watches Comet 67P Tumbling Through Space

This is really getting exciting! ESA’s Rosetta spacecraft (and the piggybacked Philae lander) are in the home stretch to arrive at Comet 67P/Churyumov-Gerasimenko in 34 days and the comet is showing up quite nicely in Rosetta’s narrow-angle camera. The animation above, assembled from 36 NAC images acquired last week, shows 67P/C-G rotating over a total elapsed time of 12.4 hours. No longer just an extra-bright pixel, it looks like a thing now!

The animation, although fascinating, only hints at the “true” shape of the comet’s nucleus. Reflected light does create a bloom effect in the imaging sensor, especially at such small resolutions, expanding the apparent size of the comet beyond its 4-by-4-pixel size. But rest assured that much, much better images are on the way as Rosetta gets closer and closer.

Read more: How Big is Rosetta’s Comet?

The spacecraft was about 86,000 km (53,440 miles) from 67P/C-G when the images were acquired. Since that time it has cut that distance in half, and by this weekend it will be less than 36,000 km (22,370 miles) from the comet. After more than a decade of traveling around the inner Solar System Rosetta is finally arriving at its goal! Click here to see where Rosetta is now.

Stay tuned for more exciting updates from Rosetta, and learn more about the mission below:

Source: ESA’s Rosetta blog

Animation credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA 

Curiosity Captures Mercury from Mars

NASA’s Curiosity rover may be busy exploring the rugged and rocky interior of Gale Crater, but it does get a chance to skygaze on occasion. And while looking at the Sun on June 3, 2014 (mission Sol 649) the rover’s Mastcam spotted another member of our Solar System: tiny Mercury, flitting across the Sun’s face.

Silhouetted against the bright disk of the Sun, Mercury barely appears as a hazy blur in the filtered Mastcam images. But it was moving relatively quickly during the transit, passing the darker smudges of two Earth-sized sunspots over the course of several hours.

It’s the first time Mercury has ever been imaged from Mars, and also the first time we’ve observed a planet transiting our Sun from another world besides our own.

Watch an animation of the transit below:

Animated blink comparison showing Mercury's movement across the Sun
Animated 1-hour interval blink comparison showing Mercury’s movement across the Sun

Because the sunspots move along with the rotation of the Sun (and the Sun rotates once avery 25 days around its equator) Mercury makes a fast pass as it travels along on one of its 88-day-long years.

Watch an HD version of the event here.

In reality this was no chance spotting, but rather a carefully calculated observation using the Mastcam’s right 100mm telephoto lens and neutral density filter, which is used to routinely image the Sun in order to measure the dustiness of the Martian atmosphere.

“This is a nod to the relevance of planetary transits to the history of astronomy on Earth. Observations of Venus transits were used to measure the size of the solar system, and Mercury transits were used to measure the size of the sun.”

– Mark Lemmon, Texas A&M University, member of the Mastcan science team

Read more: Amazing Transit of Venus Images from Around the World

The next chance for Curiosity to spot Mercury will come in April 2015 and, if the rover is still operating by then — perhaps with some upgrades by future human visitors? — it may capture Earth similarly passing across the Sun in November of 2084.

Source: NASA/JPL

Image/animation credit: NASA/JPL-Caltech/MSSS/Texas A&M

Watch Two Dark Moons Sneak Into Cassini’s Shots

On March 11, NASA’s Cassini spacecraft was acquiring some images of Saturn’s back-lit limb when two of its moons decided to make an entrance. Like stage hands in a darkened theatre the moons quickly passed  across the scene, moving between Saturn and the spacecraft and, because of exposure time and spacecraft motion, getting a bit blurred in the process.

In the image above the silhouette of one moon can be seen at bottom right — Mimas, perhaps — while another’s crescent can be made out at upper left… possibly Enceladus. Very cool!

Watch an animation of the moons below:

Two of Saturn's moons drift into the scene on March 11, 2014 (NASA/JPL-Caltech/SSI. Animation by Jason Major.)
Two of Saturn’s moons drift into the scene on March 11, 2014 (NASA/JPL-Caltech/SSI. Animation by Jason Major.)

While I admit I’m not 100% sure which moons these are, based on their apparent shapes, positions, and relative sizes I’d make my guess that these are 318-mile (511-km) -wide Enceladus and the 246-mile (395-km) -wide Mimas.

Possible location of icy spray, if this is Enceladus
Possible location of icy spray, if Enceladus is in fact this moon’s real name

Cassini was 843,762 miles (1,357,903 km) from Saturn when the images were acquired. And, if the larger moon at left is Enceladus, I’m thinking south in these images is up based on the barely-perceptible presence of a lighter area along its top edge that could be icy spray from its southern geysers. (See enlarged detail at right.)

Saturn, of course, is on the right. A small segment of the bright arc of its backlit limb is what’s running diagonally down across the image.

These images have not yet been calibrated or cataloged by NASA or the Cassini team.

See the latest raw images from Cassini on JPL’s mission page here.

*I say “dark moons” but actually Enceladus and Mimas are pretty bright, both being composed of a lot of ice. Enceladus is actually the most reflective world in the Solar System!