Where to Look for Comet Lovejoy Until it Fades from Sight

Viewing Comet Lovejoy from dark skies in Portugal. Credit: Miguel Claro

I hate to admit it, but our dear comet is fading. Only a little though. As Comet Q2 Lovejoy wends its way from Earth toward perihelion and beyond, it will slowly dim and diminish. With an orbital period of approximately 8,000 years it has a long journey ahead. Down here on Earth, we continue to look up every clear night hoping for yet another look at what’s been a wonderful comet. 

Comet Lovejoy and the Pleiades on January 19, 2015. Credit: Joseph Brimacombe
Comet Lovejoy and the Pleiades on January 19, 2015. Credit: Joseph Brimacombe

Despite its inevitable departure I encourage you to continue following Comet Lovejoy. It’s not often a comet vaults to naked eye brightness, and this one should remain visible without optical aid through mid-February.

Like a human celebrity, Lovejoy’s been the focus of attention from beginners and professionals alike using everything from cheap cellphone cameras to high-end telescopes to capture its magic. Who can get enough of that wildly fluctuating ion tail and greeny-blue coma?

Comet Q2 Lovejoy continues tracking north-northwest now through March. This chart shows the comet's position at 7 p.m. (CST) every 5 nights through March 5. Stars shown to magnitude +6. Created with Chris Marriott's SkyMap software
Comet Q2 Lovejoy continues tracking north-northwest now through March. This chart shows the comet’s position at 7 p.m. (CST) every 5 nights through March 5. Stars shown to magnitude +6. Click to enlarge. Created with Chris Marriott’s SkyMap software

The comet continues moving northward all winter long, sliding through  the diminutive constellations Aries and Triangulum, across Andromeda and into Cassiopeia, fading as she goes. You can use the map above and binoculars to help you follow it. I like to create lines and triangles using bright stars and deep sky objects to direct me to the comet.

Deep image of Comet Lovejoy taken with a Canon 6D with 50mm f/1.4 lens at f/2. 10  exposure of 30 secs at ISO3200 stacked. The tail, though faint, extends for possibly 18 degrees in this amazing image. Credit: Ian Sharp
Deep image of Comet Lovejoy taken with a Canon 6D with 50mm f/1.4 lens at f/2. Ten exposures of 30 secs at ISO3200 were stacked to create the final photo. The tail extends for possibly 18 degrees in this amazing image. The Pleiades are at top right; Hyades at bottom center. Credit: Ian Sharp

Tonight for instance, Lovejoy one fist held at arm’s length due west of the Pleiades. On the 29th, it’s on a line from Beta Persei (Algol) to Beta Trianguli. On February 3rd, it pulls right up alongside the colorful double star Gamma Andromedae, also called Almach, and on the 8th forms one of the apexes of an equilateral triangle with the two Betas. You get the idea.

The tail rays that show so clearly in photographs as in this image made on January 16th require dark skies and 8-inch or larger telescope to see visually. They're very low contrast. Credit: Greg Redfern
The tail rays that show so clearly in photographs as in this image made on January 16th require dark skies and an 8-inch or larger telescope to see visually. They’re very low contrast. Credit: Greg Redfern

The waxing moon will interfere with viewing beginning next weekend and render the comet nil with the naked eye, you’ll still be able to track it in binoculars during that time. Dark skies return around Feb. 7.

Comet Lovejoy captured from the Dark Sky Alqueva Reserve, Portugal on Jan. 11th by Miguel Claro

Delicate streamers show in Comet Lovejoy's ion tail in this photo from January 13th. Credit: Bernhard Hubl
Delicate streamers show in Comet Lovejoy’s ion tail in this photo from January 13th. Credit: Bernhard Hubl

Carnival of Space #389

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Brian Wang at his Next Big Future blog.

Click here to read Carnival of Space #389

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Are Aliens Watching Old TV Shows?

Are Aliens Watching Old TV Shows?

You’ve probably heard the trope about how aliens have been watching old episodes of “I Love Lucy” and might think these are our “historical documents”. How far have our signals reached?

Television transmissions expand outward from the Earth at the speed of light, and there’s a trope in science fiction that aliens have learned everything about humans by watching our television shows. If you’re 4 light-years away, you’re see the light from the Earth as it looked 4 years ago, and some of that light includes television transmissions, as radio waves are just another form of electromagnetism – it’s all just light.

