Bumpy Dust Makes Molecular Hydrogen

Simulation of interstellar grains of dust. Image credit: OSU. Click to enlarge.
Science fiction writer Harlan Ellison once said that the most common elements in the universe are hydrogen and stupidity.

While the verdict is still out on the volume of stupidity, scientists have long known that hydrogen is indeed by far the most abundant element in the universe. When they peer through their telescopes, they see hydrogen in the vast clouds of dust and gas between stars ?- especially in the denser regions that are collapsing to form new stars and planets.

But one mystery has remained: why is much of that hydrogen in molecular form ?- with two hydrogen atoms bonded together ?- rather than its single atomic form? Where did all that molecular hydrogen come from? Ohio State University researchers recently decided to try to figure it out.

They discovered that one seemingly tiny detail — whether the surfaces of interstellar dust grains are smooth or bumpy — could explain why there is so much molecular hydrogen in the universe. They reported their results at the 60th International Symposium on Molecular Spectroscopy, held at Ohio State University .

Hydrogen is the simplest atomic element known; it consists of just one proton and one electron. Scientists have always taken for granted the existence of molecular hydrogen when forming theories about where all the larger and more elaborate molecules in the universe came from. But nobody could explain how so many hydrogen atoms were able to form molecules — until now.
When it comes to making molecular hydrogen, the ideal microscopic host surface is ?less like the flatness of Ohio and more like a Manhattan skyline.?

For two hydrogen atoms to have enough energy to bond in the cold reaches of space, they first have to meet on a surface, explained Eric Herbst, Distinguished University Professor of physics at Ohio State.

Though scientists suspected that space dust provided the necessary surface for such chemical reactions, laboratory simulations of the process never worked. At least, they didn’t work well enough to explain the full abundance of molecular hydrogen that scientists see in space.

Herbst, professor of physics, chemistry, and astronomy, joined with Herma Cuppen, a postdoctoral researcher, and Qiang Chang, a doctoral student, both in physics, to simulate different dust surfaces on a computer. They then modeled the motion of two hydrogen atoms tumbling along the different surfaces until they found one another to form a molecule.

Given the amount of dust that scientists think is floating in space, the Ohio State researchers were able to simulate the creation of the right amount of hydrogen, but only on bumpy surfaces.

When it comes to making molecular hydrogen, the ideal microscopic host surface is ?less like the flatness of Ohio and more like a Manhattan skyline,? Herbst said.

The problem with past simulations, it seems, is that they always assumed a flat surface.

Cuppen understands why. ?When you want to test something, starting with a flat surface is just faster and easier,? she said

She should know. She’s an expert in surface science, yet it still took her months to assemble the bumpy dust model, and she’s still working to refine it. Eventually, other scientists will be able to use the model to simulate other chemical reactions in space.

In the meantime, the Ohio State scientists are collaborating with colleagues at other institutions who are producing and using actual bumpy surfaces that mimic the texture of space dust. Though real space dust particles are as small as grains of sand, these larger, dime-sized surfaces will enable scientists to test whether different textures help molecular hydrogen to form in the lab.

Original Source: OSU News Release

Sea Launch Launches Americas-8 Satellite

Zenit-3SL rocket blasting off with Intelsat Americas-8 satellite. Image credit: Boeing. Click to enlarge.
Sea Launch Company today successfully delivered the Intelsat Americas?-8 (IA-8) communications satellite to geosynchronous transfer orbit. Early data indicate the spacecraft is in excellent condition.

A Zenit-3SL vehicle lifted off at 7:03 am PDT ( 14:03 GMT), from the Odyssey Launch Platform, positioned at 154 degrees West Longitude. All systems performed nominally throughout the flight. The Block DM-SL upper stage inserted the 5,500 kg (12,125 lbs.) satellite to geosynchronous transfer orbit, on its way to a final orbital position of 89 degrees West Longitude. A ground station in Fucino, Italy, acquired the spacecraft?s first signal less than an hour after liftoff, as planned.

This mission is Sea Launch?s fifth launch for Space Systems/Loral (SS/L), the spacecraft?s manufacturer, and the first for Intelsat. The IA-8 satellite is designed to provide expanded coverage over the Americas, the Caribbean, Hawaii and Alaska with voice, video and data transmission and distribution services. SS/L?s 1300 bus carries 28 C-band and 36 Ku-band transponders, as well as 24 Ka-band spot beams and has a total end-of-life power of 16 Kw. IA-8 is the fifth Intelsat satellite in the North American arc and the 28 th satellite in Intelsat?s global fleet.

