Exploding Binary Stars Will Light Up the Sky in 2022

Stellar collisions are an amazingly rare thing. According to our best estimates, such events only occur in our galaxy (within globular clusters) once every 10,000 years. It’s only been recently, thanks to ongoing improvements in instrumentation and technology, that astronomers have been able to observe such mergers taking place. As of yet, no one has ever witnessed this phenomena in action – but that may be about to change!

According to study from a team of researchers from Calvin College in Grand Rapids, Michigan, a binary star system that will likely merge and explode in 2022. This is an historic find, since it will allow astronomers to witness a stellar merger and explosion for the first time in history. What’s more, they claim, this explosion will be visible with the naked-eye to observers here on Earth.

The findings were presented last week at the 229th Meeting of the American Astronomical Society (AAS). In a presentation titled “A Precise Prediction of a Stellar Merger and Red Nova Outburst“, Professor Lawrence Molnar and his team shared findings that indicate how this binary pair will merge in about six years time. This event, they claim, will cause an outburst of light so bright that it will become the brightest object in the night sky.

Professor Lawrence Molnar of the Calvin College’s Dept. of Physics and Astronomy. He predicts KIC 9832227 will collide and explode in 2022. Credit: calvin.edu

This binary star system, which is known as KIC 9832227, is one that Prof. Molnar and his colleagues – which includes students from the Apache Point Observatory and the University of Wyoming – have been monitoring since 2013. His interest in the star was piqued during a conference in 2013 when Karen Kinemuchi (an astronomers with the Apache Point Observatory) presented findings about brightness changes in the star.

This led to questions about the nature of this star system – specifically, whether it was a pulsar or a binary pair. After conducting their own observations using the Calvin observatory, Prof. Molnar and his colleagues concluded that the star was a  contact binary – a class of binary star where the two stars are close enough to share an atmosphere. This brought to mind similar research in the past about another binary star system known as V1309 Scorpii.

This binary pair also had a shared atmosphere; and over time, their orbital period kept decreasing until (in 2008) they unexpectedly collided and exploded. Believing that KIC 9832227 would undergo a similar fate, they began conducting tests to see if the star system was exhibiting the same behavior. The first step was to make spectroscopic observations to see if their observations could be explained by the presence of a companion star.

As Cara Alexander, a Calvin College student and one of the co-authors on the team’s research paper, explained in a college press release:

“We had to rule out the possibility of a third star. That would have been a pedestrian, boring explanation. I was processing data from two telescopes and obtained images that showed a signature of our star and no sign of a third star. Then we knew we were looking at the right thing. It took most of the summer to analyze the data, but it was so exciting. To be a part of this research, I don’t know any other place where I would get an opportunity like that; Calvin is an amazing place.”

Diagram showing the summer constellations of Cygnus and Lyra and the position of KIC 9832227 (shown with a red circle). Credit: calvin.edu

The next step was to measure the pair’s orbital period, to see it was in fact getting shorter over time – which would indicate that the stars were moving closer to each other. By 2015, Prof. Molnar and his team determined that the stars would eventually collide, resulting in a kind of stellar explosion known as a “Red Nova”. Initially, they estimated this would take place between 2018 and 2020, but have since placed the date at 2022.

In addition, they predict that the burst of light it will cause will be bright enough to be seen from Earth. The star will be visible as part of the constellation Cygnus, and it appear as an addition star in the familiar Northern Cross star pattern (see above). This is an historic case, since no astronomer has ever been able to accurately predict when and where a stellar collision would take place in the past.

What’s more, this discovery is immensely significant because it represents a break with the traditional discovery process. Not only have small research institutions and universities not been the ones to take the lead on these sorts of discoveries in the past, but student-and-teacher teams have also not been the ones who got to make them. As Molnar explained it:

“Most big scientific projects are done in enormous groups with thousands of people and billions of dollars. This project is just the opposite. It’s been done using a small telescope, with one professor and a few students looking for something that is not likely. Nobody has ever predicted a nova explosion before. Why pay someone to do something that almost certainly won’t succeed? It’s a high-risk proposal. But at Calvin it’s only my risk, and I can use my work on interesting, open-ended questions to bring extra excitement into my classroom. Some projects still have an advantage when you don’t have as much time or money.”

