A Cosmic Collision: Our Best View Yet of Two Distant Galaxies Merging

The Atacama Large Millimeter/submillimeter Array (ALMA) and many other telescopes on the ground and in space have been used to obtain the best view yet of a collision that took place between two galaxies when the Universe was only half its current age. The astronomers enlisted the help of a galaxy-sized magnifying glass to reveal otherwise invisible detail. These new studies of the galaxy H-ATLAS J142935.3-002836 have shown that this complex and distant object looks surprisingly like the well-known local galaxy collision, the Antennae Galaxies. In this picture you can see the foreground galaxy that is doing the lensing, which resembles how our home galaxy, the Milky Way, would appear if seen edge-on. But around this galaxy there is an almost complete ring — the smeared out image of a star-forming galaxy merger far beyond. This picture combines the views from the NASA/ESA Hubble Space Telescope and the Keck-II telescope on Hawaii (using adaptive optics). Credit: ESO/NASA/ESA/W. M. Keck Observatory

An international team of astronomers has obtained the best view yet of two galaxies colliding when the universe was only half its current age.

The team relied heavily on space- and ground-based telescopes, including the Hubble Space Telescope, the Atacama Large Millimeter/submillimeter Array (ALMA), the Keck Observatory, and the Karl Jansky Very Large Array (VLA). But the greatest asset was a chance cosmic alignment.

“While astronomers are often limited by the power of their telescopes, in some cases our ability to see detail is hugely boosted by natural lenses created by the universe,” said lead author Hugo Messias of the Universidad de Concepción in Chile and the Centro de Astronomia e Astrofísica da Universidade de Lisboa in Portugal.

Such a rare cosmic alignment plays visual tricks, where the intervening lens (be it a galaxy or a galaxy cluster) appears to bend and even magnify the distant light. This effect, called gravitational lensing, allows astronomers to study objects which would not be visible otherwise and to directly compare local galaxies with much more remote galaxies, seen when the universe was significantly younger.

The distant object in question, dubbed H-ATLAS J142935.3-002836, was originally spotted in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). Although very faint in visible light pictures, it is among the brightest gravitationally lensed objects in the far-infrared regime found so far.

The Hubble and Keck images reveal that the foreground galaxy is a spiral galaxy, seen edge-on. Although the galaxy’s large dust clouds obscure part of the background light, both ALMA and VLA can observe the sky at longer wavelengths, which are unaffected by dust.

Using the combined data, the team discovered that the background system was actually an ongoing collision between two galaxies.

The Antennae galaxies. Credit: Hubble / ESA
The Antennae galaxies. Credit: Hubble / ESA

First, the team noticed that these two galaxies resembled a much closer system: the Antennae galaxies, two galaxies that have spent the past few hundred million years in a whirling embrace as they merge together. The similarity suggested a collision, but ALMA — with its high sensitivity and spatial resolution — was able to verify it.

ALMA has the unique ability to detect the emission from carbon monoxide, as opposed to other telescopes, which might only be able to probe the absorption along the line of sight. This allowed astronomers to measure the velocity of the gas in the more distant object. With this information, they were able to show that the lensed galaxy is indeed an ongoing galactic collision.

Such collisions naturally enhance star formation. Any gas within the galaxies will feel a headwind, much as a runner feels a wind even on the stillest day, and become compressed enough to spark star formation. Sure enough, ALMA shows that the two galaxies are forming hundreds of new stars each year.

“ALMA enabled us to solve this conundrum because it gives us information about the velocity of the gas in the galaxies, which makes it possible to disentangle the various components, revealing the classic signature of a galaxy merger,” said ESO’s Director of Science and coauthor of the new study, Rob Ivison. “This beautiful study catches a galaxy merger red handed as it triggers an extreme starburst.”

The findings have been published in the Aug. 26 issue of Astronomy & Astrophysics and is available online.

Some Of Comet ISON’s Organic Materials Arose In An Unexpected Place

Comet ISON was one of the two comets studied by scientists using the Atacama Large Millimeter/submillimeter Array (ALMA). The diagram shows where it was located in the solar system at the time of observations. 3-D images of its coma (atmosphere) revealed organic compounds. Credit: B. Saxton (NRAO/AUI/NSF); NASA/ESA Hubble; M. Cordiner, NASA, et al.

