Are the Laws of Nature the Same Everywhere in the Universe?

Although we haven’t figured out everything in the universe by a long shot, we’re getting a pretty good a handle on how things work in our world, and how the laws of nature operate here at home. One big question we have is, would laws of nature as we know them function the same at other locations in the universe? A new study says, yes. Research conducted by an international team of astronomers shows that one of the most important numbers in physics theory, the proton-electron mass ratio, is almost exactly the same in a galaxy 6 billion light years away as it is in Earth’s laboratories, approximately 1836.15.

According to Michael Murphy, Swinburne astrophysicist and lead author of the study, it is an important finding, as many scientists debate whether the laws of nature may change at different times and in different places in the Universe. “We have been able to show that the laws of physics are the same in this galaxy half way across the visible Universe as they are here on Earth,” he said.

The astronomers determined this by effectively looking back in time at a distant quasar, labeled B0218+367. The quasar’s light, which took 7.5 billion years to reach us, was partially absorbed by ammonia gas in an intervening galaxy. Not only is ammonia useful in most bathroom cleaning products, it is also an ideal molecule to test our understanding of physics in the distant Universe. Spectroscopic observations of the ammonia molecule were performed with the Effelsberg 100m radio telescope at 2 cm wavelength (red-shifted from the original wavelength of 1.3 cm). The wavelengths at which ammonia absorbs radio energy from the quasar are sensitive to this special nuclear physics number, the proton-electron mass ratio.

“By comparing the ammonia absorption with that of other molecules, we were able to determine the value of the proton-electron mass ratio in this galaxy, and confirm that it is the same as it is on Earth,” says Christian Henkel from the Max Planck Institute for Radio Astronomy in Bonn, Germany, an expert for molecular spectroscopy and co-author of the study.

Their research was published in the journal Science.

Original News Source: Max Planck Institute

Phoenix Press Conference Update: Proof of Water Ice

Phoenix’s scientific team team held a press conference today to officially make their big announcement, which was fairly evident from pictures on the Phoenix website late yesterday: They found what they have been looking for. “It is with great pride and lot of joy that announce today we have found the proof that we have been seeking that show that this hard, white material is water ice,” said the project’s principle investigator Peter Smith. The image here shows a trench dug by Phoenix’s robotic arm scoop that exposed a white area, and left a couple of small chunks of white material, which scientists thought could possibly be ice. A few days later, the ice is gone. “In the course of sitting through the cold and very dry Martian environment for several days, it sublimated,” said Mark Lemmon, co-investigator on the Phoenix’s Surface Stero Imager. “The ice went away into vapor without any melting taking place.” But how do the scientists know for sure this is water ice?

“We can easily and confidently rule out that its carbon dioxide ice,” said Lemmon. “There are certainly times of the year that there would be CO2 ice at this location but with the temperatures we are measuring there, it would be the equivalent of water ice existing on Earth at 140 degrees. It wouldn’t be there very long, and wouldn’t be there long enough for us to take its picture, and it wouldn’t last the night. We’re very confident this is not CO2 ice. We’re ruling out salt, because salt doesn’t react like this. We’re confident now that this is water ice. We’ve hit what we’re looking for. The job now is to find out what is mixed in with the ice, how much salt is there, how many organics are there, and these are the things we’ll need TEGA and MECA to solve.”

TEGA is the Thermal and Evolved Gas Analyzer that “bakes and sniffs” out the chemical composition of the soil, and MECA is Microscopy, Electrochemistry and Conductivity Analyzer, a wet chemistry lab that measures levels of acidity, minerals, and conductivity in dirt samples.

Smith said the landing site was carefully chosen as a place where ice was very likely to exist, based on subsurface hydrogen detected by the orbiting 2001 Mars Odyssey spacecraft.

The team is now going to look for two things associated with the ice. “Does the ice melt, and does the melted ice environment allow a habitable zone on Mars,” said Smith. “That is a place where organic material and energy sources combined with liquid water can be a habitat for Martian life. We don’t have instruments that detect life itself. We’re looking at this stage for habitability, and it will be future missions that will look for life.”