The model Prof. Molnar and his team constructed of the double star system KIC 9832227, which is a contact binary (i.e. two stars that are touching). Credit: calvin.edu.

Over the course of the next year, Molnar and his colleagues will be monitoring KIC 9832227 carefully, and in multiple wavelengths. This will be done with the help of the NROA’s Very Large Array (VLA), NASA’s Infrared Telescope Facility at Mauna Kea, and the ESA’s XMM-Newton spacecraft. These observatories will study the star’s radio, infrared and X-ray emissions, respectively.

Molnar also expects that amateur astronomers will be able to monitor the pair’s orbital timing and variations in brightness. And if he and his team’s predictions are correct, every student and stargazer in the northern hemisphere – not to mention people who just happen to be out for a walk – will be privy to the amazing light show. This is sure to be a once-in-a-lifetime event, so stay tuned for more information!

Interestingly enough, this historic discovery is also the subject of a documentary film. Titled “Luminous“, the documentary – which is directed by Sam Smartt, a Calvin professor of communication arts and sciences – chronicles the process that led Prof. Molnar and his team to make this unprecedented discovery. The documentary will also include footage of the Red Nova as it happens in 2022, and is expected to be released sometime in 2023.

Check out the trailer below:

Further Reading: Calvin College, Science Mag

Could Garnet Planets be Habitable?

The hunt for exoplanet has revealed some very interesting things about our Universe. In addition to the many gas giants and “Super-Jupiters” discovered by mission like Kepler, there have also been the many exoplanet candidate that comparable in size and structure to Earth. But while these bodies may be terrestrial (i.e. composed of minerals and rocky material) this does not mean that they are “Earth-like”.

For example, what kind of minerals go into a rocky planet? And what could these particular compositions mean for the planet’s geological activity, which is intrinsic to planetary evolution? According to new study produced by a team of astronomers and geophysicists, the composition of an exoplanet depends on the chemical composition of its star – which can have serious implications for its habitability.

The findings of this study were presented at the 229th Meeting of the American Astronomical Society (AAS), which will be taking place from Jan. 3rd to Jan. 7th. During an afternoon presentation – titled “Between a Rock and a Hard Place: Can Garnet Planets Be Habitable?” – Johanna Teske (an astronomer from the Carnegie Institute of Science)  showed how different types of stars can produce vastly different types of planets.

The Apache Point Observatory Galactic Evolution Experiment (APOGEE), which collects spectrographic information on distant stars. Credit: astronomy.as.virginia.edu

Using the Apache Point Observatory Galactic Evolution Experiment (APOGEE), which is part of the Sloan Digital Sky Survey (SDSS) Telescope at Apache Point Observatory, they examined spectrographic information obtained from 90 star systems – which were also observed by the Kepler Mission. These systems are of particular interest to exoplanet hunters because they have been shown to contain rocky planets.

As Teske explained during the course of the presentation, this information could help scientists to place further constraints on what it takes for a planet to be habitable. “[O]ur study combines new observations of stars with new models of planetary interiors,” she said. “We want to better understand the diversity of small, rocky exoplanet composition and structure — how likely are they to have plate tectonics or magnetic fields?”

Focusing on two star systems in particular – Kepler 102 and Kepler 407 – Teske demonstrated how the composition of a planet has a great deal to do with the composition of its star. Whereas Kepler 102 has five known planets, Kepler 407, has two different planets – one gaseous and the other terrestrial. And while Kepler 102 is quite similar to our Sun (slightly less luminous), Kepler 407 has close to the same mass (but a lot more silicon).

In order to understand what consequences these differences could have for planetary formation, the SDSS team turned to a team of geophysicists. Led by Cayman Unterborn from Arizona State University, this team ran computer models to see what kinds of planets each system would have. As Unterborn explained:

“We took the star compositions found by APOGEE and modeled how the elements condensed into planets in our models. We found that the planet around Kepler 407, which we called ‘Janet,” would likely be rich in the mineral garnet. The planet around Kepler 102, which we called ‘Olive,’ is probably rich in olivine, like Earth.”