Following acquisition of the spacecraft?s signal, Jim Maser, president and general manager of Sea Launch, congratulated Space Systems/Loral and Intelsat. ?We are thrilled to welcome Intelsat into our growing family of satisfied customers,? Maser said. ?We look forward to future missions with Intelsat as well as with our long-time colleagues at Space Systems/Loral. The Sea Launch team has successfully met our commitments once again and I want to personally thank them for their unwavering commitment and hard work.?

Sea Launch Company, LLC, headquartered in Long Beach, Calif., and marketed through Boeing Launch Services (www.boeing.com/launch), is the world?s most reliable heavy-lift commercial launch service. This international partnership offers the most direct and cost-effective route to geostationary orbit. With the advantage of a launch site on the Equator, the reliable Zenit-3SL rocket can lift a heavier spacecraft mass or provide longer life on orbit, offering best value plus schedule assurance. For additional information and images of this successfully completed mission, visit the Sea Launch website at: www.sea-launch.com

Original Source: Boeing News Release

June 25th Conjunction: Mercury, Venus and Saturn

Sky map of the June 25th planetary alignment. Image credit: NASA. Click to enlarge.
Saturn, which has been prominent, in the constellation Gemini all winter is slowly exiting our skies. But the Ringed Planet has one last show to put on for us, and the stage has been set. On June 18th, Saturn was joined by Venus, followed by Mercury on the 19th. On these dates the trio formed a long string stretching from the stars Castor and Pollux to just above the horizon. As the week progressed, the two faster planets slowly drew closer to Saturn. On the evenings of the 24th and 25th the trio will form a very close conjunction with Venus being just 1 degree from Saturn and less than 1 degree from Mercury.

For the next few nights all 3 planets should be visible in the wide field of view of a pair of binoculars or small telescope. By the 27th, Mercury and Venus will have drawn away from Saturn somewhat but will lie just 8 arc-minutes from one another, nearly indistinguishable to the unaided eye.

As June turns to July, Saturn will be lost in the glare of the setting sun. But Mercury and Venus will stay in close conjunction well into the month. On July 8th look for a very slim waxing crescent moon hovering just above the pair. Around July 15th the apparent separation of Mercury and Venus will have increased to 5 degrees. At this point Mercury will begin looping back toward the sun, while Venus continues to climb higher in our evening skies.

Contrary to popular belief, planetary conjunctions are fairly common. All the planets and the sun appear to travel along an imaginary line in the sky known as the ecliptic. Because our solar system is essentially a disk, the objects in our solar system appear to follow the same path year after year after year. Since we see these objects from Earth, which is itself moving, the planets occasionally appear to get close together in the sky. Conjunctions of 2 or 3 planets happen quite often particularly when one of them is Venus. The faster planets seem to ?catch up with? and ?pass? the slower moving ones, as we see in June.

Throughout recorded history humans have observed planetary conjunctions. In ancient times they were thought to be signs or omens. Not until recent centuries have we been able to model and therefore marvel at the workings of our solar system. Even though the conjunction of Mercury, Venus and Saturn doesn?t portend events, it is nonetheless a spectacular sight to behold.

Written by Rod Kennedy

Book Reviews: Glow in the Dark Planets, From Blue Moons to Black Holes

Glow in the Dark Planets is exactly what you’d expect. In nineteen pages, each planet of our system gets a one or two page spread of neat pictures, funky fonts and many factoids. An early reader would have no problem digesting the information on their own. But with two together, one asking questions from the front seat while the other in the back seat scurries to find answers, a neat game of Did-you-know can be had. For example, with Venus, did you know one of its mountain’s names is Danu Montes. Also, surface temperature, atmosphere and relevant space probes entice a young mind to stretch out past the limits of their vision.

Of course, the main draw for this book is the centerfold. More than twenty groovy stickers can be removed and placed anywhere; a car’s interior, inside a tent’s wall, or on your sibling’s nose. These easy to peel and re-arrange stickers depict each planet, some comets, the moon and shiny stars. Glow in the Dark Planets is a short book but it might be just the lifesaver for one too many hours in a car.

The second book, From Blue Moons to Black Holes is just as good for shortening a journey. However, it’s really a questions and answer book with a few pictures, some diagrams and lots of information. For all those really neat space questions you’ve been dying to ask, each have answers. You can test your knowledge by comparing your answers or become a rocket scientist by memorizing the given answers. Either way there’s lots to learn.

For each question, the answer comes in two parts. First there is a short yes, no or one line response. This is fabulous for those seeking answers without explanation. Following this there is an excellent discussion surrounding the question. This discussion usually tries to draw a corollary to something readily known on Earth. For example, in answering the question, ‘Could we see lunar colonies?”, the short answer is ‘Perhaps but only with a telescope.’ The discussion then goes on to note that seeing a man made object on the moon would need the object to be much bigger than the city of Los Angeles.