The trick now is to get some of this white material into the TEGA instrument ovens before it sublimates. “The plan for sampling the ice is to gather it up rather quickly using the power tool called the Rasp and deliver it to the TEGA within 30 minutes,” said Ray Arvidson of the Phoenix team. The TEGA ovens do have airtight seal so it’s possible that the ice could go to a liquid stage while being heated. However, because of Mars low surface pressure, the boiling point of water on Mars is 4 Celsius.
Now that they know the ice is there, the scientists want to know more about the soil and why it seems to have a sticky, clumpy consistency. “Knowing that this is ice here, it allows you to speculate there are certain salts that mixed with ice can melt at low temperatures” said Smith. It’s very tempting to get a sample of this into MECA as soon as we can. Right now we have some speculations but no real interpretations available yet. I truly believe we will have answers for you by the end of the summer and hopefully earlier, so stick with us.”

The robotic arm is now digging in a new area in the trench called Snow White. They’ve dug a double trench and have hit a hard layer of ice. The team will try other techniques to see how hard the ice is, and how deep it goes, and try to dig down deeper. They will take their time, however, to make sure the sequences they use for the scraper and rasper work correctly (so as not to repeat having delays similar to what happened the first time they tried getting the soil into TEGA.)

Project manager Barry Goldman also said that the problem with Phoenix’s memory is understood, and two software patches being created to solve the problem of that used up all the space on Phoenix’s version of a flash drive.

Source: Phoenix Press Conference

New Satellite Will Monitor Rising Oceans

A Delta 2 rocket blasted off early this morning at 3:46 a.m. EDT bringing the Ocean Surface Topography Mission-Jason 2 into Earth orbit. The satellite will use a radar altimeter to precisely measure the height of ocean surfaces, which have been rising in recent years because of increasing temperatures. The data will be used to monitor effects of climate change on sea level and to improve global weather, climate and ocean forecasts. NASA said the new satellite, which is a cooperative effort between the US and France, will also improve hurricane forecasting.

“Global warming is causing the oceans to rise at a rate of about 3 millimeters per year, and this is a direct result of increasing the temperature of the atmosphere,” said Josh Willis an oceanographer from JPL. “That causes glaciers and ice sheets to melt, raising the levels of the ocean. But also, the ocean itself absorbs heat. And when that happens, again the water expands, stands a little taller, and this causes sea level rise as well, so the altimeter on OSTM, or Jason 2, will see both of these effects at it circles the Earth.”

Similar observations began in 1992 with a spacecraft dubbed TOPEX/Poseidon and have continued with the current Jason 1 satellite. The two Jasons will fly in tandem.

Together with Jason 1, the two spacecraft will double global data coverage. This tandem mission will improve our knowledge of tides in coastal and shallow seas and internal tides in the open ocean, while improving our understanding of ocean currents and eddies.

Jason 2 will map the sea surface highs and lows every 10 days, tracking changes and helping scientists keep tabs on climate, and even weather.

Measurements of sea-surface height, or ocean surface topography, reveal the speed and direction of ocean currents and tell scientists how much of the sun’s energy is stored by the ocean. Combining ocean current and heat storage data is key to understanding global climate variations.

OSTM/Jason 2’s five primary instruments are improved versions of those flying on Jason 1. These technological advances will allow scientists to monitor conditions in ocean coastal regions — home to about half of Earth’s population. Compared with Jason 1 measurements, OSTM/Jason 2 will have substantially increased accuracy and provide data to within 25 kilometers (15 miles) of coastlines, nearly 50 percent closer to shore than in the past. Such improvements will be welcome news for all those making their living on the sea, from sailors and fishermen to workers in offshore industries. NOAA will use the improved data to better predict hurricane intensity, which is directly affected by the amount of heat stored in the upper ocean.

Sources: NASA, JPL

Phoenix: “It Must Be Ice”

Phoenix scientists have been keeping an eye on the white material uncovered in a trench dug by the lander’s scoop. Dice-size nuggets of the bright material have vanished, convincing scientists the material was frozen water that vaporized after digging exposed it. The image here is a “movie” showing the material disappearing after four days. “It must be ice,” said Phoenix Principal Investigator Peter Smith. “These little clumps completely disappearing over the course of a few days, that is perfect evidence that it’s ice. There had been some question whether the bright material was salt. Salt can’t do that.”

The chunks were found at the bottom of a trench informally called “Dodo-Goldilocks” when Phoenix’s Robotic Arm enlarged that trench on June 15, during the 20th Martian day, or sol, since landing. Several were gone when Phoenix looked at the trench early today, on Sol 24.

“We know the ice is H2O but that doesn’t tell us much,” Smith said. “It is the impurities in the ice and the soil above the ice that tell us the history and if it is a habitable environment. We’ll now proceed to get the secrets out of the ice and use our instruments.”