While Comet ISON’s breakup around Thanksgiving last year disappointed many amateur observers, its flight through the inner solar system beforehand showed scientists something neat: it was carrying organic materials with it.

A group examined the molecules surrounding the comet in its coma (atmosphere) and, along with observations of Comet Lemmon, created a 3-D model that you can see above. Among other results, this revealed the presence of formaldehyde and HNC (hydrogen, nitrogen and carbon). The formaldehyde was expected, but the spot where HNC was found came as a surprise.

Scientists used to think that HNC is produced from the nucleus, but the research revealed that it actually happens when larger molecules or organic dust breaks down in the coma.

“Understanding organic dust is important, because such materials are more resistant to destruction during atmospheric entry, and some could have been delivered intact to early Earth, thereby fueling the emergence of life,” stated Michael Mumma, a co-author on the study who is director of the Goddard Center for Astrobiology. “These observations open a new window on this poorly known component of cometary organics.”

Observation were made possible using the powerful Atacama Large Millimeter/submillimeter Array (ALMA). The array of 66 radio telescopes in Chile allows astronomers to map molecules and peer past dust clouds in star systems under formation, among other things. ALMA was completed last year and is the largest telescope of its type in the world.

The array’s resolution allowed scientists to probe for these molecules in moderately bright comets, which is also new. Previously, these types of studies were limited to “blockbuster” visitors such as Comet Hale-Bopp in the 1990s, NASA sated.

The study, which was led by the Goddard Center for Astrobiology’s Martin Cordiner at NASA’s Goddard Space Flight Center, was published in Astrophysical Journal Letters. The research is also available in preprint version on Arxiv.

Source: NASA

Where Exactly Is Pluto? Pinpoint Precision Needed For New Horizons Mission

Artist's conception of the Pluto system from the surface of one of its moons. Credit: NASA, ESA and G. Bacon (STScI)

When you have a spacecraft that takes the better part of a decade to get to its destination, it’s really, really important to make sure you have an accurate fix on where it’s supposed to be. That’s true of the Rosetta spacecraft (which reached its comet today) and also for New Horizons, which will make a flyby past Pluto in 2015.

To make sure New Horizons doesn’t miss its big date, astronomers are using the Atacama Large Millimeter/submillimeter Array (ALMA) to figure out its location and orbit around the Sun. You’d think that we’d know where Pluto is after decades of observations, but because it’s so far away we’ve only tracked it through one-third of its 248-year orbit.

“With these limited observational data, our knowledge of Pluto’s position could be wrong by several thousand kilometers, which compromises our ability to calculate efficient targeting maneuvers for the New Horizons spacecraft,” stated Hal Weaver, a New Horizons project scientist at Johns Hopkins University Applied Physics Laboratory in Maryland.

Pluto’s moon Charon moves around the dwarf planet in this animated image based on the data from the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: B. Saxton (NRAO/AUI/NSF)

As ALMA is a radio/submillimeter telescope, the array picked up Pluto and its largest moon, Charon, by looking at the radio emission from their surfaces. They examined the objects in November 2013, in April 2014 and twice in July. More observations are expected in October.

“By taking multiple observations at different dates, we allow Earth to move along its orbit, offering different vantage points in relation to the Sun,” stated Ed Fomalont, an astronomer with the National Radio Astronomy Observatory who is assigned to ALMA’s operations support facility in Chile. “Astronomers can then better determine Pluto’s distance and orbit.”

New Horizons will reach Pluto in July 2015, and Universe Today is planning a series of articles about the dwarf planet. We’ll need your support to get it done, though. Check out the details here.

Source: National Radio Astronomy Observatory

ALMA Observes Binary Star System with Wacky Disks

ALMA data of HK Tau shown in a composite image with Hubble infrared and optical data. Credit: B. Saxton (NRAO/AUI/NSF); K. Stapelfeldt et al. (NASA/ESA Hubble)

When it comes to exoplanets, we’ve discovered an array of extremes — alien worlds that seem more like science fiction than reality. But there are few environments more extreme than a binary star system in which planet formation can occur. Powerful gravitational perturbations from the two stars can easily grind a planet to dust, let alone prevent it from forming in the first place.