The answers themselves are short, to the point and stand well on their own. Where appropriate, they are linked by references to other answers. Some are opinionated, and biassed for space exploration. For example, the answer to “Should We Travel to Mars?” is a resounding Yes!

To compliment the question and answer section there is some standard astronomy fare. A section on telescope identification, selection and usage helps a reader make the step into aided astronomy. Data on the planets, their moons and eclipses also are present for an easy reference. Perhaps what may not be to everyone’s interest is a section listing every mission to our moon as well as to the other planets. However this would perfectly satisfy the trivia buff.

One other significant selling feature of From Blue Moons to Black Holes is the size (28x22cm), large font and lots of margin space. This makes for very easy reading and more importantly easy notation for adding more or updating existing information.

This summer, don’t let a long drive do you in. Nor let a perfect night’s star watching make you feel somehow out-of-it. Get some good fun astronomy books like John Starke’s Glow in the Dark Planets or a wonderful reference like Melanie Melton Knocke’s From Blue Moons to Black Holes to keep times fun and interesting.

Review by Mark Mortimer

New Horizons Prepares to Zoom to Pluto

Artist impression of the New Horizons spacecraft sweeping past Pluto. Image credit: JHUAPL/SwRI. Click to enlarge.

If all goes well, the first mission to the farthest known planet in our Solar System will launch in early 2006, and give us our first detailed views of Pluto, its moon Charon, and the Kuiper Belt Region, while completing NASA’s reconnaissance of all the planets in our Solar System.

“We’re going to a planet that we’ve never been to before,” said Dr. Alan Stern, Principal Investigator for the New Horizons mission to Pluto. “This is like something out of a NASA storybook, like in the 60’s and 70’s with all the new missions that were happening then. But this is exploration for a new century; it’s something bold and different. Being the first mission to the last planet really ‘revs’ me. There’s something special about going to a new frontier, about

Pluto is so far away (5 billion km or 3.1 billion miles when New Horizons reaches it) that no telescope, not even the Hubble Space Telescope, has been able to provide a good image of the planet, and so Pluto is a real mystery world. The existence of Pluto has only been known for 75 years, and the debate continues about its classification as a planet, although most planetary scientists classify it in the new class of planets called Ice Dwarfs. Pluto is a large, ice-rock world, born in the Kuiper Belt area of our solar system. Its moon, Charon, is large enough that some astronomers refer to the two as a binary planet. Pluto undergoes seasonal change and has an elongated and enormous 248-year orbit which causes the planet’s atmosphere to cyclically dissipate and freeze out, but later be replenished when the planet returns closer to the sun.

New Horizons will provide the first close-up look at Pluto and the surrounding region. The grand piano-sized spacecraft will map and analyze the surface of Pluto and Charon, study Pluto’s escaping atmosphere, look for an atmosphere around Charon, and perform similar explorations of one or more Kuiper Belt Objects.

The spacecraft, built at the Johns Hopkins Applied Physics Laboratory, is currently being flight tested at the Goddard Space Flight Center. Dr. Stern has been planning a mission to Pluto for quite some time, surviving through the various on-again, off-again potential missions to the outer solar system.

“I’m feeling very good about the mission,” he said in an interview from his office at the Southwest Research Institute in Boulder, Colorado. “I’ve been working on this project for about 15 years, and the first 10 years we couldn’t even get it out of the starting blocks. Now we’ve not only managed to get it funded, but we have built it and we are really looking forward to flying the mission soon if all continues to go well.”

Of the hurdles remaining to be cleared before launch, one looms rather large. New Horizons’ systems are powered by a Radioisotope Thermoelectric Generator (RTG), where heat released from the decay of radioactive materials is converted into energy. This type of power system is essential for a mission going far from the Sun like New Horizons where solar power is not an option, but it has to be approved by both NASA and the White House. The 45-day public comment period ended in April 2005, so the project now awaits final, official approval. Meanwhile, the New Horizons mission teams prepare for launch.

“We still have a lot of work in front of us,” Stern said. “All this summer we’re testing and checking out the spacecraft and the components, getting all the bugs out, and making sure its launch ready, and flight ready. That will take us through September and in October we hope to bring the spacecraft to the Cape.”

The month-long launch window for New Horizons opens on January 11, 2006.

New Horizons will be the fastest spacecraft ever launched. The launch vehicle combines an Atlas V first stage, a Centaur second stage, and a STAR 48B solid rocket third stage.

“We built the smallest spacecraft we could get away with that has all the things it needs: power, communication, computers, science equipment and redundancy of all systems, and put it on the biggest possible launch vehicle,” said Stern. “That combination is ferocious in terms of the speed we reach in deep space.”