Artist rendition of interior compositions of planets around the stars Kepler 102 and Kepler 407. Credit: Robin Dienel/Carnegie DTM

This difference would have considerable impact on planetary tectonics. For one, garnet is lot more rigid than olivine, which would mean “Janet” would experience less in the way of long-term plate tectonics. This in turn would mean that processes that are believed to be essential to life on Earth – like volcanic activity, atmospheric recycling, and mineral exchanges between the crust and mantle – would be less common.

This raises additional questions about the habitability of “Earth-like” planets in other star systems. In addition to being rocky and having strong magnetic fields and viable atmospheres, it seems that exoplanets also need to have the right mix of minerals in order to support life – life as we know it, at any rate. What’s more, this kind of research also helps us to understand how life came to emerge on Earth in the first place.

Looking forward, the research team hopes to extend their study to include all the 200,000 stars surveyed by APOGEE to see which could host terrestrial planets. This will allow astronomers to determine the mineral composition of more rocky worlds, thus helping them to determine which rocky exoplanets are “Earth-like”, and which are just “Earth-sized”.

Further Reading: SDSS

Chandra Spots Two Cosmic Heavy-Hitters at Once

This week, the 229th Meeting of the American Astronomical Society (AAS) kicked off in Grapevine, Texas. Between Monday and Friday (January 3rd to January 7th), attendees will be hearing presentations by researchers and scientists from several different fields as they share the latest discoveries in astronomy and Earth science.

One of the highlights so far this week was a presentation from NASA’s Chandra X-ray Observatory, which took place on the morning of Wednesday, January 5th. In the course of the presentation, an international research team showed some stunning images of two of the most powerful cosmic forces seen together for the first time – a supermassive black hole and two massive galaxy clusters colliding.

The galaxy clusters are known as Abell 3411 and Abell 3412, which are located about two billion light years from Earth. Both of these clusters are quite massive, each possessing the equivalent of about a quadrillion times the mass of our Sun. Needless to say, the collision of these objects produced quite the shockwave, which included the release of hot gas and energetic particles.

X-ray image of the collision between Abell 3411 and Abell 3412. Credit: NASA/CXC/SAO/R. van Weeren et al.

This was made all the more impressive thanks to the presence of a supermassive black hole (SMBH) at the center of one of the galaxy clusters. As the team described in their paper – titled “The Case for Electron Re-Acceleration at Galaxy Cluster Shocks” – the galactic collision produced a nebulous outburst of x-rays (shown above), which were produced when hot clouds of gas from one cluster plowed through the hot gas clouds of the other.

Meanwhile, the inflowing gas was accelerated outward into a jet-like stream, thanks to the powerful electromagnetic fields of the SMBH. These particles were accelerated even further when they got swept up by the shock waves produced by the collision of the galactic clusters and their massive gas clouds. These streams were detected thanks to the burst of radio waves they released as a result.

By seeing these two major events happening at the same time in the same place, the research team effectively witnessed a cosmic “double whammy”. As Felipe Andrade-Santos of the Harvard-Smithsonian Center for Astrophysics (CfA), and co-author of the paper, described it in a Chandra press release:

“It’s almost like launching a rocket into low-Earth orbit and then getting shot out of the Solar System by a second rocket blast. These particles are among the most energetic particles observed in the Universe, thanks to the double injection of energy.”

Image of radio waves produce by the collision between Abell 3411 and Abell 3412. Credit: NASA/CXC/SAO/R. van Weeren et al.

Relying on data obtained from the Chandra X-ray Observatory, the Giant Metrewave Radio Telescope (GMRT) in India, the Karl G. Jansky Very Large Array, the Keck Observatory, and Japan’s Subaru Telescope, the team was able to capture this event in the optical, x-ray, and radio wave wavelengths. This not only led to some stunning images, but shed some light on a long-standing mystery in galaxy research.

In the past, astronomers have detected radio emissions coming from Abell 3411 and Abell 3412 using the GMRT. But the origins of these emissions, which reached for millions of light years, was the subject of speculation and debate. Relying on the data they obtained, the research team was able to determine that they are the result of energetic particles (produced by the clouds of hot gas colliding) being further accelerated by galactic shock waves.