Humans began serious television service in the 1930s, and by the modern era, there were thousands of powerful transmitters pumping out electromagnetic radiation for all to see. So are aliens watching “I Love Lucy” or footage from World War II and believing it all to be part of our “Historical Documents”?

The first radio broadcasts started in the early 1900s. At the time I’m recording this video, it’s late 2014, so those transmissions have escaped into space 114 years ago. This means our transmissions have reached a sphere of stars with a radius of 114 light-years.

Are there other stars in that volume of space? Absolutely. It’s estimated that there are more than 14,000 stars within 100 light years of Earth. Most of those are tiny red dwarf stars, but there would be hundreds of sunlike stars.

As we’re discovering, almost all of those stars will have planets, many of which will be Earthlike. It’s almost certain some of those stars will have planets in the habitable zone, and could have evolved life forms, technology and television sets and were able to learn of the Stealth Haze and the Mak’Tar chant of strength.

Will the signals be powerful enough to stretch across the vast distances of space and reach another world so that many generations of aliens can hang their hopes that James Tiberius Kirk never visits their planet with his loose morals, questionably applied prime directive, irresistible charms and pants aflame with who knows what kinds of interstellar STIs?

Here’s the problem. Broadcast towers transmit their signals outward in a sphere, which falls under the inverse square law. The strength of the signal decreases massively over distance. By the time you’ve gone a few light years, the signal is almost non-existent.

 The Square Kilometer Array
The Square Kilometer Array

Aliens could build a huge receiver, like the square kilometer array being built right now, but the signals they could receive from Earth would be a billion billion billion times weaker. Very hard to pick out from the background radiation. And by Grabthar’s hammer, I assure you it’s only by focusing our transmissions and beaming them straight at another star do we stand a chance of alerting aliens of our presence. Which, like it or not, is something we’ve done. So there’s that.

We’ve really been broadcasting our existence for hundreds of millions of years. The very presence of oxygen in the atmosphere of the Earth would tell any alien with a good enough telescope that there’s life here. Aliens could tell when we invented fire, when we developed steam technology, and what kinds of cars we like to drive, just by looking at our atmosphere. So don’t worry about our transmissions, the jig is up.

What do you think? Is it a good idea to alert aliens to our presence? Should we get rid of all that oxygen in our atmosphere and keep a low profile?

Here’s Dawn’s Best View of Ceres Yet

Animation of Ceres made from Dawn images acquired on Jan. 13, 2015 (Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI)

Just sit back and watch the world turn… or should I say, watch the dwarf planet turn in this fascinating animation from Dawn as the spacecraft continues on its ion-powered approach to Ceres!

The images were captured by Dawn’s framing camera over the course on an hour on Jan. 13 at a distance of 238,000 miles (383,000 km) from Ceres. At 590 miles (950 km) wide Ceres is the largest object in the main asteroid belt.

“Already, the [latest] images hint at first surface structures such as craters,” said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research in Gottingen, Germany. “We have identified all of the features seen by Hubble on the side of Ceres we have observed, and there are also suggestions of remarkable structures awaiting us as we move even closer.”

Although these latest 27-pixel images from Dawn aren’t quite yet better than Hubble’s images from Jan. 2004, very soon they will be.

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart

“The team is very excited to examine the surface of Ceres in never-before-seen detail,” said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. “We look forward to the surprises this mysterious world may bring.”

Launched Sept. 27, 2007, Dawn previously spent over 13 months in orbit around the asteroid/protoplanet Vesta from 2011–12 and is now on final approach to Ceres. On March 6 Dawn will arrive at Ceres, becoming the first spacecraft to enter orbit around two different target worlds.

Read more: Find Out How “Crazy Engineering” is Getting Dawn to Ceres

Learn more at JPL’s Dawn mission site here, and find out where Dawn is right now here.

Also, read more from the Max Planck Institute for Solar System Research here.

Source: NASA/MPI

How Long Have Humans Been On Earth?