At best speed, the spacecraft will be traveling at 50 km/second (36 miles/second), or the equivalent of Mach 85.

Stern compared the Atlas rocket to other launch vehicles. “The Saturn V took the Apollo astronauts to the moon in 3 days,” he said. “Our rocket will take New Horizons past the moon in 9 hours. It took Cassini 3 years to get to Jupiter, but New Horizons will pass Jupiter in just 13 months.”

Still, it will take 9 years and 5 months to cross our huge Solar System. A gravity assist from Jupiter is essential in maintaining the 2015 arrival date. Not being able to get off the ground early in the launch window would have big consequences later on.

“We launch in January of 2006 and arrive at Pluto in July of 2015, best case scenario,” said Stern. “If we don’t launch early in the launch window, the arrival date slips because Jupiter won’t be in as good a position to give us a good gravity assist.”

New Horizons has 18 days to launch in January 2006 to attain a 2015 arrival. After that, Jupiter’s position moves so that for every 4 or 5 days delay in launch means arriving at Pluto year later. By February 14 the window closes for a 2020 arrival. New Horizons can try to launch again in early 2007, but then the best case arrival year is 2019.

New Horizons will be carrying seven science instruments:

  • Ralph: The main imager with both visible and infrared capabilities that will provide color, composition and thermal maps of Pluto, Charon, and Kuiper Belt Objects.
  • Alice: An ultraviolet spectrometer capable of analyzing Pluto’s atmospheric structure and composition.
  • REX: The Radio Science Experiment that measures atmospheric composition and surface temperature with a passive radiometer. REX also measures the masses of objects New Horizons flies by.
  • LORRI: The Long Range Reconnaissance Imager has a telescopic camera that will map Pluto?s far side and provide geologic data.
  • PEPSSI: The Pluto Energetic Particle Spectrometer Science Investigation that will measure the composition and density of the ions escaping from Pluto’s atmosphere.
  • SWAP: Solar Wind Around Pluto, which will measure the escape rate of Pluto?s atmosphere and determine how the solar wind affects Pluto.
  • SDC: The Student Dust Counter will measure the amount of space dust the spacecraft encounters on the voyage. This instrument was designed and will be operated by students at the University of Colorado in Boulder.

Stern says the first part of the flight will keep the mission teams busy, as they need to check out the entire spacecraft, and execute the Jupiter fly-by at 13 months.

“The middle years will be long and probably — and hopefully — pretty boring,” he said, but will include yearly spacecraft and instrument checkouts, trajectory corrections, instrument calibrations and rehearsals the main mission. During the last three years of the interplanetary cruise mission teams will be writing, testing and uploading the highly detailed command script for the Pluto/Charon encounter, and the mission begins in earnest approximately a year before the spacecraft arrives at Pluto, as it begins to photograph the region.

A mission to Pluto has been a long time coming, and is popular with a wide variety of people. Children seem to have an affinity for the planet with the cartoon character name, while the National Academy of Sciences ranked a mission to Pluto as the highest priority for this decade. In 2002, when it looked as though NASA would have to scrap a mission to Pluto for budgetary reasons, the Planetary Society, among others, lobbied strongly to Congress to keep the mission alive.

Stern said the mission’s website received over a million hits the first month it was active, and the hit rate hasn’t diminished. Stern writes a monthly column on the website, http://pluto.jhuapl.edu , where you can learn more details about the mission and sign-up to have your name sent to Pluto along with the spacecraft.

While Stern is understandably excited about this mission, he says that any chance to explore is a great opportunity.

“Exploration always opens our eyes,” he said. “No one expected to find river valleys on Mars, or a volcano on Io, or rivers on Titan. What do I think we’ll find at Pluto-Charon? I think we’ll find something wonderful, and we expect to be surprised.”

New Form of Matter Created

A rotating superfluid gas of fermions pierced with vortices. Image credit: MIT. Click to enlarge.
MIT scientists have brought a supercool end to a heated race among physicists: They have become the first to create a new type of matter, a gas of atoms that shows high-temperature superfluidity.

Their work, to be reported in the June 23 issue of Nature, is closely related to the superconductivity of electrons in metals. Observations of superfluids may help solve lingering questions about high-temperature superconductivity, which has widespread applications for magnets, sensors and energy-efficient transport of electricity, said Wolfgang Ketterle, a Nobel laureate who heads the MIT group and who is the John D. MacArthur Professor of Physics.

Seeing the superfluid gas so clearly is such a dramatic step that Dan Kleppner, director of the MIT-Harvard Center for Ultracold Atoms, said, “This is not a smoking gun for superfluidity. This is a cannon.”