Or as co-author William Dawson, of the Lawrence Livermore National Lab in Livermore, California, put it:

“This result shows that a remarkable combination of powerful events generate these particle acceleration factories, which are the largest and most powerful in the Universe. It is a bit poetic that it took a combination of the world’s biggest observatories to understand this.”

Many interesting finds have been shared since the 229th Meeting of the AAS began – like the hunt for the source of a Fast Radio Burst – and many more are expected before it wraps up at the end of the week. These will include the latest results from the Sloan Digital Sky Survey (SDSS), and new and exciting research on black holes, exoplanets, and other astronomical phenomena.

And be sure to check out this podcast from Chandra as well, which talks about the collision between Abell 3411 and 3412 and the cosmic forces it unleashed.

Further Reading: Chandra X-ray Observatory

Evidence Continues To Mount For Ninth Planet

Ever since its existence was first proposed, the evidence for Planet 9 continues to mount. But of course, said evidence has been entirely indirect, consisting mostly of studies that show how the orbits of Trans-Neptunian Objects (TNOs) are consistent with a large object crossing their path. However, evidence is also emerging that comes from the center of the Solar System itself.

This latest line of evidence comes from Caltech, where researchers Elizabeth Bailey, Konstantin Batygin, and Michael E. Brown (the latter of whom were the ones who first proposed Planet 9’s existence) have published a new study linking solar obliquity to the existence of Planet 9. Essentially, they claim that the axial tilt of the Sun (6°) could be due to the gravitational influence a large planet with an extreme orbit.

To recap, the issue of Planet was first raised in 2014 by astronomers Scott Sheppard and Chadwick Trujillo. Noting the similarities in the orbits of distant Trans-Neptunian Objects (TNOs), they postulated that a massive object was likely influencing them. This was followed in 2016 by Konstantin Batygin and Michael E. Brown of Caltech suggesting that an undiscovered planet was the culprit.

The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)
The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)

Calling this body Planet 9, they speculated that it had a mass 10 times greater than that of Earth, and took 20,000 years to complete a single orbit of our Sun. They also speculated that its orbit was tilted relative to the other planets of our Solar System, and extremely eccentric. And little by little, examinations of other Solar bodies have shown that Planet 9 is likely out there.

For the sake of their study – “Solar Obliquity Induced by Planet Nine“, which was recently published in the Astrophysical Journal – the research team (led by Bailey) looked to the obliquity of the Sun. As they state in their paper, the six-degree axial tilt of the Sun can only be explained in one of two ways – either as a result of an asymmetry that was present during the formation of Solar System, or because of an external source of gravity.

To test this hypothesis, Bailey, Batygin and Brown used an analytic model to test how interactions between Planet 9 and the rest of the Solar System would effect their orbits over the course of the last 4.5 billion years. As Elizabeth Bailey, a graduate student at Caltech’s Division of Geological and Planetary Sciences and the lead author on the paper, told Universe Today via email:

“We simulated the solar system’s motion. Planet 9 forces the solar system to slowly wobble. If Planet 9 is out there, we are in the process of wobbling right now, as we speak! But it happens very slowly, a few degrees tilt per billion years. Meanwhile the sun is not wobbling much,  so it looks like the sun is tilted. A range of Planet 9 parameters cause exactly the configuration of the sun that we see today.

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

In the end, they concluded that the Sun’s obliquity could only be explained by the influence of giant planet with an extreme orbit, one that is consistent with the characteristics attributed to Planet 9. In other words, the existence of Planet 9 offers an explanation for the Sun’s peculiar behavior, something which has remained a mystery until now.

“Planet Nine was first hypothesized because the orbits of objects in the outer reaches of the solar system are confined in physical space,” said Bailey. “Those orbits would be all over the place unless something is currently stopping them. The only explanation so far is Planet Nine. For over 150 years, people have wondered why the sun is tilted. Personally I’d say that Planet 9 offers the first satisfying explanation. If it exists, it tilted the sun.”

In addition, the subject of Planet 9 was also raised at the joint 48th meeting of the American Astronomical Society’s Division for Planetary Sciences and 11th European Planetary Science Congress, which took place from Oct 16th to 21st in Pasadena, California. During the course of the meeting, researchers from Arizona University shared the results of their own study, which was published back in August.