Lights from the United States glow in this night image based on data taken from the Suomi NPP satellite in April and October 2012. Credit: NASA Earth Observatory/NOAA NGDC

While our ancestors have been around for about six million years, the modern form of humans only evolved about 200,000 years ago. Civilization as we know it is only about 6,000 years old, and industrialization started in the earnest only in the 1800s. While we’ve accomplished much in that short time, it also shows our responsibility as caretakers for the only planet we live on right now.

The effects of humans on Earth cannot be understated. We’ve been able to survive in environments all over the world, even harsh ones such as Antarctica. Every year, we fell forests and destroy other natural areas, driving species into smaller areas or into endangerment, because of our need to build more housing to contain our growing population.

With seven billion people on Earth, pollution from industry and cars is a growing element in climate change — which affects our planet in ways we can’t predict. But we’re already seeing the effects in melting glaciers and rising global temperatures.

Enormous chuck of ice breaks off the Petermann Glacier in Greenland. Credit: NASA.
Enormous chuck of ice breaks off the Petermann Glacier in Greenland. Credit: NASA.

The first tangible link to humanity started around six million years ago with a primate group called Ardipithecus, according to the Smithsonian Institution. Based in Africa, this group began the path of walking upright. This is traditionally considered important because it allowed for more free use of the hands for toolmaking, weaponry and other survival needs.

The Australopithecus group, the museum added, took hold between about two million and four million years ago, with the abilities to walk upright and climb trees. Next came Paranthropus, which existed between about one million and three million years ago. The group is distinguished by its larger teeth, giving a wider diet.

The Homo group — including our own species, Homo sapiens — began arising more than two million years ago, the museum said. It’s distinguished by bigger brains, more tool-making and the ability to reach far beyond Africa. Our species was distinguished about 200,000 years ago and managed to survive and thrive despite climate change at the time. While we started in temperate climates, about 60,000 to 80,000 years ago the first humans began straying outside of the continent in which our species was born.

GOCE view of Africa.. Credits: ESA/HPF/DLR, anaglyph by Nathanial Burton-Bradford.
GOCE view of Africa.. Credits: ESA/HPF/DLR, anaglyph by Nathanial Burton-Bradford.

“This great migration brought our species to a position of world dominance that it has never relinquished,” reads a 2008 article in Smithsonian Magazine, pointing out that eventually we obviated the competition (most prominently including Neanderthals and Homo erectus). When the migration was complete,” the article continues, “Homo sapiens was the last—and only—man standing.”

Using genetic markers and an understanding of ancient geography, scientists have partially reconstructed how humans could have made the journey. It’s believed that the first explorers of Eurasia went there using the Bab-al-Mandab Strait that now divides Yemen and Djibouti, according to National Geographic. These people made it to India, then by 50,000 years ago, southeast Asia and Australia.

A little after this time, another group began an inland journey across the Middle East and south-central Asia, positioning them to later go to Europe and Asia, the magazine added. This proved important for North America, as about 20,000 years ago, some of these people crossed over to that continent using a land bridge created by glaciation. From there, colonies have been found in Asia dating as far back as 14,000 years ago.

A teensy-tiny Neil Armstrong is visible in the helmet of Buzz Aldrin during the Apollo 11 landing in July 1969. Credit: NASA
A teensy-tiny Neil Armstrong is visible in the helmet of Buzz Aldrin during the Apollo 11 landing in July 1969. Credit: NASA

Since this is a space website, it’s also worth noting when humans began leaving Earth. The first human mission to space took place April 12, 1961 when Soviet cosmonaut Yuri Gagarin made a single orbit of Earth in his spacecraft, Vostok 1. Humanity first set foot on another world on July 20, 1969, when Americans Neil Armstrong and Buzz Aldrin walked on the Moon.

Since then, our colonization efforts in space have focused mostly on space stations. The first space station was the Soviet Salyut 1, which launched from Earth April 19, 1971 and was first occupied by Georgi Dobrovolski, Vladislav Vokov, and Viktor Patsayev on June 6. The men died during re-entry June 29 due to spacecraft decompression, meaning no further flights went to that station.

