Uranus’ “Frankenstein Moon” Miranda

Ever since the Voyager space probes ventured into the outer Solar System, scientists and astronomers have come to understand a great deal of this region of space. In addition to the four massive gas giants that call the outer Solar System home, a great deal has been learned about the many moons that circle them. And thanks to photographs and data obtained, human beings as a whole have come to understand just how strange and awe-inspiring our Solar System really is.

This is especially true of Miranda, the smallest and innermost of Uranus’ large moons – and some would say, the oddest-looking! Like the other major Uranian moons, its orbits close to its planet’s equator, is perpendicular to the Solar System’s ecliptic, and therefore has an extreme seasonal cycle. Combined with one of the most extreme and varied topographies in the Solar System, this makes Miranda an understandable source of interest!

Discovery and Naming:

Miranda was discovered on February 16th, 1948, by Gerard Kuiper using the McDonald Observatory‘s Otto Struve Telescope at the University of Texas in Austin. Its motion around Uranus was confirmed on March 1st of the same year, making it the first satellite of Uranus to be discovered in almost a century (the previous ones being Ariel and Umbriel, which were both discovered in 1851 by William Lassell).

A montage of Uranus's moons. Image credit: NASA
A montage of Uranus’s moons. Image credit: NASA/JPL

Consistent with the names of the other moons, Kuiper decided to the name the object “Miranda” after the character in Shakespeare’s The Tempest. This continued the tradition set down by John Herschel, who suggested that all the large moons of Uranus – Ariel, Umbriel, Titania and Oberon – be named after characters from either The Tempest or Alexander Pope’s The Rape of the Lock.

Size, Mass and Orbit:

With a mean radius of 235.8 ± 0.7 km and a mass of 6.59 ± 0.75 ×1019 kg, Miranda is 0.03697 Earths times the size of Earth and roughly 0.000011 as massive. Its modest size also makes it one of the smallest object in the Solar System to have achieved hydrostatic equilibrium, with only Saturn’s moon of Mimas being smaller.

Of Uranus’ five larger moons, Miranda is the closest, orbiting at an average distance (semi-major axis) of 129,390 km. It has a very minor eccentricity of 0.0013 and an inclination of 4.232° to Uranus’ equator. This is unusually high for a body so close to its parent planet – roughly ten times that of the other Uranian satellites.

Since there are no mean-motion resonances to explain this, it has been hypothesized that the moons occasionally pass through secondary resonances. At some point, this would have led Miranda into being locked in a temporary 3:1 resonance with Umbriel, and perhaps a 5:3 resonance with Ariel as well. This resonance would have altered the moon’s inclination, and also led to tidal heating in its interior (see below).

Size comparison of all the Solar Systems moons. Credit: The Planetary Society
Size comparison of all the Solar Systems moons. Credit: NASA/The Planetary Society

With an average orbital speed of 6.66 km/s, Miranda takes 1.4 days to complete a single orbit of Uranus. Its orbital period (also 34 hours) is synchronous with its rotational period, meaning that it is tidally-locked with Uranus and maintains one face towards it at all times. Given that it orbits around Uranus’ equator, which means its orbit is perpendicular to the Sun’s ecliptic, Uranus goes through an extreme seasonal cycle where the northern and southern hemispheres experience 42 years of lightness and darkness at a time.

Composition and Surface Structure:

Miranda’s mean density (1.2 g/cm3) makes it the least dense of the Uranian moons. It also suggests that Miranda is largely composed of water ice (at least 60%), with the remainder likely consisting of silicate rock and organic compounds in the interior. The surface of Miranda is also the most diverse and extreme of all moons in the Solar System, with features that appear to be jumbled together in a haphazard fashion.

This consists of huge fault canyons as deep as 20 km (12 mi), terraced layers, and the juxtaposition of old and young surfaces seemingly at random. This patchwork of broken terrain indicates that intense geological activity took place in Miranda’s past, which is believed to have been driven by tidal heating during the time when it was in orbital resonance with Umbriel (and perhaps Ariel).

This resonance would have increased orbital eccentricity, and along with varying tidal forces from Uranus, would have caused warming in Miranda’s interior and led to resurfacing. In addition, the incomplete differentiation of the moon, whereby rock and ice were distributed more uniformly, could have led to an upwelling of lighter material in some areas, thus leading to young and older regions existing side by side.

Uranus’ moon Miranda, imaged by the Voyager 2 space probe on January 24th, 1986. Credit: NASA/JPL-Caltech

Another theory is that Miranda was shattered by a massive impact, the fragments of which reassembled to produce a fractured core. In this scenario – which some scientists believe could have happened as many as five times – the denser fragments would have sunk deep into the interior, with water ice and volatiles setting on top of them and mirroring their fractured shape.

Overall, scientists recognize five types of geological features on Miranda, which includes craters, coronae (large grooved features), regiones (geological regions), rupes (scarps or canyons) and sulci (parallel grooves).

Miranda’s cratered regions are differentiated between younger, lightly-cratered regions and older, more-heavily cratered ones. The lightly cratered regions include ridges and valleys, which are separated from the more heavily-cratered areas by sharp boundaries of mismatched features. The largest known craters are about 30 km (20 mi) in diameter, with others lying in the range of 5 to 10 km (3 to 6 mi).