A new study has uncovered a striking pair of wildly misaligned planet-forming disks in the young binary star system HK Tau. It’s the clearest picture ever of protoplanetary disks around a double star, shedding light on the birth and eventual orbit of the planets in a multiple star system.

The “Atacama Large Millimeter/submillimeter Array (ALMA) has given us an unprecedented view of a main star and its binary companion sporting mutually misaligned protoplanetary disks,” said Eric Jensen from Swarthmore College in a press release. “In fact, we may be seeing the formation of a solar system that may never settle down.”

The two stars in the system — located roughly 450 light-years away in the constellation Taurus — are less than four million years old and are separated by about 58 billion kilometers, or 13 times the distance of Neptune from the Sun.

ALMA’s high sensitivity and unprecedented resolution allowed Jensen and colleagues to fully resolve the rotation of HK Tau’s two protoplanetary disks.

“It’s easier to observe spread-out gas and dust because it has more surface area – just in the same way that it might be hard to see a small piece of chalk from a distance, but if you ground up the chalk and dispersed the cloud of chalk dust, you could see it from farther away,” Jensen told Universe Today.

The key velocity data taken with ALMA that helped the astronomers determine that the disks in HK Tau were misaligned. The red areas represent material moving away from Earth and the blue indicates material moving toward us. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)
The key velocity data taken with ALMA. The red areas represent material moving away from Earth and the blue indicates material moving toward us. Image Credit: NASA / JPL-Caltech / R. Hurt (IPAC)

The carbon monoxide gas orbits both stars in two broad belts that are clearly rotating — the side spinning away from us is redshifted, while the side spinning toward us is blueshifted.

“What we find in this binary system is that the two orbiting disks are oriented very differently from each other, with about a 60 or 70 degree angle between their orbital planes,” Jensen told Universe Today. Because the disks are so misaligned it’s clear that at least one is also out of sync with the orbit of their host stars.

“This clear misalignment has given us a remarkable look at a young binary star system,” said coauthor Rachel Akeson from the NASA Exoplanet Science Institute at the California Institute of Technology. “Though there have been hints before that this type of misaligned system exists, this is the cleanest and most striking example.”

Stars and planets form out of vast clouds of dust and gas. Small pockets in these clouds collapse under the pull of gravity. But as the pocket shrinks, it spins rapidly, with the outer region flattening into a turbulent disk. Eventually the central pocket becomes so hot and dense that it ignites nuclear fusion — in the birth of a star — while the outer disk — now the protoplanetary disk — begins to form planets.

Despite forming from a flat, regular disk, planets can end up in highly eccentric orbits, and may be misaligned with the star’s equator. One likely explanation is that a binary companion star influences them — but only if its orbit is initially misaligned with the planets.

“Because these disks are misaligned with the binary orbit, then so too will be the orbits of any planets they form,” Jensen told Universe Today. “So in the long run, the binary companion will influence those planet orbits, causing them to oscillate and tend to come more into line with the binary orbit, and at the same time become more eccentric.”

Looking forward, the researchers want to determine if this type of system is typical or not. If it is, then tidal forces from companion stars may easily explain the orbital properties that make the present sample of exoplanets so unlike the planets of our own Solar System.

The results will appear in Nature on July 31, 2014.

ALMA Sheds New Light on ‘Dark’ Gamma-ray Bursts

An artist’s conception of the environment around GRB 020819B based on ALMA observations. Image Credit: NAOJ

Gamma-ray bursts (GRBs) represent the most powerful explosions in the cosmos, sending out as much energy in a matter of seconds as our Sun will give off during its entire 10-billion-year lifespan.

These powerful explosions are thought to be triggered when dying stars collapse into jet-spewing black holes. Yet no one has ever witnessed a GRB directly. Instead astronomers are left to study their fading light.

But some GRBs mysteriously seem to have no afterglow. Now, observations from the Atacama Large Millimeter/submillimeter Array (ALMA) are shedding light on these so-called dark bursts.

One possible explanation is that dark bursts explode so far away their visible light is extinguished due to the expansion of the Universe. Another possible explanation is that dark bursts explode in galaxies with unusually thick amounts of interstellar dust, which absorb a burst’s light.