There have been other space stations since. A notable example is Mir, which hosted several long-duration missions of a year or more — including the longest single spaceflight duration of any human to date, 437 days, by Valeri Polyakov in 1994-95. The International Space Station launched its first piece Nov. 20, 1998 and has been continuously occupied by humans since Oct. 31, 2000. The first humans to start the continuous occupation included Expedition 1 members Bill Shepard (U.S.) and Russian cosmonauts Sergei Krikalev and Yuri Gidzenko.

Politics Kept a Mission in Cold Storage and Delayed for 12 Years, Launching Feb. 9th

The Deep Space Climate Observatory (DSCOVR) mission has withstood time, politics, technological changes and now stands prepared for launch. (Credit: NASA, NOAA,SpaceX, Getty Images)

For DSCOVR – the payload of SpaceX’s next Falcon 9 launch, waiting one more week is a yawn. The Deep Space Climate Observatory (DSCOVR) spacecraft has withstood a delay of  over 12 years. Word from Cape Canaveral is that the Air Force is delaying the launch of the next Falcon 9 until February 9th. Two days earlier, the launch date had been moved to January 31st.

Its original mission name could not be more noble, Triana – the name of Columbus’ sailor that first saw the New World. Then, it got tangled in the ignoble politics of space and climate change. Yet, if all goes well for the SpaceX Falcon 9 launch, the famous GoreSat satellite will be deployed and then immediately upstaged by what everyone agrees is a major milestone – returning a rocket’s 1st stage gently to Earth to reuse and to reduce the cost of space travel.

DSCOVR's instrument payload, low-cost (~$250M) and scientific objectives stand in contrast to the 12 years of political limbo withstood by the mission. (Image  Credit: NASA)
DSCOVR’s instrument payload, low-cost (~$250M) and scientific objectives stand in contrast to the 12 years of political limbo that the mission withstood. (Image Credit: NASA)

Remember GoreSAT? Better yet, do you recall the spacecraft Triana? They are one in the same. They are DSCOVR. The spacecraft was completed and ready to be shipped to Cape Canaveral in 2001. It was scheduled for launch on board NASA’s flagship, the Space Shuttle Columbia, on what became Columbia’s ill-fated last mission in January 2003. But DSCOVR had become the spoils of the victor. Bush had defeated Gore and the victor pulled the rug from under Triana.

The political story of the DSCOVR spacecraft is wrapped in the political tug of war over Climate Change. Senator Al Gore had long recognized the risks to humanity, to species extinction and destruction of ecosystems by the human-caused climate change. As vice president, in 1998, Gore proposed to NASA the concept that became Triana to monitor and better understand Climate Change. His political opponents labeled Triana “GoreSat”, and its constant downlink stream of “Whole Earth” images as “an expensive screensaver”.

The former Republican congressman from Texas, Dick Armey, referring to GoreSat, said, “This idea supposedly came from a dream. Well, I once dreamed I caught a 10-foot bass. But I didn’t call up the Fish and Wildlife Service and ask them to spend $30 million to make sure it happened.” This was the rash and risk beholding a spacecraft conceived by politicians. However, while political egos were bruised, Triana, now DSCOVR, was never damaged and was placed into cold storage and for two Bush terms was bathed in pure nitrogen gas to minimize any damage to electronics.

The DSCOVR spacecraft (3-axis stabilized, 570 kg) will be delivered to the Sun-Earth L1 point, 1.5 million km (1 million miles) from the Earth, directly in front of the Sun. A Halo (Lissajous) orbit will stabilize the craft's position around the L1 point while keeping it outside the radio noise emanating from the Sun. (Illustratin Credit: NASA)
The DSCOVR spacecraft (3-axis stabilized, 570 kg) will be delivered to the Sun-Earth L1 point, 1.5 million km (1 million miles) from the Earth, directly in front of the Sun. A Halo (Lissajous) orbit will stabilize the craft’s position around the L1 point while keeping it outside the radio noise emanating from the Sun. (Illustratin Credit: NASA)

While Solar radiation causes skin damage and melanoma, Solar eruptions –  Coronal Mass Ejections (CME) have a global impact – disruption of electrical power grids and damage to Earth orbiting spacecraft. Just as California expects the “big one” and plans for large quakes, DSCOVR is meant to give the Earth an early warning system. According to NOAA and NASA, without monitoring upwind, the big one will cost upwards of $2 trillion in damages including a breakdown of power grids and major satellite systems that the world depends on for transportation, GPS, telecommunications and commerce. In time, a massive CME will happen.

