Titan’s Atmosphere May be Older than Saturn, a New Study Suggests

Titan's atmosphere makes Saturn's largest moon look like a fuzzy orange ball in this natural-color view from the Cassini spacecraft. Cassini captured this image in 2012. Image Credit: NASA/JPL-Caltech/Space Science Institute
According to a study from UCLA, Titan experiences severe methane rainstorms, leading to a the alluvial fans found found in both hemispheres. Credit: NASA/JPL-Caltech/Space Science Institute

It’s well accepted that moons form after planets. In fact, only a few months ago, astronomers spotted a new moon forming deep within Saturn’s rings, 4.5 billion years after the planet initially formed.

But new research suggests Saturn’s icy moon Titan — famous for its rivers and lakes of liquid methane — may have formed before its parent planet, contradicting the theory that Titan formed within the warm disk surrounding an infant Saturn.

A combined NASA and ESA-funded study has found firm evidence that the nitrogen in Titan’s atmosphere originated in conditions similar to the cold birthplace of the most ancient comets from the Oort cloud — a spherical shell of icy particles that enshrouds the Solar System.

The hint comes in the form of a ratio. All elements have a certain number of known isotopes — variants of that element with the same number of protons that differ in their number of neutrons. The ratio of one isotope to another isotope is a crucial diagnostic tool.

In planetary atmospheres and surface materials, the amount of one isotope relative to another isotope is closely tied to the conditions under which materials form. Any change in the ratio will allow scientists to deduce an age for that material.

Kathleen Mandt from the Southwest Research Institute in San Antonio and colleagues analyzed the ratio of nitrogen-14 (seven protons and seven neutrons) to nitrogen-15 (seven protons and eight neutrons) in Titan’s atmosphere.

“When we looked closely at how this ratio could evolve with time, we found that it was impossible for it to change significantly,” Mandt said in a press release. “Titan’s atmosphere contains so much nitrogen that no process can significantly modify this tracer even given more than four billion years of Solar System history.”

The team found that our Solar System is not old enough for this nitrogen isotope ratio to have changed as much as it has. By comparing the small change within this ratio, Mandt and colleagues found that it seemed more similar to Oort cloud comets than to Solar System bodies including planets and comets born in the Kuiper belt. The team is eager to see whether their findings are supported by data from ESA’s Rosetta mission, which will study comet 67P/Churyumov-Gerasimenko later this year.

Finally, the study also has implications for Earth. In the past, researchers assumed a connection between comets, Titan and Earth. But these results show that the nitrogen isotope ratio is different on Titan and Earth, suggesting the sources of Earth’s and Titan’s nitrogen must have been different.

It’s unclear whether Earth received nitrogen from early meteorites or if it was captured directly from the disk of gas that formed the Solar System.

“This exciting result is a key example of Cassini science informing our knowledge of the history of [the] Solar System and how Earth formed,” said Scott Edgington, Cassini deputy project scientist at NASA’s Jet Propulsion Laboratory.

The research was published this week in the Astrophysical Journal Letters.

Intriguing X-Ray Signal Might be Dark Matter Candidate

A mysterious X-ray signal in the Perseus galaxy cluster. Credit: NASA/CXC/SAO/E.Bulbul, et al.

Could a strange X-ray signal coming from the Perseus galaxy cluster be a hint of the elusive dark matter in our Universe?

Using archival data from the Chandra X-ray Observatory and the XMM-Newton mission, astronomers found an unidentified X-ray emission line, or a spike of intensity at a very specific wavelength of X-ray light. This spike was also found in 73 other galaxy clusters in XMM-Newton data.

The scientists propose that one intriguing possibility is that the X-rays are produced by the decay of sterile neutrinos, a hypothetical type of neutrino that has been proposed as a candidate for dark matter and is predicted to interact with normal matter only via gravity.

“We know that the dark matter explanation is a long shot, but the pay-off would be huge if we’re right,” said Esra Bulbul of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts, who led the study. “So we’re going to keep testing this interpretation and see where it takes us.”