For several years, research groups around the world have been studying cold gases of so-called fermionic atoms with the ultimate goal of finding new forms of superfluidity. A superfluid gas can flow without resistance. It can be clearly distinguished from a normal gas when it is rotated. A normal gas rotates like an ordinary object, but a superfluid can only rotate when it forms vortices similar to mini-tornadoes. This gives a rotating superfluid the appearance of Swiss cheese, where the holes are the cores of the mini-tornadoes. “When we saw the first picture of the vortices appear on the computer screen, it was simply breathtaking,” said graduate student Martin Zwierlein in recalling the evening of April 13, when the team first saw the superfluid gas. For almost a year, the team had been working on making magnetic fields and laser beams very round so the gas could be set in rotation. “It was like sanding the bumps off of a wheel to make it perfectly round,” Zwierlein explained.

“In superfluids, as well as in superconductors, particles move in lockstep. They form one big quantum-mechanical wave,” explained Ketterle. Such a movement allows superconductors to carry electrical currents without resistance.

The MIT team was able to view these superfluid vortices at extremely cold temperatures, when the fermionic gas was cooled to about 50 billionths of a degree Kelvin, very close to absolute zero (-273 degrees C or -459 degrees F). “It may sound strange to call superfluidity at 50 nanokelvin high-temperature superfluidity, but what matters is the temperature normalized by the density of the particles,” Ketterle said. “We have now achieved by far the highest temperature ever.” Scaled up to the density of electrons in a metal, the superfluid transition temperature in atomic gases would be higher than room temperature.

Ketterle’s team members were MIT graduate students Zwierlein, Andre Schirotzek, and Christian Schunck, all of whom are members of the Center for Ultracold Atoms, as well as former graduate student Jamil Abo-Shaeer.

The team observed fermionic superfluidity in the lithium-6 isotope comprising three protons, three neutrons and three electrons. Since the total number of constituents is odd, lithium-6 is a fermion. Using laser and evaporative cooling techniques, they cooled the gas close to absolute zero. They then trapped the gas in the focus of an infrared laser beam; the electric and magnetic fields of the infrared light held the atoms in place. The last step was to spin a green laser beam around the gas to set it into rotation. A shadow picture of the cloud showed its superfluid behavior: The cloud was pierced by a regular array of vortices, each about the same size.

The work is based on the MIT group’s earlier creation of Bose-Einstein condensates, a form of matter in which particles condense and act as one big wave. Albert Einstein predicted this phenomenon in 1925. Scientists later realized that Bose-Einstein condensation and superfluidity are intimately related.

Bose-Einstein condensation of pairs of fermions that were bound together loosely as molecules was observed in November 2003 by independent teams at the University of Colorado at Boulder, the University of Innsbruck in Austria and at MIT. However, observing Bose-Einstein condensation is not the same as observing superfluidity. Further studies were done by these groups and at the Ecole Normale Superieure in Paris, Duke University and Rice University, but evidence for superfluidity was ambiguous or indirect.

The superfluid Fermi gas created at MIT can also serve as an easily controllable model system to study properties of much denser forms of fermionic matter such as solid superconductors, neutron stars or the quark-gluon plasma that existed in the early universe.

The MIT research was supported by the National Science Foundation, the Office of Naval Research, NASA and the Army Research Office.

Original Source: MIT News Release

Extrasolar Planet Reshapes Ring Around a Star

Hubble image of the ring around Fomalhaut. Image credit: Hubble. Click to enlarge.
NASA Hubble Space Telescope’s most detailed visible-light image ever taken of a narrow, dusty ring around the nearby star Fomalhaut (HD 216956), offers the strongest evidence yet that an unruly and unseen planet may be gravitationally tugging on the ring.

Hubble unequivocally shows that the center of the ring is a whopping 1.4 billion miles (15 astronomical units) away from the star. This is a distance equal to nearly halfway across our solar system. The most plausible explanation, astronomers said, is that an unseen planet moving in an elliptical orbit is reshaping the ring with its gravitational pull. The geometrically striking ring, tilted obliquely toward Earth, would not have such a great offset if it were simply being influenced by Fomalhaut’s gravity alone.

An offset of the ring center from the star has been inferred from previous and longer wavelength observations using submillimeter telescopes on Mauna Kea, Hawaii, the Spitzer Space Telescope, Caltech’s Submillimeter Observatory and applying theoretical modeling and physical assumptions. Now Hubble’s sharp images directly reveal the ring’s offset from Fomalhaut.

These new observations provide strong evidence that at least one unseen planetary mass object is orbiting the star. Hubble would have detected an object larger than a planet, such as a brown dwarf. “Our new Hubble images confirm those earlier hypotheses that proposed a planet was perturbing the ring,” said Paul Kalas of the University of California at Berkeley. The ring is similar to our solar system’s Kuiper Belt, a vast reservoir of icy material left over from the formation of our solar system planets.