As sure as the Sun rises every morning, DSCOVR was pulled out of storage in November 2008. Despite the years of idle time and technological advances passing it by, DSCOVR still holds an excellent array of instruments. The National Research Council was commissioned to analyze and reported to Congress that Triana was “Strong and scientifically vital.” Beginning in 2009, the instruments were re-certified for flight re-integrated onto the spacecraft bus. Filters were replaced on the 30 cm (12 inch) telescopic camera.

DSCOVR’s Earth Polychromatic Imaging Camera (EPIC) will provide a first of its kinds continuous stream of 8 km resolution global images of the rotating sunlit Earth. The images in 3 bands are in contrast to the future geostationary GOES-R weather satellites (a pair) which will have a 0.5 and 1 km resolution images but only for the western hemisphere. DSCOVR will pair up with ACE to monitor particles and fields streaming from the Sun towards the Earth, 1.5 million km (1 million miles) away.

Three particle and fields instruments will monitor electrons and ions –  a top-hat electron electrostatic analyzer and a Farday Cup ion detector; the same type of detectors that were recently flown on the Philae lander to comet 67P. The third Plasma instrument is a  pair of fluxgate magnetometers designed and constructed by the late Dr. Mario Acuna’s magnetometer team at Goddard Spaceflight Center. Lastly, targeting its interest in Climate Change, the NiStar instrument developed at Ball Aerospace “is a cavity radiometer designed to measure the absolute, spectrally integrated irradiance reflected and emitted from the entire sunlit face of the Earth”, as stated in NOAA documentation.

DSCOVR in the final stages of integration prior to shipment to the Cape. Two perspectives, one with engineers in a clean room revealing the relative size. (Photo Credits: NASA/GSFC)
DSCOVR in the final stages of integration prior to shipment to the Cape. Two perspectives, one with engineers in a clean room revealing the relative size. (Photo Credits: NASA/GSFC)

DSCOVR now becomes the legacy to a long line of Solar-Terrestial monitoring spacecraft. If you recall last August 10th, the spacecraft ISEE-3 flew past the Earth after over 20 years out of contact and 35 years in space. ISEE-3 became the first vehicle to utilize the Sun-Earth Lagrangian point 1 (L1) to monitor the Solar wind. Several vehicles followed, specialized probes even clusters were developed to understand the complex interaction between the Sun and the Earth’s magnetic field and atmosphere.

DSCOVR will join two existing vehicles – the aging Advanced Composition Explorer (ACE) and the Solar Dynamics Observatory (SDO). Altogether, a next generation of monitoring and, as NOAA emphasizes, development of space weather forecasting and a warning system will evolve from addition of DSCOVR. This also represents SpaceX first contracted launch in the Orbital/Suborbital Program (OSP)-3 NASA program. The second contracted (OSP)-3 launch will be atop the Falcon Heavy expected later in 2015.

References:

Deep Space Climate Observatory (DSCOVR) Mission Briefing

DSCOVR Home Page

What is the Zodiac?

A chart of the constellations and signs that make up the zodiac. Credit: NASA

The zodiac represents the constellations that the Sun passes through in its apparent path across Earth’s sky. Because the Sun (and the planets) are all on about the same plane in the Solar System, they pass through the same constellations and at times, can even eclipse each other.

While traditionally the zodiac is considered to have 12 constellations, technically the Sun passes through 13, according to this NASA page. In order, the constellations are Sagittarius, Capricornus, Aquarius, Pisces, Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpius and Ophiuchus.

The reason there are now 13 constellations that the Sun passes through is that the axis of the Earth has changed over the millennia. Earth’s axis precesses or moves in a cycle that takes about 26,000 years. Over time, this means the direction of north has changed with respect to the sky. Vega was the North Star several thousand years ago, and will become it again in about 13,000 years, according to NASA. Today, the North Star is Polaris.

Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King
Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King

Because different cultures see different shapes in the stars of the sky, the number of constellations varied in ancient definitions of the zodiac. It has been used in cultures ranging from Greece to Babylon to China to India. It should also be noted that the constellations are of different size, so the Sun does not spend the same amount of time in each.