Astronomers estimate that roughly 85 percent of all matter in the Universe is dark matter, invisible to even the most powerful telescopes, but detectable by its gravitational pull.

Galaxy clusters are good places to look for dark matter. They contain hundreds of galaxies as well as a huge amount of hot gas filling the space between them. But measurements of the gravitational influence of galaxy clusters show that the galaxies and gas make up only about one-fifth of the total mass. The rest is thought to be dark matter.

Bulbul explained in a post on the Chandra blog that she wanted try hunting for dark matter by “stacking” (layering observations on top of each other) large numbers of observations of galaxy clusters to improve the sensitivity of the data coming from Chandra and XMM-Newton.

“The great advantage of stacking observations is not only an increased signal-to-noise ratio (that is, the amount of useful signal compared to background noise), but also the diminished effects of detector and background features,” wrote Bulbul. “The X-ray background emission and instrumental noise are the main obstacles in the analysis of faint objects, such as galaxy clusters.”

Her primary goal in using the stacking technique was to refine previous upper limits on the properties of dark matter particles and perhaps even find a weak emission line from previously undetected metals.

“These weak emission lines from metals originate from the known atomic transitions taking place in the hot atmospheres of galaxy clusters,” said Bulbul. “After spending a year reducing, carefully examining, and stacking the XMM-Newton X-ray observations of 73 galaxy clusters, I noticed an unexpected emission line at about 3.56 kiloelectron volts (keV), a specific energy in the X-ray range.”

In theory, a sterile neutrino decays into an active neutrino by emitting an X-ray photon in the keV range, which can be detectable through X-ray spectroscopy. Bulbul said that her team’s results are consistent with the theoretical expectations and the upper limits placed by previous X-ray searches.

Bulbul and her colleagues worked for a year to confirm the existence of the line in different subsamples, but they say they still have much work to do to confirm that they’ve actually detected sterile neutrinos.

“Our next step is to combine data from Chandra and JAXA’s Suzaku mission for a large number of galaxy clusters to see if we find the same X-ray signal,” said co-author Adam Foster, also of CfA. “There are lots of ideas out there about what these data could represent. We may not know for certain until Astro-H launches, with a new type of X-ray detector that will be able to measure the line with more precision than currently possible.”

Astro-H is another Japanese mission scheduled to launch in 2015 with a high-resolution instrument that should be able to see better detail in the spectra, and Bulbul said they hope to be able to “unambiguously distinguish an astrophysical line from a dark matter signal and tell us what this new X-ray emission truly is.”

Since the emission line is weak, this detection is pushing the capabilities Chandra and XMM Newton in terms of sensitivity. Also, the team says there may be explanations other than sterile neutrinos if this X-ray emission line is deemed to be real. There are ways that normal matter in the cluster could have produced the line, although the team’s analysis suggested that all of these would involve unlikely changes to our understanding of physical conditions in the galaxy cluster or the details of the atomic physics of extremely hot gases.

The authors also note that even if the sterile neutrino interpretation is correct, their detection does not necessarily imply that all of dark matter is composed of these particles.

The Chandra press release shared an interesting behind-the-scenes look into how science is shared and discussed among scientists:

Because of the tantalizing potential of these results, after submitting to The Astrophysical Journal the authors posted a copy of the paper to a publicly accessible database, arXiv. This forum allows scientists to examine a paper prior to its acceptance into a peer-reviewed journal. The paper ignited a flurry of activity, with 55 new papers having already cited this work, mostly involving theories discussing the emission line as possible evidence for dark matter. Some of the papers explore the sterile neutrino interpretation, but others suggest different types of candidate dark matter particles, such as the axion, may have been detected.

Only a week after Bulbul et al. placed their paper on the arXiv, a different group, led by Alexey Boyarsky of Leiden University in the Netherlands, placed a paper on the arXiv reporting evidence for an emission line at the same energy in XMM-Newton observations of the galaxy M31 and the outskirts of the Perseus cluster. This strengthens the evidence that the emission line is real and not an instrumental artifact.