The Arizona research team was led by Renu Malhotra, a Regents’ Professor of Planetary Sciences in the University of Arizona’s Lunar and Planetary Lab. For the sake of their study, titled “Corralling a Distant Planet with Extreme Resonant Kuiper Belt Objects“, they examined the orbital patterns of four extreme Kuiper Belt Objects (KBOs), which have the longest orbital periods of any known objects.

Artist's impression of the the possible Planet 9 at the edge of the Solar System. Credit: Robin Dienel/Carnegie Science
Artist’s impression of the the possible Planet 9 at the edge of the Solar System. Credit: Robin Dienel/Carnegie Science

According to their calculations, the presence of a massive planet – one that would complete an orbit around the Sun every 17,117 years, and at an average distance (semimajor axis) of 665 AU – would explain the orbital pattern of these four objects. These results were consistent with the estimates concerning the orbital period of Planet 9, its orbital path, and it mass.

“We analyzed the data of these most distant Kuiper Belt objects,” Malhotra said, “and noticed something peculiar, suggesting they were in some kind of resonances with an unseen planet… Our paper provides more specific estimates for the mass and orbit that this planet would have, and, more importantly, constraints on its current position within its orbit.”

Looks like Planet 9’s days of hiding in the outer Solar System may be numbered!

Further Reading: arXiv, Caltech, Europlanet

Dark Energy Illuminated By Largest Galactic Map Ten Years In The Making

In 1929, Edwin Hubble forever changed our understanding of the cosmos by showing that the Universe is in a state of expansion. By the 1990s, astronomers determined that the rate at which it is expanding is actually speeding up, which in turn led to the theory of “Dark Energy“. Since that time, astronomers and physicists have sought to determine the existence of this force by measuring the influence it has on the cosmos.

The latest in these efforts comes from the Sloan Digital Sky Survey III (SDSS III), where an international team of researchers have announced that they have finished creating the most precise measurements of the Universe to date. Known as the Baryon Oscillation Spectroscopic Survey (BOSS), their measurements have placed new constraints on the properties of Dark Energy.

The new measurements were presented by Harvard University astronomer Daniel Eisenstein at a recent meeting of the American Astronomical Society. As the director of the Sloan Digital Sky Survey III (SDSS-III), he and his team have spent the past ten years measuring the cosmos and the periodic fluctuations in the density of normal matter to see how galaxies are distributed throughout the Universe.

An illustration of the concept of baryon acoustic oscillations, which are imprinted in the early universe and can still be seen today in galaxy surveys like BOSS (Illustration courtesy of Chris Blake and Sam Moorfield).
An illustration of baryon acoustic oscillations, which are imprinted in the early universe and can still be seen today in galaxy surveys like BOSS. Credit: Chris Blake and Sam Moorfield

And after a decade of research, the BOSS team was able to produce a three-dimensional map of the cosmos that covers more than six billion light-years. And while other recent surveys have looked further afield – up to distances of 9 and 13 billion light years – the BOSS map is unique in that it boasts the highest accuracy of any cosmological map.

In fact, the BOSS team was able to measure the distribution of galaxies in the cosmos, and at a distance of 6 billion light-years, to within an unprecedented 1% margin of error. Determining the nature of cosmic objects at great distances is no easy matter, due the effects of relativity. As Dr. Eisenstein told Universe Today via email:

“Distances are a long-standing challenge in astronomy. Whereas humans often can judge distance because of our binocular vision, galaxies beyond the Milky Way are much too far away to use that. And because galaxies come in a wide range of intrinsic sizes, it is hard to judge their distance. It’s like looking at a far-away mountain; one’s judgement of its distance is tied up with one’s judgement of its height.”

In the past, astronomers have made accurate measurements of objects within the local universe (i.e. planets, neighboring stars, star clusters) by relying on everything from radar to redshift – the degree to which the wavelength of light is shifted towards the red end of the spectrum. However, the greater the distance of an object, the greater the degree of uncertainty.