The observations offer insights into our solar system’s formative years, when the planets played a game of demolition derby with the debris left over from the formation of our planets, gravitationally scattering many objects across space. Some icy material may have collided with the inner solar system planets, irrigating them with water formed in the colder outer solar system. Other debris may have traveled outward, forming the Kuiper Belt and the Oort Cloud, a spherical cloud of material surrounding the solar system.

Only Hubble has the exquisite optical resolution to resolve that the ring’s inner edge is sharper than its outer edge, a telltale sign that an object is gravitationally sweeping out material like a plow clearing away snow. Another classic signature of a planet’s influence is the ring’s relatively narrow width, about 2.3 billion miles (25 astronomical units). Without an object to gravitationally keep the ring material intact, astronomers said, the particles would spread out much wider.

“What we see in this ring is similar to what is seen in the Cassini spacecraft images of Saturn’s narrow rings. In those images, Saturn’s moons are ‘shepherding’ the ring material and keeping the ring from spreading out,” Kalas said.

The suspected planet may be orbiting far away from Fomalhaut, inside the dust ring’s inner edge, between 4.7 billion and 6.5 billion miles (50 to 70 astronomical units) from the star. The ring is 12 billion miles (133 astronomical units) from Fomalhaut, which is much farther away than our outermost planet Pluto is from the Sun. These Hubble observations do not detect the putative planet directly, so the astronomers cannot measure its mass. They will, instead, conduct computer simulations of the ring’s dynamics to estimate the planet’s mass.

Kalas and collaborators James R. Graham of the University of California at Berkeley and Mark Clampin of the NASA Goddard Space Flight Center in Greenbelt, Md., will publish their findings in the June 23, 2005 issue of the journal Nature.

Fomalhaut, a 200-million-year-old star, is a mere infant compared to our own 4.5-billion-year-old Sun. It resides 25 light-years away from the Sun. Located in the constellation Piscis Austrinus (the Southern Fish), the Fomalhaut ring is ten times as old as debris disks seen previously around the stars AU Microscopii and Beta Pictoris, where planets may still be forming. If our solar system is any example, planets should have formed around Fomalhaut within tens of millions of years after the birth of the star.

The Hubble images also provide a glimpse of the outer planetary region surrounding a star other than our Sun. Many of the more than 100 planets detected beyond our solar system are orbiting close to their stars. Most of the current planet-detecting techniques favor finding planets that are close to their stars.

“The size of Fomalhaut’s dust ring suggests that not all planetary systems form and evolve in the same way ? planetary architectures can be quite different from star to star,” Kalas explained. “While Fomalhaut’s ring is analogous to the Kuiper Belt, its diameter is four times greater than that of the Kuiper Belt.”

The astronomers used the Advanced Camera for Surveys’ (ACS) coronagraph aboard Hubble to block out the light from the bright star so they could see details in the faint ring.

“The ACS’s coronagraph offers high contrast, allowing us to see the ring’s structure against the extremely bright glare from Fomalhaut,” Clampin said. “This observation is currently impossible to do at visible wavelengths without the Hubble Space Telescope. The fact that we were able to detect it with Hubble was unexpected, but impressive.”

Kalas and his collaborators used Hubble over a five-month period in 2004 ? May 17, Aug. 2, and Oct. 27 ? to map the ring’s structure. One side of the ring has yet to be imaged because it extended beyond the ACS camera’s field of view. The astronomers will use Hubble again this summer to map the entire ring. They expect that the additional Hubble data will reveal whether or not the ring has any gaps, which could have been carved out by the gravitational influence of an unseen body. The longer, deeper exposures also may show whether the ring has an even wider diameter than currently seen. In addition, the astronomers will measure the ring’s colors to determine its physical properties, including its composition.

Previous thermal emission maps of Fomalhaut showed that one side of the ring is warmer than the other side, implying that the ring is off center by about half the distance measured by Hubble. This difference might be explained by the fact that Hubble’s ACS images of the ring’s structure are 100 times sharper than the longer wavelength observations, and hence, yield a much more accurate result. Or the discrepancy might imply that the ring’s size looks different at other wavelengths.

Fomalhaut’s dust ring was discovered in 1983 in observations made by NASA’s Infrared Astronomical Satellite (IRAS). The system is a compelling target for future telescopes such as the James Webb Space Telescope and the Terrestrial Planet Finder, Kalas said.