Further reading:
Paper by Bulbul et al.
Chandra press release
ESA press release
Chandra blog

Observing Alert: Distant Blazar 3C 454.3 in Outburst, Visible in Amateur Telescopes

The blazar 3C 454.3 photographed by the Sloan Digital Sky Survey. It's currently in bright outburst and nearly as bright as the star next to it. Both are about magnitude +13.6. Credit: SDSS

Have an 8-inch or larger telescope? Don’t mind staying up late? Excellent. Here’s a chance to stare deeper into the known fabric of the universe than perhaps you’ve ever done before. The violent blazer  3C  454.3 is throwing a fit again, undergoing its most intense outburst seen since 2010. Normally it sleeps away the months around 17th magnitude but every few years, it can brighten up to 5 magnitudes and show in amateur telescopes. While magnitude +13 doesn’t sound impressive at first blush, consider that 3C 454.3 lies 7 billion light years from Earth. When light left the quasar, the sun and planets wouldn’t have skin in the game for another  two billion years. 

If we could see the blazar 3C 354.3 up close it would look something like this. A bright accretion disk surrounds a black hole. Twin jets of radiation beam from the center. Credit: Cosmovision
If we could see the blazar 3C 354.3 up close it would look something like this. A bright accretion disk surrounds a black hole. Twin jets of radiation beam from the center. Credit: Cosmovision

Blazars form in the the cores of active galaxies where supermassive black holes reside. Matter falling into the black hole spreads into a spinning accretion disk before spiraling down the hole like water down a bathtub drain.

Superheated to millions of degrees by gravitational compression the disk glows brilliantly across the electromagnetic spectrum. Powerful spun-up magnetic fields focus twin beams of light and energetic particles called jets that blast into space perpendicular to the disk.

Blazars and quasars are thought to be one and the same, differing only by the angle at which we see them. Quasars – far more common – are actively- munching supermassive black holes seen from the side, while in blazars – far more rare – we stare directly or nearly so into the jet like looking into the beam of a flashlight.

An all-sky view in gamma ray light made with the Fermi gamma ray telescope shows bright gamma-ray emission in the plane of the Milky Way (center), bright pulsars and super-massive black holes including the active blazar 3C 454.3 at lower left. Credit: NASA/DOE/International LAT Team
An all-sky view in gamma ray light made with the Fermi Gamma-ray Space Telescope shows bright gamma-ray emission in the plane of the Milky Way (center), bright pulsars and super-massive black holes including the active blazar 3C 454.3 at lower left. Credit: NASA/DOE/International LAT Team

3C 454.3 is one of the top ten brightest gamma ray sources in the sky seen by the Fermi Gamma-ray Space Telescope. During its last major flare in 2005, the blazar blazed with the light of 550 billion suns. That’s more stars than the entire Milky Way galaxy! It’s still not known exactly what sets off these periodic outbursts but possible causes include radiation bursts from shocked particles within the jet or precession (twisting) of the jet bringing it close to our line of sight.

3c 454.3 is near the magnitude 2.5 magnitude star Alpha Pegasi just to the west of the Great Square. Use this chart to star hop from Alpha to IM Peg (mag. ~ 5.7). Once there, the detailed map below will guide you to the blazar. Stellarium
3c 454.3 is near the star Alpha Pegasi just to the west of the Great Square. Use this chart to star hop from Alpha to IM Peg (mag. ~ 5.7). Once there, the detailed map below will guide you to the blazar. Stellarium

The current outburst began in late May when the Italian Space Agency’s AGILE satellite detected an increase in gamma rays from the blazar. Now it’s bright visually at around magnitude +13.6 and fortunately not difficult to find, located in the constellation Pegasus near the bright star Alpha Pegasi (Markab) in the lower right corner of the Great Square asterism.

Using the wide view map, find your way to IM Peg via Markab and then make a copy of the detailed map below to use at the telescope to star hop to 3C 454.3. The blazar lies immediately south of a star of similar magnitude. If you see what looks like a ‘double star’ at the location, you’ve nailed it. Incredible isn’t it to look so far into space back to when the universe was just a teenager? Blows my mind every time.