Also on Thursday engineers said while digging in a different trench, the Robotic Arm connected with a hard surface that has scientists excited about the prospect of next uncovering an icy layer. Ray Arvidson, co-investigator for the robotic arm, said the hard layer was at the same depth as the ice layer in our the Dodo-Goldilocks trench.

The new trench, called “Snow White 2” trench, is in the middle of a polygon at the “Wonderland” site. While digging, the Robotic Arm came upon a firm layer, and after three attempts to dig further, the arm went into a holding position. Such an action is expected when the Robotic Arm comes upon a hard surface.

The Phoenix science team spent also Thursday analyzing new images and data successfully returned from the lander earlier in the day.

Meanwhile, Phoenix apparently suffered a problem with its flash memory on Tuesday, similar to, but not as serious as the problem that the Spirit Mars Exploration Rover encountered about 20 days after it landed on Mars back in 2004. The spacecraft team at Lockheed Martin Space Systems in Denver is preparing a software patch to send to Phoenix so scientific data can again be saved onboard overnight when needed. Because of a large amount a duplicative file-maintenance data generated by the spacecraft Tuesday, the team is taking the precaution of not storing science data in Phoenix’s flash memory, and instead downlinking it at the end of every day, until the conditions that produced those duplicative data files are corrected.

“We now understand what happened, and we can fix it with a software patch,” said Phoenix Project Manager Barry Goldstein of NASA’s Jet Propulsion Laboratory, Pasadena. “Our three-month schedule has 30 days of margin for contingencies like this, and we have used only one contingency day out of 24 sols. The mission is well ahead of schedule. We are making excellent progress toward full mission success.”

The Phoenix team will hold a press conference today (Friday) at 1:00 pm EST to discuss the latest findings.

Sources: Phoenix News
The Tucson Citizen

Disney-Pixar and NASA Join Forces to Explore Space with WALL-E (Video)

Promo image of WALL-E (© Disney-Pixar)

Disney-Pixar and NASA have embarked on a project to promote science and technology amongst school children. Walt Disney Studios Motion Pictures is gearing up for the premier of their new animated space adventure WALL-E on June 27th, and NASA has signed a Space Act Agreement to use this event as an opportunity to promote educational-based projects to build kids interest in space exploration. The collaboration sounds like an excellent chance to communicate NASA’s endeavours in space, plus the movie and possible NASA spin-offs look very cool (besides, WALL-E looks like a very cute Mars rover)…

It sounds like a film I’ll definitely be watching at the theatre. With some great timing, this Disney creation features an animated robotic rover not too dissimilar to NASA’s Mars Expedition Rovers Spirit and Opportunity (minus the binocular, expressive eyes) currently trundling around on the Red Planets surface. Plus we saw the robotic lander Phoenix touch down only a couple of weeks ago. If there’s a time to release a film about the last rover-robot on Earth exploring space, this would be the time to do it! Apparently there are quite a few similarities between the movie’s plotline and NASA’s actual work with robotics, propulsion and astrophysics. Seems like a great time for NASA to communicate with the young minds that will shape the next generation of space explorers.

Great ideas for future exploration of the universe start with the imagination. We hope that with the help of our new robot friend WALL-E, NASA can encourage young people to learn about science and technology and become the explorers of tomorrow.” – Robert Hopkins, chief of strategic communications at NASA Headquarters in Washington.

WALL-E (© Disney-Pixar)

The team at Disney-Pixar have already produced a 30-second promotional video announcing the Disney-NASA partnership which also promotes NASA’s TV channels and NASA’s website. It is hoped this campaign will draw a younger audience to NASA’s Kids’ Club pages. NASA’s Jet Propulsion Laboratory is using this time to showcase their current Phoenix mission and the 2009 Mars Science Laboratory mission. WALL-E will be showing from June 27 to August 27 in the El Capitan Theatre in Hollywood and NASA will be hosting a special display of imagery from the Hubble Space Telescope at the location, so the audience will have a real entertaining visit.