Original Source: Hubble News Release

Natural Particle Accelerator Discovered

HESS image of binary pair PSR B-1259-63 / SS 2883. Image credit: HESS. Click to enlarge.
Binary pair PSR B-1259-63 / SS 2883 is located some 5,000 light-years distant in the general direction of the southern hemisphere constellation Crux (the Southern Cross). The duo consists of a pulsar (PSR B-1259) and massive blue giant (SS 2883) locked into a widely-swinging dance that repeats steps every 3.4 years. The pulsar?s orbit of the more massive primary is so eccentric that the pair passes within 100 million kilometers at closest approach and they separate roughly ten times that distance at their furthest point. During closest approach, signals from the pulsar drop off significantly as it is eclipsed by the massive blue giant.

Observers using the 12.5 metre High Energy Stereoscopic System (HESS) recorded the pair’s dance during moonless nights from February through April 2004, and timed them as the pulsar approached and receded from the duo’s closest point. The astronomers found that radio waves from the pulsar matched up with ultra-high gamma radiation coming from the region.

According to Felix Aharonian of the Max Plank Institute for Nuclear Physics, Heidelberg Germany, this binary system “allows ‘on-line watch’ of the extremely complex MHD (magnetohydrodynamic) processes of creation and termination of the ultrarelativistic pulsar wind, as well as particle acceleration by relativistic shock waves, through the study of spectral and temporal characteristics of the high energy gamma-radiation of the system. In this regard the binary system PSR B1259-63 is a unique laboratory to explore the physics of the pulsar winds.”

The pulsar was first detected by a team of astronomers in 1992 using the Parkes radio telescope in Australia. Its magnetic jet orients toward the Earth 20 times a second. In addition to radio emission, the pulsar broadcasts X-rays – at various energy levels – throughout its orbit. These X-rays are thought to be the result of radiation that occurs when the pulsar’s magnetic field interacts with gases released by the companion blue giant.

The blue giant SS 2883 was first discovered to be a companion with the pulsar in 1992. It’s ten times the mass of the Sun, but has high temperatures and a rapidly burning fusion engine. It rotates very quickly and ejects material from its equator on a sporadic basis. According to the paper ‘Discovery of the Binary Pulsar PSR B-1259-63 … with H.E.S.S.’, “Be stars are known to have non-isotropic stellar winds forming an equatorial disk with enhanced mass outflow.”

The paper goes on to say that “timing measurements suggest that the disk is inclined with respect to the orbital plane…” such an orbital inclination causes the “pulsar to cross the disk two times near periastron.” And it is at these crossings that things really get souped up as the pulsar’s magnetic field begins to interact with charged particles in the reverse shock region of the stellar ejecta.

As a result, this system is said to be a ‘binary plerion’ where “The intense photon field provided by the companion star not only plays an important role in the cooling of relativistic electrons but also serves as the perfect target for the production of high-energy gamma rays through inverse Compton (IC) scattering.” Felix expands on this notion by saying that “the pulsar is not isolated, but located in a binary system close to a powerful optical star. In this case, because of interaction with the stellar wind under high gas pressure, the pulsar wind terminates within the binary system where the magnetic field is quite high (approximately 1 G, i.e. 10,000 to 100,000 times larger than in standard plerions). Furthermore, because of the optical star’s presence, the electrons suffer severe losses during interactions (Compton scattering) with starlight. This makes the lifetime of electrons very short, 1 hour or less. High energy gamma-rays can be produced also by interactions of electrons (and perhaps also protons) with the dense gas of the stellar disk (also on quite short timescales!).”

As a binary plerion, the star system displays a wide-ranging energy signature based on the pulsar’s eccentric orbit and broad variations in the density of circumstellar matter around SS 2883 with which it interacts. Near periastron, The “cold” pulsar wind interacting with the ambient plasma, terminates with the creation of a relativistic shock wave which in turn accelerate particles to extremely high energies, 1 TeV or more. Heat in these particles is then ‘cooled’ as photons strike fast-moving electrons and positrons. This inverse Compton scattering effect carries off energy by amplifying photon frequencies wildly. Simply said, photons of low-energy “visible light” are boosted to much higher energy levels – some achieving the terra-electron volt region of the upper gamma ray / lower cosmic ray domain.

Meanwhile as the pulsar moves away from the stellar primary, it encounters fewer and fewer charged particles, meanwhile the density of visible light photons from the central star also falls off. As this occurs, scattering of photons is reduced and synchrotron radiation begins to dominate. Because of this, lower power-level X-rays begin to dominate the energy signature of the system as the pulsar slows and moves away from the star.

Finally, there are two periods in the pulsars orbit where it crosses the equatorial plane of the blue giant’s circumstellar disk. These transition points can result in the creation of numerous super-energized photons, electrons, positrons and even some protons. As relativistically accelerated particles are created, they in turn interact with a region able to spawn a multitude of other particles capable of breaking down into high-energy photons and other particles.