Detailed map showing the location of the blazar 3C 454.3. I've created a small asterism with a group of brighter stars with their magnitudes marked. A scale showing 30 arc minutes (1/2 degree) is at right. Stars shown to about magnitude +15. Created with Chris Marriott's SkyMap software
Detailed map showing the location of the blazar 3C 454.3. I’ve drawn a small asterism using a group of brighter stars with their magnitudes marked. A scale showing 30 arc minutes (1/2 degree) is at right. Click to enlarge. Created with Chris Marriott’s SkyMap software

To further explore 3C 454.3 and blazars vs. quasars I encourage you to visit check out Stefan Karge’s excellent Frankfurt Quasar Monitoring site.  It’s packed with great information and maps for finding the best and brightest of this rarified group of observing targets. Karge suggests that flickering of the blazar may cause it to appear somewhat brighter or fainter than the current magnitude. You’re watching a violent event subject to rapid and erratic changes. For an in-depth study of 3C 454.3, check out the scientific paper that appeared in the 2010 Astrophysical Journal.


Learn more about quasars and blazers with a bit of great humor

Finally, I came across a wonderful video while doing research for this article I thought you’d enjoy as well.

‘Ghost’ Object Appears, Disappears on Titan

During previous flybys, 'Magic Island' was not visible near Ligeia Mare's coastline (left). Then, during Cassini's July 20, 2013, flyby the feature appeared (right)/ Credit: NASA/JPL-CALTECH/ASI/CORNELL, image editing via Ian O'Neill/Discovery News.

Astronomers with the Cassini mission have detected a bright, mysterious geologic object on Saturn’s moon Titan that suddenly showed up in images from the mission’s radar instrument. The object appeared in Ligeia Mare, the second-largest sea Titan. The feature looks like an island and so the team named it “Magic Island.” However, it most likely is not an island that suddenly surfaced. But scientists say this may be the first observation of dynamic, geological processes in Titan’s northern hemisphere.

The object suddenly showed up in images beamed back from Cassini on July 10, 2013, showing regions of Ligeia Mare, a sea located near Titan’s north pole. But then just as suddenly, in a follow-up flyby only days later on July 26, the island was gone. Subsequent flybys confirmed that Magic Island had vanished and is what is known as a “transient feature.”

“This discovery tells us that the liquids in Titan’s northern hemisphere are not simply stagnant and unchanging, but rather that changes do occur,” said Jason Hofgartner, a Cornell graduate student in the and the lead author of a paper appearing in Nature Geoscience. “We don’t know precisely what caused this ‘magic island’ to appear, but we’d like to study it further.”

Map of Titan's northern region of hydrocarbon 'seas' created from Cassini radar imaging. Credit: NASA/JPL/USGS.
Map of Titan’s northern region of hydrocarbon ‘seas’ created from Cassini radar imaging. Credit: NASA/JPL/USGS.

Titan is currently the only other world besides Earth known to have stable bodies of liquid on its surface. But unlike Earth, Titan’s lakes aren’t filled with water — instead they’re full of liquid methane and ethane, organic compounds which are gases on Earth but liquids in Titan’s incredibly chilly -290º F (-180º C) environment.

So what was this object? Among the explanations from the team are:

  • Northern hemisphere winds may be kicking up and forming waves on Ligeia Mare. The radar imaging system might see the waves as a kind of “ghost” island. Scientists previously have seen what they think are waves in another nearby Titan sea, Punga Mare.

 

  • Gases may push out from the sea floor of Ligeia Mare, rising to the surface as bubbles.

 

  • Sunken solids formed by a wintry freeze could become buoyant with the onset of the late Titan spring warmer temperatures.

 

  • Suspended solids in Ligeia Mare, which are neither sunken nor floating, but act like silt in a terrestrial delta.