Miranda has the largest known cliff in the Solar System, which is known as Verona Rupes (named after the setting of Shakespeare’s Romeo and Juliet). This rupes has a drop-off of over 5 km (3.1 mi) – making it 12 times as deep as the Grand Canyon. Scientists suspect that Miranda’s ridges and canyons represent extensional tilt blocks – a tectonic event where tectonic plates stretch apart, forming patterns of jagged terrain with steep drops.

. Credit: NASA/JPL
Image taken by the Voyager 2 probe during its close approach on January 24th, 1986, with a resolution of about 700 m (2300 ft). Credit: NASA/JPL

The most well known coronae exist in the southern hemisphere, with three giant ‘racetrack’-like grooved structures that measure at least 200 km (120 mi) wide and up to 20 km (12 mi) deep. These features, named Arden, Elsinore and Inverness – all locations in Shakespeare’s plays – may have formed via extensional processes at the tops of diapirs (aka. upwellings of warm ice).

Other features may be due to cryovolcanic eruptions of icy magma, which would have been driven by tidal flexing and heating in the past. With an albedo of 0.32, Miranda’s surface is nearly as bright as that of Ariel, the brightest of the larger Uranian moons. It’s slightly darker appearance is likely due to the presence of carbonaceous material within its surface ice.


Miranda’s apparent magnitude makes it invisible to many amateur telescopes. As a result, virtually all known information regarding its geology and geography was obtained during the only flyby of the Uranian system, which was made by Voyager 2 in 1986. During the flyby, Miranda’s southern hemisphere pointed towards the Sun (while the northern was shrouded in darkness), so only the southern hemisphere could be studied.

At this time, no future missions have been planned or are under consideration. But given Miranda’s “Frankenstein”-like appearance and the mysteries that still surround its history and geology, any future missions to study Uranus and its system of moons would be well-advised.

We have many interesting articles on Miranda and Uranus’ moons here at Universe Today. Here’s one about about why they call it the “Frankenstein Moon“, and one about Voyager 2‘s historic flyby. And here’s one that answers the question How Many Moons Does Uranus Have?

For more information, check out NASA’s Solar System Exploration page on Miranda.


Uranus’ Moon Titania

Thanks to the Voyager missions, which passed through the outer Solar system in the late 1970s and early 1980s, scientists were able to get the first close look at Uranus and its system of moons. Like all of the Solar Systems’ gas giants, Uranus has many fascinating satellites. In fact, astronomers can now account for 27 moons in orbit around the teal-colored giant.

Of these, none are greater in size, mass, or surface area than Titania, which was appropriately named. As one of the first moon’s to be discovered around Uranus, this heavily cratered and scarred moon takes it name from the fictional Queen of the Fairies in Shakespeare’s A Midsummer Night’s Dream.

Discovery and Naming:

Titania was discovered by William Herschel on January 11th, 1787, the English astronomer who had discovered Uranus in 1781. The discovery was also made on the same day that he discovered Oberon, Uranus’ second-largest moon. Although Herschel reported observing four other moons at the time, the Royal Astronomical Society would later determine that this claim was spurious.

It would be almost five decades after Titania and Oberon was discovered that an astronomer other than Herschel would observe them. In addition, Titania would be referred to as “the first satellite of Uranus” for many years – or by the designation Uranus I, which was given to it by William Lassell in 1848.

A montage of Uranus's moons. Image credit: NASA
A montage of Uranus’s moons. Image credit: NASA

By 1851, Lassell began to number all four known satellites in order of their distance from the planet by Roman numerals, at which point Titania’s designation became Uranus III. By 1852, Herschel’s son John, and at the behest of Lassell himself, suggested the moon’s name be changed to Titania, the Queen of the Fairies in A Midsummer Night’s Dream. This was consistent with all of Uranus’ satellites, which were given names from the works of William Shakespeare and Alexander Pope.

Size, Mass and Orbit:

With a diameter of 1,578 kilometers, a surface area of 7,820,000 km² and a mass of 3.527±0.09 × 1021 kg, Titania is the largest of Uranus’ moons and the eighth largest moon in the Solar System. At a distance of about 436,000 km (271,000 mi), Titania is also the second farthest from the planet of the five major moons.

Titania’s moon also has a small eccentricity and is inclined very little relative to the equator of Uranus. It’s orbital period, which is 8.7 days, is also coincident with it’s rotational period. This means that Titania is a synchronous (or tidally-locked) satellite, with one face always pointing towards Uranus at all times.

Because Uranus orbits the Sun on its side, and its moons orbit the planet’s equatorial plane, they are all subject to an extreme seasonal cycle, where the northern and southern poles experience 42 years of either complete darkness or complete sunlight.


Uranus and its five major moons
Uranus and its five major moons, with Titania being the farthest left. Credit: space.com


Scientists believe Titania is composed of equal parts rock (which may include carbonaceous materials and organic compounds) and ice. This is supported by examinations that indicate that Titania has an unusually high-density for a Uranian satellite (1.71 g/cm³). The presence of water ice is supported by infrared spectroscopic observations made in 2001–2005, which have revealed crystalline water ice on the surface of the moon.