 An artist's concept of the latest, highly accurate measurement of the Universe from BOSS. The spheres show the current size of the "baryon acoustic oscillations" (BAOs) from the early universe, which have helped to set the distribution of galaxies that we see in the universe today. Galaxies have a slight tendency to align along the edges of the spheres — the alignment has been greatly exaggerated in this illustration. BAOs can be used as a "standard ruler" (white line) to measure the distances to all the galaxies in the universe. Credit: Zosia Rostomian, Lawrence Berkeley National Laboratory
An artist’s concept of the latest, highly accurate measurement of the Universe from BOSS. Credit: Zosia Rostomian/Lawrence Berkeley National Laboratory

And until now, only objects that are a few thousand light-years from Earth – i.e. within the Milky Way galaxy – have had their distances measured to within a one-percent margin of error. As the largest of the four projects that make up the Sloan Digital Sky Survey III (SDSS-III), what sets BOSS apart is the fact that it relies primarily on the measurement of what are called “baryon acoustic oscillations” (BAOs).

These are essentially subtle periodic ripples in the distribution of visible baryonic (i.e. normal) matter in the cosmos. As Dr. Daniel Eisenstein explained:

“BOSS measures the expansion of the Universe in two primary ways. The first is by using the baryon acoustic oscillations (hence the name of the survey). Sound waves traveling in the first 400,000 years after the Big Bang create a preferred scale for separations of pairs of galaxies. By measuring this preferred separation in a sample of many galaxies, we can infer the distance to the sample. 

“The second method is to measure how clustering of galaxies differs between pairs oriented along the line of sight compared to transverse to the line of sight. The expansion of the Universe can cause this clustering to be asymmetric if one uses the wrong expansion history when converting redshifts to distance.”

With these new, highly-accurate distance measurements, BOSS astronomers will be able to study the influence of Dark Matter with far greater precision. “Different dark energy models vary in how the acceleration of the expansion of the Universe proceeds over time,” said Eisenstein. “BOSS is measuring the expansion history, which allows us to infer the acceleration rate. We find results that are highly consistent with the predictions of the cosmological constant model, that is, the model in which dark energy has a constant density over time.”

An international team of researchers have produced the largest 3-D map of the universe to date, which validates Einstein's theory of General Relativity. Credit: NAOJ/CFHT/ SDSS
Discerning the large-scale structure of the universe, and the role played by Dark Energy, is key to unlocking its mysteries. Credit: NAOJ/CFHT/ SDSS

In addition to measuring the distribution of normal matter to determine the influence of Dark Energy, the SDSS-III Collaboration is working to map the Milky Way and search for extrasolar planets. The BOSS measurements are detailed in a series of articles that were submitted to journals by the BOSS collaboration last month, all of which are now available online.

And BOSS is not the only effort to understand the large-scale structure of our Universe, and how all its mysterious forces have shaped it. Just last month, Professor Stephen Hawking announced that the COSMOS supercomputing center at Cambridge University would be creating the most detailed 3D map of the Universe to date.

Relying on data obtained by the CMB data obtained by the ESA’s Planck satellite and information from the Dark Energy Survey, they also hope to measure the influence Dark Energy has had on the distribution of matter in our Universe. Who knows? In a few years time, we may very well come to understand how all the fundamental forces governing the Universe work together.

Further Reading: SDSIII

Faster-Than-Light Lasers Could “Illuminate” the Universe

It’s a cornerstone of modern physics that nothing in the Universe is faster than the speed of light (c). However, Einstein’s theory of special relativity does allow for instances where certain influences appear to travel faster than light without violating causality. These are what is known as “photonic booms,” a concept similar to a sonic boom, where spots of light are made to move faster than c.

And according to a new study by Robert Nemiroff, a physics professor at Michigan Technological University (and co-creator of Astronomy Picture of the Day), this phenomena may help shine a light (no pun!) on the cosmos, helping us to map it with greater efficiency.

Consider the following scenario: if a laser is swept across a distant object – in this case, the Moon – the spot of laser light will move across the object at a speed greater than c. Basically, the collection of photons are accelerated past the speed of light as the spot traverses both the surface and depth of the object.

The resulting “photonic boom” occurs in the form of a flash, which is seen by the observer when the speed of the light drops from superluminal to below the speed of light. It is made possible by the fact that the spots contain no mass, thereby not violating the fundamental laws of Special Relativity.