“Likely, several different processes – such as wind, rain and tides – might affect the methane and ethane lakes on Titan. We want to see the similarities and differences from geological processes that occur here on Earth,” Hofgartner said. “Ultimately, it will help us to understand better our own liquid environments here on the Earth.”

Source: Cornell University

An Earth-size Diamond in the Sky: The Coolest Known White Dwarf Detected

Artist impression of a white dwarf star in orbit with pulsar PSR J2222-0137. It may be the coolest and dimmest white dwarf ever identified. Credit: B. Saxton (NRAO/AUI/NSF)

We live in a vast, dark Universe, which makes the smallest and coolest objects extremely difficult to detect, save for a stroke of luck. Often times this luck comes in the form of a companion. Take, for example, the first exoplanet detected due to its orbit around a pulsar — a rapidly spinning neutron star.

A team of researchers using the National Radio Astronomy Observatory’s Green Bank Telescope and the Very Long Baseline Array (VLBA), as well as other observatories have repeated the story, detecting an object in orbit around a distant pulsar. Except this time it’s the coldest, faintest white dwarf ever detected. So cool, in fact, its carbon has crystallized.

The punch line is this: with the help of a pulsar, astronomers have detected an Earth-size diamond in the sky.

“It’s a really remarkable object,” said lead author David Kaplan from the University of Wisconsin-Milwaukee in a press release. “These things should be out there, but because they are so dim they are very hard to find.”

The story begins when Dr. Jason Boyles, then a graduate student at West Virginia University, identified a pulsar, dubbed PSR J2222-0127, 900 light-years away in the constellation Aquarius.

When the core of a massive star runs out of energy, it collapses to form an incredibly dense neutron star or black hole. Bring a teaspoon of neutron star to Earth and it would outweigh Mount Everest at about a billion tons. A pulsar is simply a spinning neutron star.

But as a pulsar spins, lighthouse-like beams of radio waves stream from the poles of its powerful magnetic field. If they sweep past the Earth, they’ll give rise to blips of radio waves, so regular that you could set your watch by them. But if the pulsar carries a companion in tow, the tiny gravitational tugs can offset that timing slightly.

The first observations of PSR J2222-0137 identified that it was spinning more than 30 times each second. It was then observed over a two-year period with the VLBA. By applying Einstein’s theory of relativity — which predicts that light slows in the presence of a gravitational field — the researchers studied how the gravity of the companion warped space, causing delays in the radio signal as the pulsar passed behind it.

The delayed travel times helped the researchers determine the individual masses of the two stars. The pulsar has a mass of 1.2 times that of the Sun and the companion a mass 1.05 times that of the Sun. Previously, researchers had thought the companion was likely another neutron star, or a white dwarf, the remnant of a Sun-like star.

But the timing variations made the neutron star scenario unlikely. The orbits were too orderly for a second supernova to have taken place. So knowing the typical brightness of a white dwarf and its distance, astronomers initially thought they would be able to detect the elusive companion in optical and infrared light.

An image taken in visible light at the SOAR telescope of the field of the pulsar/white dwarf pair. There is no evidence for the white dwarf at the position of the pulsar in this deep image, indicating that the white dwarf is much fainter, and therefore cooler, than any such known object. (The two large white circles mask bright, overexposed stars.)
An image taken in visible light at the SOAR telescope of the field of the pulsar/white dwarf pair. The exact location of the white dwarf is known to a pixel. But it’s not there. Image Credit: NOAO

However, neither the Southern Astrophysical Research telescope in Chile nor the 10-meter Keck telescope in Hawaii was able to detect it.

“Our final image should show us a companion 100 times fainter than any other white dwarf orbiting a neutron star and about 10 times fainter than any known white dwarf, but we don’t see a thing,” said coauthor Bart Dunlap, a graduate student at the University of North Carolina. “If there’s a white dwarf there, and there almost certainly is, it must be extremely cold.”

The research team calculated that the white dwarf would be no more than 3,000 degrees Kelvin. At such a low temperature, the collapsed star would be largely crystallized carbon, similar to diamond.

The paper has been accepted for publication in the Astrophysical Journal and may be viewed here.