The number of constellations was fixed at 12 when mathematics was added to astronomy, according to Encyclopedia Britannica. While we don’t know when the symbols were first used, the first known instance is in Greek manuscripts used during the late Middle Ages, the encyclopedia added. Briefly, according to the encyclopedia, these are what each of the constellations are:

Aries (the ram), which has no bright stars and traditionally governs the period from March 21 to April 19. In Greek mythology, it represents the ran with the golden fleece. Phrixus sacrificed a ram to Zeus (the chief god) after safely fleeing Thessaly to Colchis on its back. Jason (the chief of the Argonauts) later recovered the fleece.

Venus within the Pleiades on April 4, 2012, as seen from New Jersey in the US. Credit and copyright John Anton.
Venus within the Pleiades on April 4, 2012, as seen from New Jersey in the US. Credit and copyright John Anton.

Taurus (the bull), whose brightest star Aldebaran is the 14th-brightest in the sky. Also in Taurus are two bright star clusters (the Pleiades and the Hyades) and the Crab Nebula. It traditionally governs April 20 to May 20. In Greek mythology, Taurus represents the bull form that Zeus (the chief god) took upon to abduct Europa.

Gemini (the twins), whose brightest stars are Castor and Pollux. It’s the current location of the northern summer solstice, when the Sun reaches its highest point in the sky. It traditionally represents May 21 to June 21. In Greek mythology, the twins were gods who “succored shipwrecked sailors and received sacrifices for favorable winds,” the encyclopedia stated.

Cancer (the crab), which also has no bright stars but contains a prominent star cluster known as the Beehive (Praesepe). It traditionally governs June 22 to July 22. In Greek mythology, it refers to a crab that was crushed after pinching Heracles while he was fighting a hydra. Hera (an enemy of Heracles) rewarded the crab by immortalizing it in the sky.

Beehive Cluster. Image credit: Tom Bash and John Fox/Adam Block/NOAO/AURA/NSF
Beehive Cluster. Image credit: Tom Bash and John Fox/Adam Block/NOAO/AURA/NSF

Leo (the lion), whose brightest star is Regulus — sometimes called the “little king.” It traditionally governs July 23 to August 22 and in Greek mythology, represents a lion that Heracles killed.

Virgo (the virgin), whose brightest star is Spica — the 15th-brightest seen in Earth’s sky. It’s also known for the Virgo cluster of galaxies and the pulsar PSR 1257+12, where astronomers found the first confirmed extrasolar planets in 1992. It traditionally represents August 23 to September 22 and in Greek mythology, is associated with the harvest maiden (Persephone).

Libra, which has no bright stars. It traditionally governs Sept. 22 to Oct. 23 and is associated with balance or justice, such as with the Roman goddess Astraea.

Scorpius, whose brightest star Antares is known as the “rival of Mars” due to its red color and similar appearance to the Red Planet. It also contains Scorpius X-1, the brightest X-ray source in the sky. It traditionally governs Oct. 24 to Nov. 21 and in Greek mythology, refers to one of two legends. The first is said to be a scorpion that killed Orion, and the second refers to one that spooked horses being controlled by Phaeton as the young man was trying to drive the Sun.

Globular Cluster
A Hubble Space Telescope image of the typical globular cluster Messier 80, an object made up of hundreds of thousands of stars and located in the direction of the constellation of Scorpius. The Milky Way galaxy has an estimated 160 globular clusters of which one quarter are thought to be ‘alien’. Image: NASA / The Hubble Heritage Team / STScI / AURA. Click for hi-resolution version.

Sagittarius (the archer), which contains a prominent radio source known as Sagitarrius A. It is considered to govern Nov. 22 to Dec. 21, and is considered a mounted archer in several cultures (starting with the Babylonians in the 11th century).

Capricornus (the goat), which has no bright stars. It traditionally governs Dec. 22 to Jan. 19. In Greek mythology, it is associated with the god Pan. He leaped into the water to get away from a monster called Typhon, just as Pan was changing shape. This made him a goat with a fish tail.

Aquarius (the water bearer), which has no bright stars. It is considered to rule over Jan. 20 to Feb. 18 and is traditionally associated with a man pouring water out of a jug. The symbolism likely arises from the Middle East, whose astronomers noted that the constellation rises with the rainy season.