Neither explanation, however, seems likely as astronomers anticipate that GRB progenitors — massive stars — are found in active star-forming regions surrounded by large amounts of molecular gas. But unfortunately there has never been an observational result to back up this theory either.

So astronomers have been working hard to better understand GRBs by studying their host galaxies. Now, a Japanese team of astronomers led by Bunyo Hatsukade from the National Astronomical Observatory in Japan, has used ALMA to report the first-ever map of molecular gas and dust in two galaxies that were previously rocked by GRBs.

Hatsukade and colleagues detected the radio emission from molecular gas and dust in two dark host galaxies — GRB 020819B and GRB 051022 — at about 4.3 billion and 6.9 billion light-years away, respectively.

“We have been searching for molecular gas in GRB host galaxies for over 10 years using various telescopes around the world,” said Kotaro Kohno from the University of Tokyo in a press release. “As a result of our hard work, we finally achieved a remarkable breakthrough using the power of ALMA. We are very excited with what we have achieved.”

Watch the video below for an artist concept animation of the environment around GRB 020819B based on ALMA observations:

The telescope’s high sensitivity enabled the team of astronomers to detect the emission from molecular gas, as opposed to most telescopes, which can only probe absorption along the line of sight. This combined with its high spatial resolution provided the first detailed map of the molecular gas and dust throughout a GRB host galaxy.

Surprisingly, less gas was observed than expected, and correspondingly much more dust. The ratio of dust to molecular gas at the GRB site is 10 times higher than in normal environments.

Observations of the host galaxy for GRB 020819B. Radio measurements of molecular gas (left) and dust (middle), both of which are observed with ALMA. An image in visible-light captured by the Frederick C. Gillett Gemini North Telescope (right). The cross indicates the location of the GRB site. Image Credit: Bunyo Hatsukade(NAOJ), ALMA (ESO/NAOJ/NRAO)
Observations of the host galaxy for GRB 020819B. Radio measurements of molecular gas (left) and dust (middle), both of which are observed with ALMA. An image in visible-light captured by the Frederick C. Gillett Gemini North Telescope (right). The cross indicates the location of the GRB site. Image Credit: Bunyo Hatsukade(NAOJ), ALMA (ESO/NAOJ/NRAO)

“We didn’t expect that GRBs would occur in such a dusty environment with a low ratio of molecular gas to dust,” said Hatsukade. “This indicates that the GRB occurred in an environment quite different from a typical star-forming region.”

The research team thinks the high proportion of dust compared to molecular gas is likely due to the intense ultraviolet radiation from the young, massive stars, which will break up any molecular gas while leaving the dust relatively undisturbed.

It’s becoming clear that dust absorbs the afterglow radiation, causing these dark gamma-ray bursts. The team plans to carry out further observations and is excited to use ALMA’s incredible sensitivity to probe other host galaxies.

The results are published today in the journal Nature. You can read more from the National Radio Astronomy Observatory and ESO.

“Death Stars” Caught Blasting Proto-Planets

Credit

 It’s a tough old universe out there. A young star has lots to worry about, as massive stars just beginning to shine can fill a stellar nursery with a gale of solar wind.

No, it’s not a B-movie flick: the “Death Stars of Orion” are real. Such monsters come in the form of young, O-type stars.

And now, for the first time, a team of astronomers from Canada and the United States have caught such stars in the act. The study, published in this month’s edition of The Astrophysical Journal, focused on known protoplanetary disks discovered by the Hubble Space Telescope in the Orion Nebula.

These protoplanetary disks, also known as “tadpoles” or proplyds, are cocoons of dust and gas hosting stars just beginning to shine. Much of this leftover material will go on to aggregate into planets, but nearby massive O-Type stars can cause chaos in a stellar nursery, often disrupting the process.

“O-Type stars, which are really monsters compared to our Sun, emit tremendous amounts of ultraviolet radiation and this can play havoc during the development of young planetary systems,” said astronomer Rita Mann in a recent press release. Mann works for the National Research Council of Canada in Victoria and is  lead researcher on the project 

Scientists used the Atacama Large Millimeter Array (ALMA) to probe the proplyds of Orion in unprecedented detail.  Supporting observations were also made using the Submillimeter Array in Hawaii.