Carnival of Space #358-359

Carnival of Space. Image by Jason Major.
Carnival of Space. Image by Jason Major.

This week’s Carnival of Space is hosted by Brian Wang at his Next Big Future blog.

Click here to read Carnival of Space #359

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

‘Time Capsule On Mars’ Team Hopes To Send a Spacecraft There With Your Messages

Mars, as photographed with the Mars Global Surveyor, is identified with the Roman god of war. Credit: NASA

It’s an ambitious goal: land three Cubesats on Mars sometime in the next few years for $25 million. And all this from a student-led team.

But the group, led by Duke University, is dutifully assembling sponsors and potential in-kind contributions from universities and companies to try to reach that goal. So far they have raised more than half a million dollars.

“We were thinking that something was missing,” said Emily Briere, the student team project lead who attends Duke University, explaining how it seemed few Mars missions were being done for the benefit of humanity in general.

“We want to get the whole world excited about space exploration, and why we go to space in the first place, which was to push forward mankind and to build new habitats,” she added. Prime among their objectives is to drive engagement in the kindergarten to Grade 12 audience by encouraging them to submit photos and videos to send to Mars.

Artist's conception of Mars, with asteroids nearby. Credit: NASA
Artist’s conception of Mars, with asteroids nearby. Credit: NASA

But that said, everyone can participate! The official launch of the project is today, and you can read more details about the crowdfunding campaign and how to get involved on the Time Capsule to Mars website. Contributions start at only a dollar, where you can send your picture to Mars. The spacecraft will be loaded with audio, video and text messages from Earth.

“Each satellite will contain a terabyte of data that will act as a digital ‘time capsule’ carrying messages, photos, audio clips and video contributed by tens of millions of people from all over the globe,” says the Time Capsule to Mars team. “The capsule will remain a vessel of captured moments of today’s human race on Earth in 2014, to be rediscovered by future colonists of the Red Planet.”

The team hopes to use ion electric propulsion to get their small spacecraft to the Red Planet. It would head to space itself on a secondary payload on a rocket. (Briere couldn’t disclose who they are talking to, but said ideally it would happen within the next two years.)

Some of the corporate sponsors including Boeing, Lockheed Martin and Aerojet while students come from universities such as Stanford, Duke and the Massachusetts Institute of Technology.

What Does a Supernova Sounds Like?

What Does a Supernova Sounds Like?

We’ve all been ruined by science fiction, with their sound effects in space. But if you could watch a supernova detonate from a safe distance away, what would you hear?

Grab your pedantry tinfoil helmet and say the following in your best “Comic Book Guy” voice: “Don’t be ridiculous. Space does not have sound effects. You would not hear the Death Star exploding. That is wrong.” There are no sounds in space. You know that. Why did you even click on this?

Wait! I still have thing I want to teach you. Keep that tinfoil on and stick around. First, a quick review. Why are there sounds? What are these things we detect with our ear shell-flaps which adorn the sides of our hat-resting orb?

Sounds are pressure waves moving through a medium, like air, water or beer. Talking, explosions, and music push air molecules into other molecules. Through all that “stuff” pushing other “stuff” it eventually pushes the “stuff” that we call our eardrum, and that lets us hear a thing. So, much like how there’s not enough “stuff” in space to take a temperature reading. There’s not enough “stuff” in space to be considered a medium for sound to move through.

Don’t get me wrong there’s “stuff” there. There’s particles. Even in intergalactic depths there are a few hundred particles every cubic meter, and there’s much more in a galaxy. They’re so far apart though, the particles don’t immediately collide with each other allowing a sound wave to pass through a grouping of them.

So, even if you did watch the Death Star explode, you couldn’t hear it. This includes zapping lasers, and exploding rockets. Unless two astronauts touched helmets together, then they could talk. The sound pressure moves through the air molecules in one helmet, through the glass transferring from one helmet to the other, and then pushes against the air inside the helmet of the listening astronaut. Then they could talk, or possibly hear one another scream, or just make muffled noises under the face-hugger that had been hiding in their boot.