Pisces (the fish), which has no bright stars. It traditionally rules over Feb. 19 to March 20 and in Greek mythology, refers to Aphrodite and Eros. They went into a river to avoid a monster called Typhon. Some versions of the myth say they changed into fish, while others say they rode fish to get away.

Universe Today has articles on zodiac signs and their dates. Astronomy Cast also has an episode on constellations.

SpaceX Could Launch 17 Rockets in 2015, Including the Most Powerful Rocket Since Saturn V

With over 3.8 million pounds of thrust at liftoff, Falcon Heavy will be the most capable rocket flying. By comparison, the liftoff thrust of the Falcon Heavy equals fifteen Boeing 747 aircraft at full power. Credit: SpaceX

If all goes as hoped, SpaceX will have a very busy 2015. The commercial space company could launch as many as 17 rockets, including a mid-flight test abort of the Dragon capsule to demonstrate its in-flight crew escape system. Then there’s the launch that every rocket aficionado one has been waiting for: the demonstration mission of the 27-engine Falcon Heavy rocket.

Already, SpaceX has launched one mission in 2015, the CRS-5 Dragon resupply mission for the International Space Station that was delayed from December 2014. In addition to successfully hooking up with the ISS, SpaceX also tested out a flyback and landing system for the Falcon 9 first stage, which was deemed “mostly successful” despite a spectacular explosion when it careened off the target, a floating ocean barge. The next test of the landing system will occur with the launch of the solar wind monitoring DSCOVR satellite, which has just been delayed slightly to February 9.

While SpaceX itself does not list upcoming launch dates on its own website, a site put together by SpaceX enthusiast Lukas Davia called SpaceXStats has garnered a list of potential launch dates from NASA and other customers, and they say up to 16 more launches could take place this year. SpaceX will be launching more space station resupply missions, commercial satellite launch missions, and US government science and national security missions.

Delays like the recently announced launch delay for DSCOVR, will greatly impact how many launches SpaceX will be able to conduct this year. Musk has said his company could launch about one rocket per month during 2015, while other sources predict 10-12 launches for the commercial company.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, on Sept. 21, 2014 bound for the ISS. Credit: Ken Kremer/kenkremer.com

As reported in Spaceflightnow.com, SpaceX had a similar number of flights on its docket in 2014, including the Falcon Heavy’s debut launch and the Dragon abort tests, which has slipped to be on the launch manifest for 2015. Six Falcon 9 rockets ended up blasting off last year.

Most of the missions will take off from Cape Canaveral’s launch complex, where up to 24 launches could take place this year. Along with the launches from SpaceX, United Launch Alliance has launches schedule for satellites for the U.S. military, NASA and commercial companies.

Video: Falcon Heavy

The Falcon Heavy was originally scheduled for its first test flight in late 2012 or early 2013 from Vandenberg Air Force Base, California, but it now will launch from the refurbished pads at Cape Canaveral. SpaceX says this rocket was designed from the outset to carry humans into space and “restores the possibility of flying missions with crew to the Moon or Mars.”

The Falcon Heavy will lift over 53 metric tons (117,000 lb) to orbit, about three times the performance of the Falcon 9. It is comprised of three nine-engine Falcon 9 first stage booster cores and uses upgraded Merlin 1D engines.

Here’s a sampling of launches from SpaceXStats, see the full list here.

9 Feb 2015 DSCOVR NOAA Falcon 9 v1.1 SLC-40, Florida
17 Feb 2015 Eutelsat 115W B & ABS-3A Asia Broadcast Satellite Falcon 9 v1.1 SLC-40, Florida
March 2015 Dragon Inflight Abort SpaceX / NASA Falcon 9 v1.1 SLC-4E, Vandenberg, California
8 Apr 2015 SpaceX CRS-6 NASA Falcon 9 v1.1 SLC-40, Florida
H1 2015 Falcon Heavy Test Flight SpaceX Falcon Heavy LC-39A, Florida

Video: SpaceX’s Year in Review, 2014:

Comet Finlay Surprise Outburst, Visible in Binoculars … again!