It is also believed that Titania is differentiated into a rocky core surrounded by an icy mantle. If true, this would mean that the core’s radius is approx. 520 km (320 mi), which would mean the core accounts for 66% of the radius of the moon, and 58% of its mass.

As with Uranus’ other major moons, the current state of the icy mantle is unknown. However, if the ice contains enough ammonia or other antifreeze, Titania may have a liquid ocean layer at the core-mantle boundary. The thickness of this ocean, if it exists, is up to 50 km (31 mi) and its temperature is around 190 K.

Naturally, it is unlikely that such an ocean could support life. But assuming this ocean supports hydrothermal vents on its floor, it is possible life could exist in small patches close to the core. However, the internal structure of Oberon depends heavily on its thermal history, which is poorly known at present.

Voyager 2:

The only direct observations made of Titania were conducted by the Voyager 2 space probe, which photographed the moon during its flyby of Uranus in January 1986. These images covered about 40% of the surface, but only 24% was photographed with the precision required for geological mapping.

Voyager’s flyby of Titania coincided with the southern hemisphere’s summer solstice, when nearly the entire northern hemisphere was unilluminated. As with the other major moon’s of Uranus, this prevented the surface from being mapped in any detail. No other spacecraft has visited the Uranian system or Titania before or since, and no mission is planned in the foreseeable future.

Interesting Facts:

Titania is intermediate in terms of brightness, occupying a middle spot between the dark moons of Oberon and Umbriel and the bright moons of Ariel and Miranda. It’s surface is generally red in color (less so than Oberon), except where fresh impact have taken place, which have left the surface blue in color. The surface of Titania is less heavily cratered than the surface of either Oberon or Umbriel, suggesting that its surface is much younger.

Like all of Uranus’ major moons, it’s geology is influenced by a combination of impact craters and endogenic resurfacing. Whereas the former acted over the moon’s entire history and influenced all its surfaces, the latter processes were mainly active following the moon’s formation and resulted in a smoothing out of its features – hence the low number of present-day impact craters.

Overall, scientists have recognized three classes of geological feature on Titania. These include craters, faults (or scarps) and what are known as grabens (sometimes called canyons). Titania’s craters range in diameter from a few kilometers to 326 kilometers – in the case of the largest known crater, Gertrude. Titania’s surface is also intersected by a system of enormous faults (scarps); and in some places, two parallel scarps mark depressions in the satellite’s crust, forming grabens (aka. canyons).

Voyager 2 image of Titania’s southern hemisphere. Credit: NASA/JPL

The grabens on Titania range in diameter from 20 to 50 kilometers (12–31 mi) and in a relief (i.e. depth) from 2 to 5 km. The most prominent graben on Titania is the Messina Chasma, which runs for about 1,500 kilometers (930 mi) from the equator almost to the south pole. The grabens are probably the youngest geological features on Titania, since they cut through all craters and even the smooth plains.

Like Oberon, the surface features on Titania have been named after characters in works by Shakespeare, with all of the physical features are named after female characters. For instance, the crater Gertrude is named after Hamlet’s mother, while other craters – Ursula, Jessica, and Imogen – are named after characters from Much Ado About Nothing, The Merchant of Venice, and Cymebline, respectively.

Interestingly, the presence of carbon dioxide on the surface suggests that Titania may also have a tenuous seasonal atmosphere of CO², much like that of the Jovian moon Callisto. Other gases, like nitrogen or methane, are unlikely to be present, because Titania’s weak gravity could not prevent them from escaping into space.

Like all of Uranus’ moons, much remains to be discovered about this most-massive of her satellites. In the coming years, one can only hope that NASA, the ESA, or other space agencies decide that another Voyager-like mission is need to the outer Solar System. Until such time, Uranus and the many moons that orbit it will continue to keep secrets from us.

We have written many articles on Titania here at Universe Today. Here’s How Many Moons Does Uranus Have?, Uranus’ Moon Oberon and Uranus’ Moon Umbriel.

For more information, check out Nine Planets page on Titania and NASA’s Solar System Exploration page on  Titania.

Astronomy Cast has an episode on the subject. Here’s Episode 172: William Herschel


How Many Moons Does Uranus Have?

Uranus and Moons

In the outer Solar System, there are many worlds that are so large and impressive to behold that they will probably take your breath away. Not only are these gas/ice giants magnificent to look at, they are also staggering in size, have their own system a rings, and many, many moons. Typically, when one speaks of gas (and/or ice) giants and their moons, one tends to think about Jupiter (which has the most, at 67 and counting!).

But have you ever wondered how many moons Uranus has? Like all of the giant planets, it’s got rather a lot! In fact, astronomers can now account for 27 moons that are described as “Uranian”. Just like the other gas and ice giants, these moons are motley bunch that tell us much about the history of the Solar System. And, just like Jupiter and Saturn, the process of discovering these moons has been long and involved on multiple astronomers.

Continue reading “How Many Moons Does Uranus Have?”