ALMA saw “first light” in 2011, and has already achieved some first rate results.

“ALMA is the world’s most sensitive telescope at high-frequency radio waves (e.g., 100-1000 GHz). Even with only a fraction of its final number of antennas, (with 22 operational out of a total planned 50) we were able to detect with ALMA the disks relatively close to the O-star while previous observatories were unable to spot them,” James Di Francesco of the National Research Council of Canada told Universe Today. “Since the brightness of a disk at these frequencies is proportional to its mass, these detections meant we could measure the masses of the disks and see for sure that they were abnormally low close to the O-type star.”

Credit
The ALMA antennae on the barren plateau of Chajnantor. Credit: ALMA (ESO/NAOJ/NRAO).

ALMA also doubled the number of proplyds seen in the region, and was also able to peer within these cocoons and take direct mass measurements. This revealed mass being stripped away by the ultraviolet wind from the suspect O-type stars. Hubble had been witness to such stripping action previous, but ALMA was able to measure the mass within the disks directly for the first time.

And what was discovered doesn’t bode well for planetary formation. Such protostars within about 0.1 light-years of an O-type star are consigned to have their cocoon of gas and dust stripped clean in just a few million years, just a blink of a eye in the game of planetary formation.

With a O-type star’s “burn brightly and die young” credo, this type of event may be fairly typical in nebulae during early star formation.

“O-type stars have relatively short lifespan, say around 1 million years for the brightest O-star in Orion – which is 40 times the mass of our Sun – compared to the 10 billion year lifespan of less massive stars like our Sun,” Di Francesco told Universe Today. “Since these clusters are typically the only places where O-stars form, I’d say that this type of event is indeed typical in nebulae hosting early star formation.”

It’s common for new-born stars to be within close proximity of each other in such stellar nurseries as M42. Researchers in the study found that any proplyds within the extreme-UV envelope of a massive star would have its disk shredded in short order, retaining on average less than 50% the mass of Jupiter total. Beyond the 0.1 light year “kill radius,” however, the chances for these proplyds to retain mass goes up, with researchers observing anywhere from 1 to 80 Jupiter masses of material remaining.

The findings in this study are also crucial in understanding what the early lives of stars are like, and perhaps the pedigree of our own solar system, as well as how common – or rare – our own history might be in the story of the universe.

There’s evidence that our solar system may have been witness to one or more nearby supernovae early in its life, as evidenced by isotopic measurements. We were somewhat lucky to have had such nearby events to “salt” our environment with heavy elements, but not sweep us clean altogether.

“Our own Sun likely formed in a clustered environment similar to that of Orion, so it’s a good thing we didn’t form too close to the O-stars in its parent nebula,” Di Francesco told Universe Today. “When the Sun was very young, it was close enough to a high-mass star so that when it blew up (went supernova) the proto-solar system was seeded with certain isotopes like Al-26 that are only produced in supernova events.”

This is the eventual fate of massive O-type stars in the Orion Nebula, though none of them are old enough yet to explode in this fashion. Indeed, it’s amazing to think that peering into the Orion Nebula, we’re witnessing a drama similar to what gave birth to our Sun and solar system, billions of years ago.

The Orion Nebula is the closest active star forming region to us at about 1,500 light years distant and is just visible to the naked eye as a fuzzy patch in the pommel of the “sword” of Orion the Hunter. Looking at the Orion Nebula at low power through a small telescope, you can just make out a group of four stars known collectively as the Trapezium. These are just such massive hot and luminous O-Type stars, clearing out their local neighborhoods and lighting up the interior of the nebula like a Chinese lantern.

And thus science fact imitates fiction in an ironic twist, as it turns out that “Death Stars” do indeed blast planets – or at least protoplanetary disks – on occasion!

Be sure to check out a great piece on ALMA on a recent episode of CBS 60 Minutes:

Read the abstract and the full (paywalled) paper on ALMA Observations of the Orion Proplyds in The Astrophysical Journal.