Comet Finlay in outburst on the evening (CST) of January 16th. Credit: Michael Mattiazzo

Lost sleep at night, fingers tapping on the keyboard by day. Darn comets are keeping me busy! But of course that’s a good problem. Comet 15P/Finlay, which had been languishing in the western sky at dusk at magnitude +10, has suddenly come to life … for a second time.

Two nights ago, Australian comet observer Michael Mattiazzo took a routine picture of Finlay and discovered it at magnitude +8. Today it’s a magnitude brighter and now joins Comet Lovejoy as the second binocular comet of 2015. Comet-wise, we’ve gone from zero to 60 and the new year’s fewer than 3 weeks old!

Comet 15P/Finlay tonight through Feb. 1. Positions shown for 7 p.m (CST) and stars depicted to magnitude +8. Tonight the comet will be right next to a 6th mag. star in Aquarius.
Comet 15P/Finlay tonight through Feb. 1. Positions shown for 7 p.m (CST) and stars depicted to magnitude +8. Tonight the comet will be right next to a 6th mag. star in Aquarius low in the southwestern sky at nightfall. Mars and Neptune’s position are for Jan. 17th. Click to enlarge. Source: Chris Marriott’s SkyMap software

Comet Finlay’s threw its first tantrum last December when it reached binocular visibility (faintly) shortly before Christmas.  Discovered by William Henry Finlay from South Africa on September 26, 1886, the comet circles the Sun every 6.5 years. This time around it reached perihelion on December 27th and spent many nights near the planet Mars low in the western sky. Until the new outburst, the comet had returned to its predicted brightness (~10 magnitude) and departed company with the Red Planet.

Even though photographed under poor conditions on Jan. 17th, Alfons Diepvens' image of Comet Finlay's coma and nuclear region reveals interesting details. Credit: Alfons Diepvens
Even though photographed under poor conditions on Jan. 17th, Belgian amateur astronomer Alfons Diepvens’ image of Comet Finlay’s coma and nuclear region reveals interesting details. Credit: Alfons Diepvens

It’s still low in the west, though not quite so much as in December, in the constellation Aquarius. With an orbit inclined only 6.8° to the ecliptic or plane of the Solar System, you’ll find it chugging eastward across the zodiac at the rate of 1° per night. The best time to view the comet is at the end of evening twilight at nightfall when it’s highest —  20° to 25° above the southwestern horizon.

Comet Lovejoy southwest of the beautiful Pleaides star cluster on January 15th. Credit: Bob King
Comet Lovejoy seen in tandem with the beautiful Pleaides star cluster on January 15th. Click for a finder chart. Credit: Bob King

Right now it’s not far from Lambda Aquarii and will soon glide just south of the well-known asterism called the “Circlet” in Pisces. Currently between 7th and 8th magnitude and showing a bright, condensed center, Comet Finlay is easily visible in 10×50 binoculars. Catch it while you can. These outbursts often fade fairly quickly. While we don’t know its exact cause, what likely happened is that a new fissure opened up on the comet’s surface, exposing fresh ice to sunlight. Rapid vaporization of the new material may be behind the eruption.

While Comet Q2 Lovejoy’s been getting all the attention, Finlay’s back in the game and making mid-January nights all that more enjoyable for sky gazing. Lovejoy is presently passing near the Pleiades star cluster in Taurus. This coming week will be the last dark one before the Moon starts to spoil the view. I hope you’re able to spot both at the next opportunity.

5-degree binocular view of Mars as it approaches Neptune in the next few nights. They'll be in close conjunction on the 19th. Mars shines at about 1st magnitude, Neptune at 8. Stars shown to mag. 9. Source: Chris Marriott's SkyMap software
5-degree binocular view of Mars as it approaches Neptune in the next few nights. They’ll be in close conjunction on the 19th. Mars shines at about 1st magnitude, Neptune at 8. Stars shown to mag. 9. Source: Chris Marriott’s SkyMap software

While we’re on the topic, take another look at the finder chart and you’ll see that Mars lies very near Neptune. The two are presently about 2° apart but on Monday Jan. 19th at dusk they’ll be separated by just 12 arc minutes or 1/5 of a degree and easily fit into the same medium-power view of a telescope. Pretty cool – and well worth seeing along with those comets!