Caterpillar Comet Poses for Pictures En Route to Mars

Comet C/2013 A1 Siding Spring passed between the Small Magellanic Cloud (left) and the rich globular cluster NGC 130 on August 29, 2014. Credit: Rolando Ligustri

Now that’s pure gorgeous. As Comet C/2013 A1 Siding Spring sidles towards its October 19th encounter with Mars, it’s passing a trio of sumptuous deep sky objects near the south celestial pole this week. Astrophotographers weren’t going to let the comet’s picturesque alignments pass without notice. Rolando Ligustri captured this remarkable view using a remote, computer-controlled telescope on August 29th. It shows the rich assemblage of stars and star clusters that comprise the Small Magellanic Cloud, one of the Milky Way’s satellite galaxies located 200,000 light years away.

A photo taken one day earlier on August 28th captures the comet and NGC 362 in a tight pairing. Credit: Damian Peach
A photo taken one day earlier on August 28th captures the comet and NGC 362 in close embrace. Credit: Damian Peach

Looking like a fuzzy caterpillar, Siding Spring seems to crawl between the little globular cluster NGC 362 and the  rich swarm called  47 Tucanae, one of the few globulars bright enough to see with the naked eye. C/2013 A1 is currently circumpolar from many locations south of the equator and visible all night long. Glowing at around magnitude +9.5 with a small coma and brighter nucleus, a 6-inch or larger telescope will coax it from a dark sky. Siding Spring dips farthest south on September 2-3 (Dec. -74º) and then zooms northward for Scorpius and Sagittarius. It will encounter additional deep sky objects along the way, most notably the bright open cluster M7 on October 5-6, before passing some 82,000 miles from Mars on October 19th.

Map showing Comet Siding Spring's recent and upcoming travels near the Small Magellanic Cloud. Positions are shown nightly for Alice Springs, Australia. Source: Chris Marriott's SkyMap
Map showing Comet Siding Spring’s recent and upcoming travels near the Small Magellanic Cloud. Positions are shown nightly for Alice Springs, Australia. Source: Chris Marriott’s SkyMap

While the chance of a Mars impact is near zero, the fluffy comet’s fluffy coma and broad tail, both replete with tiny but fast-moving (~125,000 mph) dust particles, might pose a hazard for spacecraft orbiting the Red Planet. Assuming either coma or tail grows broad enough to sweep across the Martian atmosphere, impacting dust might create a spectacular meteor shower. Mars Rover cameras may be used to photograph the comet before the flyby and to capture meteors during its closest approach. NASA plans to ‘hide’ its orbiting probes on the opposite side of the planet for a brief time during the approximately 4-hour-long encounter just in case.

Today, Siding Spring’s coma or temporary atmosphere measures about 12,000 miles (19,300 km) wide. While I can’t get my hands on current dust production rates, in late January, when it was farther from the sun than at present, C/2013 A1 kicked out ~800,000 lbs per hour (~100 kg/sec). On October 19th, observers across much of the globe with 6-inch or larger instruments will witness the historic encounter with their own eyes at dusk in the constellation Sagittarius.

Why Are Dying Stars in 47 Tucanae Cooling Off So Slowly?

White Dwarf Star
White Dwarf Star

The Hubble Space Telescope is going to be used to settle an argument. It’s a conflict between computer models and what astronomers are seeing in a group of stars in 47 Tucanae.

White dwarfs — the dying embers of stars who have burnt off all their fuel — are cooling off slower than expected in this southern globular cluster, according to previous observations with the telescope’s Wide Field Camera and Advanced Camera for Surveys.

Puzzled astronomers are now going to widen that search in 47 Tucanae (which initially focused on a few hundred objects) to 5,000 white dwarfs. They do have some theories as to what might be happening, though.

White dwarfs, stated lead astronomer Ryan Goldsbury from the University of British Columbia, have several factors that chip in to the cooling rate:

The Hubble Space Telescope. Image credit: NASA, tweaked by D. Majaess.

– High-energy particle production from the white dwarfs;

– What their cores are made up of;

– What their atmospheres are made up of;

– Processes that bring energy from the core to the surface.

Somewhere, somehow, perhaps one of those factors is off.

This kind of thing is common in science, as astronomers create these programs according to the best educated guesses they can make with respect to the data in front of them. When the two sides don’t jive, they do more observations to refine the model.

“The cause of this difference is not yet understood, but it is clear that there is a discrepancy between the data and the models,” stated the Canadian Astronomical Society (CASCA) and the University of British Columbia in a press release.

Since the white dwarfs are in a cluster that presumably formed from the same cloud of gas, it allows astronomers to look at a group of stars at a similar distance and to determine the distribution of masses of stars within the cluster.

“Because all of the white dwarfs in their study come from a single well-studied star cluster, both of these bits of information can be independently determined,” the release added.

You can read the entire article on the previous Hubble research on 47 Tucanae at the Astrophysical Journal.

Today’s announcement took place during the annual meeting of CASCA, which is held this year in Vancouver.


So. Many. Stars…

Infrared image of globular cluster 47 Tucanae (NGC 104) captured by ESO’s VISTA telescope.

“My god, it’s full of stars!” said Dave Bowman in the movie 2010 as he entered the monolith, and one could imagine that the breathtaking view before him looked something like this.

Except this isn’t science fiction, it’s reality — this is an image of globular cluster 47 Tucanae taken by the European Southern Observatory’s VISTA telescope at the Paranal Observatory in Chile. It reveals in stunning detail a brilliant collection of literally millions of stars, orbiting our Milky Way galaxy at a distance of 15,000 light-years.

The full image can be seen below.

eso1302a (1)

47 Tucanae (also known as NGC 104) is located in the southern constellation Tucana. It’s bright enough to be seen without a telescope and, even though it’s very far away for a naked-eye object, covers an area about the size of the full Moon.

In reality the cluster is 124 light-years across.

Although globular clusters like 47 Tucanae are chock-full of stars — many of them very old, even as stars go — they are noticeably lacking in clouds of gas and dust. It’s thought that all the gaseous material has long since condensed to form stars, or else has been blown away by radiation and outbursts from the cluster’s exotic inhabitants.

At the heart of 47 Tucanae lie many curious objects like powerful x-ray sources, rapidly-spinning pulsars, “vampire” stars that feed on their neighbors, and strange blue stragglers — old stars that somehow manage to stay looking young. (You could say that a globular cluster is the cosmic version of a trashy reality show set in Beverly Hills.)

Red giants can be seen surrounding the central part of the cluster, old bloated stars that are running out of fuel, their outer layers expanding.

vista-survey-telescopeThe background stars in the image are part of the Small Magellanic Cloud, which was in the distance behind 47 Tucanae when this image was taken.

VISTA is the world’s largest telescope dedicated to mapping the sky in near-infrared wavelengths. Located at ESO’s Paranal Observatory in Chile, VISTA is revealing new views of the southern sky. Read more about the VISTA survey here.

Image credit: ESO/M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit