Some Lunar Regolith is Better for Living Off the Land on the Moon

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

Between now and the mid-2030s, multiple space agencies hope to send crewed missions to the Moon. of These plans all involve establishing bases around the Moon’s southern polar region, including the Artemis Base Camp and the International Lunar Research Station (ILRS). These facilities will enable a “sustained program of lunar exploration and development,” according to the NASA Artemis Program mission statement. In all cases, plans for building facilities on the surface call for a process known as In-Situ Resource Utilization (ISRU), where local resources are used as building materials.

This presents a bit of a problem since not all lunar soil (regolith) is well-suited for construction. Much like engineering and construction projects here on Earth, builders need to know what type of soil they are building on and if it can be used to make concrete. In a recent study, planetary scientist Kevin M. Cannon proposed a lunar soil classification scheme for space resource utilization. This could have significant implications for future missions to the Moon, where it would help inform the construction of bases, habitats, and other facilities based on soil type and location.

Continue reading “Some Lunar Regolith is Better for Living Off the Land on the Moon”

This is a 3D-Printed Steel Floor Prototype for a Lunar Habitat

Credit: ESA/MX3D

In this decade, multiple space agencies and commercial space entities will be taking us back to the Moon. But unlike the Apollo Era, the goal of these programs is not “footprints and flags,” but to establish the necessary infrastructure to keep going back. In particular, NASA, the ESA, Roscosmos, and China are all planning on establishing outposts that will allow for scientific research and a sustained human presence.

The ESA is currently showcasing what its outpost will look like at the 17th annual Architecture Exhibition at the La Biennale di Venezia museum in Venice. It’s known as the International Moon Village, which was designed by the architecture firm Skidmore, Owings & Merrill (SOM) with technical support from the ESA. This same company recently unveiled a prototype of the skeletal metal component that will one day be part of the Village’s lunar habitats.

Continue reading “This is a 3D-Printed Steel Floor Prototype for a Lunar Habitat”