Giant Planet May Be Lurking In ‘Poisonous’ Gas Around Beta Pictoris

Artist's conception of a hypothetical giant planet (left) in Beta Pictoris. The gas giant would sweep up comets into a swarm, causing frequent collisions. Astronomers using the Atacama Large Millimeter Array (ALMA) are calling this the "preferred model" for observations they made. Credit: Goddard Space Flight Center/F. Reddy

A Saturn-mass planet might be lurking in the debris surrounding Beta Pictoris, new measurements of a debris field around the star shown. If this could be proven, this would be the second planet found around that star.

The planet would be sheparding a giant swarm of comets (some in front and some trailing behind the planet) that are smacking into each other as often as every five minutes, new observations with the Atacama Large Millimeter/submillimeter Array (ALMA) show. This is the leading explanation for a cloud of carbon monoxide gas visible in the array.

“Although toxic to us, carbon monoxide is one of many gases found in comets and other icy bodies,” stated Aki Roberge, an astrophysicist at NASA’s Goddard Space Flight Center in Maryland who participated in the research. “In the rough-and-tumble environment around a young star, these objects frequently collide and generate fragments that release dust, icy grains and stored gases.”

ALMA captured millimeter-sized light from carbon monoxide and dust around Beta Pictoris, which is about 63 light-years from Earth (relatively close to our planet). The gas seems to be most prevalent in an area about 8 billion miles (13 kilometers) from the star — the equivalent distance of three times the length of Neptune’s location from the sun. The carbon monoxide cloud itself makes up about one-sixth the mass of Earth’s oceans.

Ultraviolet light from the star should be breaking up the carbon monoxide molecules within 100 years, so the fact there is so much gas indicates something must be replenishing it, the researchers noted. Their models showed that the comets would need to be destroyed every five minutes for this to happen (unless we are looking at the star at an unusual time).

While the researchers say they need more study to see how the gas is concentrated, their hypothesis is there is two clumps of gas and it is due to a big planet behaving similarly to what Jupiter does in our solar system. Thousands of asteroids follow behind and fly in front of Jupiter due to the planet’s massive gravity. In this more distant system, it’s possible that a gas giant planet would be doing the same thing with comets.

If the gas turns out to be in just one clump, however, another scenario would suggest two Mars-sized planets (icy ones) smashing into each other about half a million years ago. This “would account for the comet swarm, with frequent ongoing collisions among the fragments gradually releasing carbon monoxide gas,” NASA stated.

The research was published yesterday (March 6) in the journal Science and is led by Bill Dent, a researcher at the Joint ALMA Office in  Chile. You can read more information in press releases from NASA, the National Radio Astronomy Observatory and European Southern Observatory.

Astronomers Catch a Galactic Threesome in the Act

A combined image from the Spitzer, Hubble, and Subaru telescopes show this structure to be three galaxies merging into one (NASA/JPL-Caltech/STScI/NAOJ/Subaru)

An enormous and incredibly luminous distant galaxy has turned out to actually be three galaxies in the process of merging together, based on the latest observations from ALMA as well as the Hubble and Spitzer space telescopes. Located 13 billion light-years away, this galactic threesome is being seen near the very beginning of what astronomers call the “Cosmic Dawn,” a time when the Universe first became illuminated by stars.

“This exceedingly rare triple system, seen when the Universe was only 800 million years old, provides important insights into the earliest stages of galaxy formation during a period known as ‘Cosmic Dawn’ when the Universe was first bathed in starlight,” said Richard Ellis, professor of astronomy at Caltech and member of the research team. “Even more interesting, these galaxies appear poised to merge into a single massive galaxy, which could eventually evolve into something akin to the Milky Way.”

In the image above, infrared data from NASA’s Spitzer Space Telescope are shown in red, visible data from NASA’s Hubble Space Telescope are green, and ultraviolet data from Japan’s Subaru telescope are blue. First discovered in 2009, the object is named “Himiko” after a legendary queen of Japan.

The merging galaxies within Himiko are surrounded by a vast cloud of hydrogen and helium, glowing brightly from the galaxies’ powerful outpouring of energy.

What’s particularly intriguing to astronomers is the noted lack of heavier elements like carbon in the cloud.

“This suggests that the gas cloud around the galaxy is actually quite primitive in its composition,” Ellis states in an NRAO video, “and has not yet been enriched by the products of nuclear fusion in the stars in the triple galaxy system. And what this implies is that the system is much younger and potentially what we call primeval… a first-generation object that is being seen. If true that’s very very exciting.”