An image of NGC 2261 (aka. Hubble's Variable Nebula) by the Hubble space telescope. Credit: HST/NASA/JPL.
An image of NGC 2261 (aka. Hubble’s Variable Nebula) by the Hubble space telescope. Image Credit: HST/NASA/JPL.

Another example occurs regularly in nature, where beams of light from a pulsar sweep across clouds of space-borne dust, creating a spherical shell of light and radiation that expands faster than c when it intersects a surface. Much the same is true of fast-moving shadows, where the speed can be much faster and not restricted to the speed of light if the surface is angular.

At a meeting of the American Astronomical Society in Seattle, Washington earlier this month, Nemiroff shared how these effects could be used to study the universe.

“Photonic booms happen around us quite frequently,” said Nemiroff in a press release, “but they are always too brief to notice. Out in the cosmos they last long enough to notice — but nobody has thought to look for them!”

Superluminal sweeps, he claims, could be used to reveal information on the 3-dimensional geometry and distance of stellar bodies like nearby planets, passing asteroids, and distant objects illuminated by pulsars. The key is finding ways to generate them or observe them accurately.

For the purposes of his study, Nemiroff considered two example scenarios. The first involved a beam being swept across a scattering spherical object – i.e. spots of light moving across the Moon and pulsar companions. In the second, the beam is swept across a “scattering planar wall or linear filament” – in this case, Hubble’s Variable Nebula.

Artist view of an asteroid (with companion) passing near Earth. Credit: P. Carril / ESA
Photonic booms caused by laser sweeps could offer a new imaging technique for mapping out passing asteroids. Credit: P. Carril / ESA

In the former case, asteroids could be mapped out in detail using a laser beam and a telescope equipped with a high-speed camera. The laser could be swept across the surface thousands of times a second and the flashes recorded. In the latter, shadows are observed passing between the bright star R Monocerotis and reflecting dust, at speeds so great that they create photonic booms that are visible for days or weeks.

This sort of imaging technique is fundamentally different from direct observations (which relies on lens photography), radar, and conventional lidar. It is also distinct from Cherenkov radiation – electromagnetic radiation emitted when charged particles pass through a medium at a speed greater than the speed of light in that medium. A case in point is the blue glow emitted by an underwater nuclear reactor.

Combined with the other approaches, it could allow scientists to gain a more complete picture of objects in our Solar System, and even distant cosmological bodies.

Nemiroff’s study accepted for publication by the Publications of the Astronomical Society of Australia, with a preliminary version available online at arXiv Astrophysics

Further reading:
Michigan Tech press release
Robert Nemiroff/Michigan Tech

‘Mega-Earth’ And Doomed Planets Top Today’s Exoplanet Finds

Can you imagine a world that is 17 times as massive as Earth, but still rocky? Or two planets that are doomed to be swallowed up by their parent star in just a blink of astronomical time?

While these scenarios sound like science fiction, these are real-life finds released today (June 2) at the American Astronomical Association meeting in Boston.

Here’s a rundown of the finds about these planets in our ever-more-amazing universe.

‘Mega-Earth’ Kepler-10c

Spinning around its star every 45 days is Kepler-10c, which is about 2.3 times as large as Earth but a heavyweight, at 17 times more massive. The planet was discovered by the prolific NASA Kepler space telescope (which was sidelined after a reaction wheel failed last year, but now has been tasked with a new planet-hunting mandate.)

While initially astronomers thought Kepler-10c was a “mini-Neptune”, or a world that is similar to that planet in our solar system, its mass measured by the HARPS-North instrument on the Galileo National Telescope showed it was a rocky world. What’s more, astronomers believe the planet did not “let go” of any atmosphere over time, which implies the planet’s past is similar to what it was today.

Here’s the other neat thing: astronomers found that the system was 11 billion years old, at a time when the universe was young (it was formed 13.7 billion years ago) and the elements needed to make rocky planets were scarce. This implies that rocky planets could have formed earlier than previously thought.

“I was wrong that old stars do not have rocky planets, which has consequences about the Fermi Paradox,” the Harvard-Smithsonian Center for Astrophysics’s (CfA) Dimitar Sasselov said in a webcast press conference today (June 2).  The Fermi Paradox, simply put, refers to the question of why we can’t see civilizations since they are assumed to have spread quite a ways since the universe was formed.