All of us at Disney are delighted to be working with NASA in their educational and public outreach efforts to teach schoolchildren about space exploration, robot technology, and the universe they live in. WALL-E is one of the most lovable and entertaining characters that Pixar ever has created, and he is the perfect spokes-robot for this program. Disney-Pixar’s WALL-E takes moviegoers on a thrilling and imaginative journey into outer space, and now the film’s title character will be able to stimulate imaginations further through these efforts.” – Mark Zoradi, President of Walt Disney Studios Motion Pictures Group

See the 30 second WALL-E/NASA trailer »

Source: SpaceRef.com

When Cloud Seeding Goes Wrong: Cement Chunk Falls From the Sky

Cloud seeding can be controvercial

The Russian Air Force, during a mission to clear the skies of potentially rain-filled clouds, dropped a mixture of silver iodide, liquid nitrogen and cement powder in an attempt to seed the clouds. This form of climate modification is common practice in Russia, when attempting to engineer dry days on public holidays and special events in Moscow. However, during the cloud seeding operation last week, cement dropped from one of the aircraft failed to fragment when falling through the air, falling as a solid mass, crashing through the roof of a Moscow suburban home…

Cloud seeding is a highly controversial method used to modify local climates. Russia and China are two large nations that believe various methods of cloud seeding are effective in deflecting storms and preventing rain clouds from precipitating on events requiring dry weather. Silver iodide, dry ice and various salts are used as artificial particles acting as water droplet nuclei. Dropping these particles can trigger precipitation, but any form of climate modification can be unpredictable, and in some cases, dangerous.

One such unpredictable outcome from last week’s “routine” cloud seeding effort by the Russian Air Force above the skies of Moscow resulted in something bigger than rain hitting the ground. A pack of cement (with rain-making properties I’m guessing) was dropped from one of the 12 seeding planes with a cocktail of silver iodide and liquid nitrogen. The point? To clear the skies above Moscow in preparation for a dry national holiday on June 12th known as Russia Day. The result? The cement mix failed to break apart, creating the desired cloud of dust after it was released. Instead it maintained its shape (and presumably its cement-like hardness) and dropped to the ground like a stone rock.

A pack of cement used in creating good weather in the capital region failed to pulverize completely at high altitude and fell on the roof of a house, making a hole about 80-100 cm (2.5-3 ft).” – Naro-Fominsk Police when talking with agency RIA-Novosti.

Fortunately no one was hurt, but the Russian homeowner is less than impressed. He has shunned the Air Force’s offer of $2,100 to fix the roof and is suing for “moral suffering” damages instead. The Air Force claims this was a freak accident and unheard of in the 20 years of cloud seeding operations.

Sources: Reuters, Environmental Graffiti

New Instrument Could Reconstruct Planetary and Moon Origins

Image courtesy Joe Tucciarone
One of the leading theories for how our Moon formed is the Giant Impactor Theory, which proposes a small planet about the size of Mars struck Earth early in our solar system’s formation, ejecting large volumes of heated material from the outer layers of both objects. This formed a disk of orbiting material which eventually stuck together to form the Moon. Until now there’s been no way to actually test this theory. But a new instrument that closely examines iron isotopes could possibly shed insight into the origin of the moon, as well as how Earth and the other terrestrial planets formed.

The new instrument, a plasma source mass spectrometer separates ions (charged particles) according to their masses and allows for a close examination of iron isotopes. Looking at the slight variations iron displays at the subatomic level can tell planetary scientists more about the formation of crust than previously thought, according to Nicolas Dauphas from the University of Chicago, Fang-Zhen Teng of the University of Arkansas and Rosalind T. Helz of the U.S. Geological Survey who co-authored a paper that will be published in the journal Science.

Their findings contradicts the widely held view that isotopic variations occur only at relatively low temperatures, and only in lighter elements, such as oxygen. But Dauphas and his associates were able to measure isotopic variations as they occur in magma at temperatures of 1,100 degrees Celsius (2,012 degrees Fahrenheit).

Previous studies of basalt found little or no separation of iron isotopes, but those studies focused on the rock as a whole, rather than its individual minerals. “We analyzed not only the whole rocks, but the separate minerals,” Teng said. In particular, they analyzed olivine crystals.

Inside the instrument, the ions are formed in a plasma of argon gas at a temperature of nearly 14,000 degrees Fahrenheit (8,000 degrees Kelvin, hotter than the sun’s surface).

The instrument was tested on the lava of Kilauea Iki crater in Hawaii.

If applied to a variety of terrestrial and extraterrestrial basalts, including moon rocks, meteorites from Mars and the asteroids, the method could provide more definitive evidence for a the Giant Impactor Theory, and provide clues the formation of Earth’s continents, and could potentially tell us more about how other planetary bodies formed.

“Our work opens up exciting avenues of research,” Dauphas said. “We can now use iron isotopes as fingerprints of magma formation and differentiation, which played a role in the formation of continents.”