Further research of distant objects like Himiko with the new high-resolution capabilities of ALMA will help astronomers determine how the Universe’s first galaxies “turned on”… was it a relatively sudden event, or did it occur gradually over many millions of years?

Watch the full video from the National Radio Astronomy Observatory below:

The research team’s results have been accepted for publication in the Astrophysical Journal.

Source: NASA/JPL press release and the NRAO.

Gorgeous Telescope Timelapse Makes You Feel Like You’re Standing In Chile

Lasers like this one, at the VLT in Paranal, help counteract the blurring effect of the atmosphere. Powerful arrays of much larger lasers could hide our presence from aliens. (ESO/Y. Beletsky)
Lasers like this one, at the VLT in Paranal, help counteract the blurring effect of the atmosphere. Powerful arrays of much larger lasers could hide our presence from aliens. (ESO/Y. Beletsky)

As the chill of winter settles into the northern hemisphere, fantasies of down-south travel pervade a lot of people’s dreams. Well, here’s a virtual journey to warm climes for astronomy buffs: a beautiful, music-filled timelapse of several European Southern Observatory telescopes gazing at the heavens in Chile.

Uploaded in 2011 (but promoted this morning on ESO’s Twitter feed), the timelapse was taken by astrophotographers Stéphane Guisard (also an ESO engineer) and José Francisco Salgado (who is also an astronomer at Chicago’s Adler Planetarium.) Telescopes include:

We’ve covered their work before on Universe Today. In 2009, Guisard  participated in GigaGalaxy Zoom, which produced a 360-degree panorama of the entire sky. He also released a 3-D view of several telescopes that same year. Also, Guisard and Salgado collaborated on another 2011 timelapse of the Very Large Telescope and nearby sites.

Supersonic Starbirth Bubble Glows In Image From Two Telescopes

Stellar birth is visible in this image of HH 46/47 taken with the Spitzer Space Telescope and Atacama Large Millimeter/submillimeter Array (ALMA). Credit: NASA/JPL-Caltech/ALMA

Talk about birth in the fast lane. Fresh observations of HH 46/47 — an area well-known for hosting a baby star — demonstrate material from the star pushing against the surrounding gas at supersonic speeds.

“HH” stands for Herbig-Haro, a type of object created “when jets shot out by newborn stars collide with surrounding material, producing small, bright, nebulous regions,” NASA stated. It’s a little hard to see what’s inside these regions, however, as they’re clouded by debris (specifically, gas and dust).

The Spitzer space telescope (which looks in infrared) and the massive Chilean Atacama Large Millimeter/submillimeter Array (ALMA) are both designed to look through the stuff to see what’s within. Here’s what they’ve spotted:

– ALMA: The telescope is showing that the gas is moving apart faster than ever believed, which could have echoes on how the star cloud is forming generally. “In turn, the extra turbulence could have an impact on whether and how other stars might form in this gaseous, dusty, and thus fertile, ground for star-making,” NASA added.

Another view of HH 46/47 with the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO/ALMA (ESO/NAOJ/NRAO)/H. Arce. Acknowledgements to Bo Reipurth
Another view of HH 46/47 with the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO/ALMA (ESO/NAOJ/NRAO)/H. Arce. Acknowledgements to Bo Reipurth

– Spitzer: Two supersonic blobs are emerging from the star in the middle and pushing against the gas, creating the big bubbles you can see here. The right-aiming blob has a lot more material to push through than the left one, “offering a handy compare-and-contrast setup for how the outflows from a developing star interact with their surroundings,” NASA stated.

“Young stars like our sun need to remove some of the gas collapsing in on them to become stable, and HH 46/47 is an excellent laboratory for studying this outflow process,” stated Alberto Noriega-Crespo, a scientist at the Infrared Processing and Analysis Center at the California Institute of Technology.

“Thanks to Spitzer, the HH 46/47 outflow is considered one of the best examples of a jet being present with an expanding bubble-like structure.”

The ALMA observations of HH 46/47 were first revealed in detail this summer, in an Astrophysical Journal publication.

Source: NASA