Artist's impression of Kepler-56b being torn apart by its star about 130 million years from today. Its sibling planet, Kepler-56c, will last until 155 million years from now. Credit: David A. Aguilar (CfA)
Artist’s impression of Kepler-56b being torn apart by its star about 130 million years from today. Its sibling planet, Kepler-56c, will last until 155 million years from now. Credit: David A. Aguilar (CfA)

‘We’re doomed!’ Kepler-56b and Kepler-56c

If there was anybody in the vicinity of these two planets, you’d want to move out of the way fairly quickly — at least when talking about astronomical time. Both of these planets, whose orbits are within the equivalent distance of Mercury to the sun, are expected to be swallowed up by their star in 130 million years (for Kepler-56b) and 155 million years (Kepler-56c). It’s the first time two doomed planets have been found in a single system.

“Possibly the core of planet will be left behind and you [will] see this dead corpse floating behind in the universe,” said CfA’s Gongjie Li in the press conference.

There are two factors behind this: the size of the star will enlarge as it gets older (which is typical among stars) and the tidal forces between the planets and their star will also cause them to slow down in their orbits and rip apart. Interestingly enough, another gas giant planet called Kepler-56d will remain safe from most of the chaos since its orbit is equivalent to the asteroid belt in our own solar system.

“Looking at this system is like foreseeing our own solar system,” added Li, referring to the fact that in another five billion years or so our sun will enlarge and swallow Mercury and Venus at the least, boiling off all the oceans on our planet and killing anything left.

Artist's conception of an exoplanet orbiting a red dwarf star. Credit: David A. Aguilar (CfA)
Artist’s conception of an exoplanet orbiting a red dwarf star. Credit: David A. Aguilar (CfA)

Windy City: Why living near a red dwarf might be a bad idea

One fertile ground for exoplanet discoveries — particularly when looking for planets about Earth’s size in the habitable zone — is red dwarfs, because they are smaller and therefore have less light to obscure any rocky worlds orbiting nearby. A new study warns that they could be less friendly to life than previously believed.

CfA’s Ofer Cohen said that red dwarfs can have intense stellar winds, when looking at the model of a known red dwarf with three planets around it: KOI 1422.02, KOI 2626.01, KOI 584.01. Even a magnetic field the size of Earth would not be able to protect the planet from being stripped of its atmosphere assuming a certain intensity of stellar flares.

A member of the audience pointed out that the red dwarf star under study likely has stronger winds than 95% of all red dwarfs, however. Cohen acknowledged that, but added “the main effect is not the stellar activity, but these giants are close to the star.” All the same, this could require a more nuanced understanding of the habitable zone around these stars, he added.

Artist's impression of exoplanets. Credit: J. Jauch
Artist’s impression of exoplanets. Credit: J. Jauch

Heavy metal: Figuring out how much planets have

In astronomical terms, any elements heavier than hydrogen and helium are considered to be “metallic”. Past research found that metal-rich stars tend to have hot Jupiter exoplanets, while the smaller planets have a larger span of metal possibilities.

A team led by CfA’s Lars Buchhave surveyed more than 400 stars with 600 exoplanets, and found that planets smaller than 1.7 times the size of Earth are more likely to be rocky, while those than are 3.9 times the size of Earth or larger are likely gassy.

In between is a zone called “gas dwarfs”, which are planets 1.7 and 3.9 times the size of Earth that likely have hydrogen and helium atmospheres blanketing their surface.

Also intriguing: the researchers discovered that planets far away from their stars can get larger before picking up a lot of gas and becoming a “gas dwarf”, presumably because there isn’t as much gas material out there.

The team also discovered that stars with smaller, Earth-like worlds metallicities like our sun, while stars with “gas dwarfs” have more metals, and stars with gas giants have even more metals. But bear in mind these are for planets close to their host star, which are easiest for Kepler to find. Buchhave plans to do work for planets further away.

The papers for these findings are on arVix: Kepler 10b, habitable planets orbiting M-dwarfs, exoplanets around metal-rich stars.