Original News Source: PhysOrg

Weekend SkyWatcher’s Forecast: June 20-22, 2008

Greetings, fellow SkyWatchers! As the Moon slowly departs from the early evening scene, we have the chance to start the weekend off with shooting stars as we pass through a branch of the Ophiuchid meteor stream. Over the next few days we’ll take a closer look at variable stars, new star clusters and old friends as we head out into the night together…

Friday, June 20, 2008 – Although we will have Moon to contend with in the predawn hours, we welcome the “shooting stars” as we pass through another portion of the Ophiuchid meteor stream. The radiant for this pass will be nearer Sagittarius and the fall rate varies from 8 to 20, but it can sometimes produce unexpectedly more.

Palomar Observatory, courtesy of CaltechFor variable star fans, let’s head towards the constellation of Corona Borealis and focus our attention on S – located just west of Theta – the westernmost star in the constellation’s arc formation. At magnitude 5.3, this long-term variable takes almost a year to go through its changes. It usually far outshines the 7th magnitude star to its northeast – but will drop to a barely visible magnitude 14 at minimum. Compare it to the eclipsing binary U Coronae Borealis about a degree northwest. In slightly over three days this Algol type star will range by a full magnitude as its companions draw together.

NASASaturday, June 21, 2008 – Summer Solstice occurs today at the zero hour. So what exactly is it? Solstice is nothing more than an astronomical term for the moment when one hemisphere of the Earth is tilted the most toward the Sun. Today, the Sun is about 24 degrees above the celestial equator – its highest point of the year. The day of summer solstice also has the longest period of daylight…and the shortest of night; this occurs around six months from now for the Southern Hemisphere.

Palomar Observatory, courtesy of CaltechTonight let’s look forward to the coming summer as we hop a fingerwidth northeast of Beta Ophiuchi (RA 17 46 18 Dec +05 43 00) to a celebration in starlight known as IC 4665. Very well suited to binoculars or even the smallest optics at low power, this magnificent open cluster is even visible to the unaided eye as a hazy patch.

Hanging out in space far from the galactic plane, IC 4665 is anywhere from 30 to 40 million years old – relatively young in astronomical terms! This places the cluster somewhere between the age of the Hyades and the Pleiades. At one time the cluster was believed to have been home to an unusually large number of spectroscopic binaries. While this has been disproved, scopists will enjoy powering up on the approximate 50 members of this association to search for true multiple stars. Enjoy it tonight!

Sunday, June 22, 2008 – Today celebrates the founding of the Royal Greenwich Observatory in 1675. That’s 333 years of astronomy! Also on this date in history, in 1978, James Christy of the US Naval Observatory in Flagstaff Arizona discovered Pluto’s satellite Charon.

NASAWhile observing Pluto is quite possible with a mid-sized (8″) telescope, careful work is needed to separate and identify it from field stars. Just a few days ago, Pluto reached opposition, meaning it is viewable all night. Since it will take several nights of observation for confirmation, right now would be an excellent time to begin your Pluto quest. With a little research you’ll find plenty of on-line locator charts to help guide you on your way!

For observers of all skill levels and equipment, it’s simply time to stop and have a look at a seasonal favorite which is now nearly overhead—M13. You’ll find this massive globular cluster quite easy to locate on the western side of the Hercules “keystone” about a third of the way between the northern and southern stars—Eta and Zeta.

R. Jay GaBanyAt a little brighter than magnitude 6, this 25,100 light-year distant globular cluster can be seen unaided from a dark sky location. First noted by Edmond Halley in 1714, the “Great Hercules Cluster” was cataloged by Messier on June 1, 1764. Filled with hundreds of thousands of stars, yet with only one young blue star, M13 could be as much as 14 billion years old.

Thirty-four years ago, the Great Hercules Cluster was chosen by the Arecibo Observatory as the target for the first radio message delivered into space, yet it will be a message that won’t be received for over 25 centuries. Look at it with wonder tonight… For the light that left as you are viewing it tonight did so at a time when the Earth was coming out of the Ice Age. Our early ancestors were living in caves and learning to use rudimentary tools. How evolved would our civilization be if we ever received an answer to
our call?!

Wishing you clear skies and a wonderful weekend!

The week’s awesome images are Theta Coronae Borealis – Credit: Palomar Observatory, courtesy of Caltech, Solstice and Equinox – Credit: NASA, IC 4665 – Credit: Palomar Observatory, courtesy of Caltech, Pluto and Charon – Credit: NASA, and M13: “The Great Hercules Cluster” is the inspiring work of none other than R. Jay GaBany.