From the paper published June 13, 2005, “Up to now the theoretical understanding of this complex system, involving pulsar and stellar winds interacting with each other is quite limited because of the lack of constraining observations.” But now because of IACTS (Imaging Atmospheric Cherenkov Telescopes) such as H.E.S.S., astronomers are now able to resolve many new near-point sources of high energy gamma rays from other systems such as PSR B-1259-63 / SS 2883.

In the PSR B-1259-63 / SS 2883 system, nature seems to have provided astronomers – and physicists – with her very own version of a super-high energy particle accelerator – one that is thankfully well contained and a safe distance from Earth.

Written by Jeff Barbour

Solar Sail Goes Missing

The Planetary Society’s solar sail prototype Cosmos 1 was launched from a Russian submarine yesterday, but it seems have gone missing. There are conflicting reports coming from Russian news sources that say that the Volna rocket booster failed 83 seconds after launch because of problems with the first stage of its three-stage rocket. This is different from a US team also working to track the solar sail who said they’ve detected it a few times in orbit (link to BBC article).

Mars Express Booms All Deployed

Artist illustration of Mars Express with all three booms deployed. Image credit: ESA. Click to enlarge.
MARSIS, the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board ESA?s Mars Express orbiter, is now fully deployed, has undergone its first check-out and is ready to start operations around the Red Planet.

With this radar, the Mars Express orbiter at last has its full complement of instruments available to probe the planet?s atmosphere, surface and subsurface structure.

MARSIS consists of three antennas: two ?dipole? booms 20 metres long, and one 7-metre ?monopole? boom oriented perpendicular to the first two. Its importance is that it is the first- ever means of looking at what may lie below the surface of Mars.

The delicate three-stage phase of radar boom deployment, and all the following tests to verify spacecraft integrity, took place between 2 May and 19 June. Deployment of the first boom was completed on 10 May. That boom, initially stuck in unlocked mode, was later released by exploiting solar heating of its hinges.

Taking advantage of the lessons learnt from that first boom-deployment, the second 20-metre boom was successfully deployed on 14 June. Subsequently, ESA?s ground team at the European Space Operations Centre (ESOC) in Darmstadt, Germany, commanded the non-critical deployment of the third boom on 17 June, which proceeded smoothly as planned.

MARSIS?s ability to transmit radio waves in space was tried out for the first time on 19 June, when the instrument was switched on and performed a successful transmission test.

The instrument works by sending a coded stream of radio waves towards Mars at night, and analysing their distinctive echoes. From this, scientists can then make deductions about the surface and subsurface structure. The key search is for water. But MARSIS’s capabilities do not stop there. The same methods can also be used by day to probe the structure of the upper atmosphere.

Before starting its scientific observations, MARSIS has to undergo its commissioning phase. This is a routine procedure for any spacecraft instrument, necessary to test its performance in orbit using real targets in situ. In this case, the commissioning will last about ten days, or 38 spacecraft orbital passes, starting on 23 June and ending on 4 July.

During the commissioning phase, MARSIS will be pointed straight down (nadir pointing mode) to look at Mars from those parts of the elliptical orbit where the spacecraft is closest to the surface (around the pericentre). During this phase, it will cover the areas of Mars between 15? S and 70? N latitude. This includes interesting features such as the northern plains and the Tharsis region, so there is a small chance of exciting discoveries being made early on.

On 4 July, when the commissioning operations end, MARSIS will start its nominal science observations. In the initial phase, it will operate in survey mode. It will make observations of the Martian globe?s night-side. This is favourable to deep subsurface sounding, because during the night the ionosphere of Mars does not interfere with the lower-frequency signals needed by the instrument to penetrate the planet’s surface, down to a depth of 5 kilometres.

Through to mid-July, the radar will look at all Martian longitudes between 30? S and 60? N latitude, in nadir pointing mode. This area, which includes the smooth northern plains, may have once contained large amounts of water.

The MARSIS operation altitudes are up to 800 kilometres for subsurface sounding and up to 1200 kilometres for studying the ionosphere. From mid-July, the orbit’s closest approach point will enter the day-side of Mars and stay there until December. In this phase, using higher frequency radio waves, the instrument will continue shallow probing of the subsurface and start atmospheric sounding.

?Overcoming all the technical challenges to operate an instrument like MARSIS, which had never flown in space before this mission, has been made possible thanks to magnificent cooperation between experts on both sides of the Atlantic,? said Professor David Southwood, ESA’s Science Programme Director. ?The effort is indeed worthwhile as, with MARSIS now at work, whatever we find, we are moving into new territory; ESA?s Mars Express is now well and truly one of the most important scientific missions to Mars to date,? he concluded.

Original Source: ESA News Release