There’s no sound in space, so you can’t hear what a supernova sounds like. But if you’re willing to consider swapping out your listening meats for other more impressive cybernetic components, there are possibilities. Perhaps I could offer you something in a plasma detection instrument, and you could hear the Sun.

Artist's concept of NASA's Voyager spacecraft. Image credit: NASA/JPL-Caltech
Artist’s concept of NASA’s Voyager spacecraft. Image credit: NASA/JPL-Caltech

Voyager 1 detects waves of particles streaming from the Sun’s solar wind. It was able to hear when it left the heliosphere, the region where the Sun’s solar wind buffets against the interstellar medium.

Or you could try something in the Marconi Auralnator 2000 which is the latest in radio detector implants I just made up. If there was such a thing, you could hear the plasma waves in Earth’s radiation belts. Which would be pretty amazing, but perhaps somewhat impractical for other lifestyle purposes such as watching Ellen.

So, if you wanted to hear a supernova you’d need a different kind of ear. In fact, something that’s not really an ear at all. There are some exceptions out there. With dense clouds of gas and dust at the heart of a galaxy cluster, you could have a proper medium. NASA’s Chandra X-Ray Observatory has detected sound waves moving through these dust clouds. But you would need ears millions of billions of times more sensitive to hear them.

NASA and other space agencies work tirelessly to convert radio, plasma and other activity into a sound pressure format that we can actually hear. There are beautiful things happening space. I’ve included a few links below which will take you to a few of these, and they are really quite incredible.

Earthsong

Lightning on Saturn, Helium in the atmosphere, etc.

Incredible Timelapse: 7,000 Miles of Clear Skies

Star trails at Balanced Rock in the Arches National Park in Utah on May 30, 2014. Credit and copyright: César Cantu.

Wow! This video brought tears to my eyes because of its sheer beauty. Our friend and frequent astrophoto contributor César Cantu fulfilled a lifelong dream this past month of taking a trip through the southwestern of the United States, to “see and feel the shocking nature reflected in the Grand Canyon, in the Arches National Park and in the terrible atmosphere of Death Valley,” he told us via email.

Although César produced this video entirely on his own, the US Park Service and the states in the US Southwest couldn’t have a better promotional video! It is simply stunning, showing both the splendid landscapes during the day and the magnificent starscapes at night.

He drove from his native Mexico to the US Southwest, carrying several cameras to capture multiples landscapes, “to show different characteristics from the nature of our planet.”

“I drove just over 7,000 miles in 32 days and I visited all these extraordinary places,” César said. “I believe that nature, humanity and society, have found support and positive, creative, respectful and viable response from the National Park Service of the United States of America.”

Make sure you see the night sky footage starting at about :50 — it’s amazing! And the video César took while driving down a desert road is really fun to “ride along.”

The Milky Way over Saguaro National Park on June 17, 2014. Credit and copyright: César Cantu.
The Milky Way over Saguaro National Park on June 17, 2014. Credit and copyright: César Cantu.

“I must say that the trip was so exciting, and I am already planning another for next summer!” he added.

We can’t wait to see more of his travel pics!

You can see more images from César’s “dream” trip at his website.

Thanks once again to César Cantu for sharing his work with Universe Today!

Observing Challenge: The Moon Brushes Past Venus and Covers Mercury This Week

Credit

The summer astronomical action heats up this week, as the waning crescent Moon joins the inner planets at dawn. This week’s action comes hot on the tails of the northward solstice which occurred this past weekend, which fell on June 21st in 2014, marking the start of astronomical summer in the northern hemisphere and winter in the southern. This also means that the ecliptic angle at dawn for mid-northern latitude observers will run southward from the northeast early in the morning sky. And although the longest day was June 21st, the earliest sunrise from 40 degrees north latitude was June 14th and the latest sunset occurs on June 27th. We’re slowly taking back the night!