Jupiter for Kids

Jupiter's Red Spot, seen by Voyager 1. Image credit: NASA/JPL

Want to help your kids better understand Jupiter, and the rest of the Solar System?

See Jupiter with your own eyes
The first thing you should do is help them go out and find Jupiter with their own eyes. Jupiter is the third brightest object in the Solar System, after Venus and the Moon – when Jupiter is in the sky, you really can’t miss it. When Jupiter is really well positioned, we’ll have articles here on Universe Today about it.

It’s even better to get your hands on a pair of binoculars, but you won’t be able to see the disk of the planet, or any of its moons without a fairly powerful set of binoculars. Once you look at Jupiter through a telescope, though, it’s easy to see the disk of the planet, bands across its face, and its four largest moons.

Build a scale model of the solar system
Another great project is to build a model of the Solar System. We’ve got instructions here on Universe Today so that you draw a scale model of Sun that fits on a piece of paper, and then how many meters away to put each of the planets, and how big they should be. You can put an entire Solar System within about a kilometer of your house.

Show them what their weight would be on Jupiter
Have your children stand on a scale to see their weight, and then help them see what it would feel like if they were standing on the surface of Jupiter (of course, Jupiter doesn’t actually have a surface). Then push down on their shoulders and have the scale increase in weight. Your weight on Jupiter is 2.5 times your weight on Earth. Don’t push too hard, they’ll probably tell you it’s too much pretty quickly. The stand with them on the scale, and even that probably won’t be enough.

Draw Jupiter
Get out your crayons and try drawing Jupiter. The dark colored stripes on Jupiter are called bands, and the light colored stripes are zones, and they alternate across the surface of Jupiter. You’ll also want to include the Great Red Spot, and maybe Red Spot Jr. The smaller storms are brown or yellow, and the smallest ones are white.

Here’s a link to the project that explains how to build a model of the Solar System, and here are some images of Jupiter you can use when drawing your own version.

Kids Astronomy has more projects you can do with your kids, and an astronomer answers questions about Jupiter.

We’ve also recorded an entire show just on Jupiter for Astronomy Cast. Listen to it here, Episode 56: Jupiter, and Episode 57: Jupiter’s Moons.

Reference:
NASA

Pictures of Jupiter

Jupiter, seen by Cassini. Image credit: NASA/JPL

Words are one thing, but to really appreciate Jupiter, we’re going to want to see pictures.


This is a picture of Jupiter captured by NASA’s Cassini spacecraft, on its way to its final destination: Saturn. The black spot is a shadow cast by Jupiter’s moon Europa. Cassini was never able to capture this detailed a resolution image of Jupiter because the planet was too big to fit into its camera field of view. Instead, the spacecraft took 4 separate images which were then combined together on computer.


Jupiter and Io, captured by New Horizons. Image credit: NASA/JPL

This Jupiter pic is a montage of the planet and its moon Io, captured by NASA’s New Horizons spacecraft on its way out to Pluto. The two objects were never actually lined up like this, instead, the separate images were combined together on computer.


Jupiter seen by Hubble. Image credit: Hubble
Although this picture of Jupiter looks like it was taken by a spacecraft, it was actually taken by the Hubble Space Telescope, currently in orbit around the Earth. The photograph of Jupiter was taken to show the Great Red Spot, which has been decreasing in size over the last century.


Storms on Jupiter, captured by Galileo. Image credit: NASA/JPL

This image of Jupiter was captured by NASA’s Galileo spacecraft. As Galileo was orbiting Jupiter, it didn’t take many large images of the planet. This photograph is a mosaic of many images stitched together, showing the boundary between a zone and a belt on Jupiter.


Jupiter's Red Spot, seen by Voyager 1. Image credit: NASA/JPL
This is one of the most famous pictures of Jupiter and its Great Red Spot. This was captured by NASA’s Voyager 1 spacecraft as it was speeding past the giant planet.

Did you enjoy these images of Jupiter? There are many more on Universe Today. For example, this is a picture of Jupiter’s south pole captured by Cassini. And here’s Jupiter seen from Saturn.

Probably the best resource for pictures of Jupiter is from NASA’s Planetary Photojournal. You can access it here.

We’ve also recorded an entire show just on Jupiter for Astronomy Cast. Listen to it here, Episode 56: Jupiter, and Episode 57: Jupiter’s Moons.