The dawn patrol action begins tomorrow, as the waning crescent Moon slides by Venus low in the dawn sky Tuesday morning. Geocentric (Earth-centered) conjunction occurs on June 24th at around 13:00 Universal Time/9:00 AM EDT, as the 8% illuminated Moon sits 1.3 degrees — just shy of three Full Moon diameters — from -3.8 magnitude Venus. Also note that the open cluster the Pleiades (Messier 45) sits nearby. Well, nearby as seen from our Earthbound vantage point… the Moon is just over one light second away, Venus is 11 light minutes away, and the Pleiades are about 400 light years distant.

Jun 24 5AM Starry Night
Looking east the morning of Tuesday, June 24th at 5:00 AM EDT from latitude 30 degrees north. Created using Starry Night Education software.

And speaking of the Pleiades, Venus will once again meet the cluster in 2020 in the dusk sky, just like it did in 2012. This is the result of an eight year cycle, where apparitions of Venus roughly repeat. Unfortunately we won’t, however, get another transit of Venus across the face of the Sun until 2117!

Can you follow the crescent Moon up in to the daytime sky? Tuesday is also a great time to hunt for Venus in the daytime sky, using the nearby crescent Moon as a guide. Both sit about 32 degrees from the Sun on June 24th. Just make sure you physically block the dazzling Sun behind a building or hill in your quest.

From there, the waning Moon continues to thin on successive mornings as it heads towards New phase on Friday, June 27th at 8:09 UT/4:09 AM EDT and the start of lunation 1132. You might be able to spy the uber-thin Moon about 20-24 hours from to New on the morning prior. The Moon will also occult (pass in front of) Mercury Thursday morning, as the planet just begins its dawn apparition and emerges from the glare of the Sun.

Credit
The position of the Moon and Mercury post-sunrise on the morning of June 26th. Credit: Stellarium.

Unfortunately, catching the event will be a challenge. Mercury is almost always occulted by the Moon in the daytime due to its close proximity to the Sun. The footprint of the occultation runs from the Middle East across North Africa to the southeastern U.S. and northern South America, but only a thin sliver of land from northern Alabama to Venezuela will see the occultation begin just before sunrise… for the remainder of the U.S. SE, the occultation will be underway at sunrise and Mercury will emerge from behind the dark limb of the Moon in daylight.

Credit
The ground track of the June 26th occultation. Credit: Occult 4.0.

Mercury and the Moon sit 10 degrees from the Sun during the event. Stargazer and veteran daytime planet hunter Shahrin Ahmad based in Malaysia notes that while it is possible to catch Mercury at 10 degrees from the Sun in the daytime using proper precautions, it’ll shine at magnitude +3.5, almost a full 5 magnitudes (100 times) fainter than its maximum possible brightness of -1.5. The only other occultation of Mercury by the Moon in 2014 favors Australia and New Zealand on October 22nd.

This current morning apparition of Mercury this July is equally favorable for the southern hemisphere, and the planet reaches 20.9 degrees elongation west of the Sun on July 12th.

You can see Mercury crossing the field of view of SOHO’s LASCO C3 camera from left to right recently, along with comet C/2014 E2 Jacques as a small moving dot down at about the 7 o’clock position.

SOHO
Mercury (arrowed) and comet E2 Jacques (in the box) as seen from SOHO. (Click  here for animation)

And keep an eye on the morning action this summer, as Jupiter joins the morning roundup in August for a fine pairing with Venus on August 18th.

The Moon will then reemerge in the dusk evening sky this weekend and may just be visible as a 40-44 hour old crescent on Saturday night June 28th. The appearance of the returning Moon this month also marks the start of the month of Ramadan on the Islamic calendar, a month of fasting. The Muslim calendar is strictly based on the lunar cycle, and thus loses about 11 days per year compared to the Gregorian calendar, which strives to keep the tropical and sidereal solar years in sync. On years when the sighting of the crescent Moon is right on the edge of theoretical observability, there can actually be some debate as to the exact evening on which Ramadan will begin.

Don’t miss the wanderings of our nearest natural neighbor across the dawn and dusk sky this week!