Solar Cycle 25 has arrived. Here’s what to expect from the Sun in the coming months and years

The sun goes through a regular 11-year cycle, swinging between periods of dormancy and periods of activity. Scientists from NASA and NOAA have just announced that the sun has just passed its minimum, and will be ramping up in activity over the next few years, meaning that we have entered a new round of the never-ending solar cycle.

Continue reading “Solar Cycle 25 has arrived. Here’s what to expect from the Sun in the coming months and years”

Sunrises Across the Solar System

Scientists have learned a lot about the atmospheres on various worlds in our Solar System simply from planetary sunrises or sunsets. Sunlight streaming through the haze of an atmosphere can be separated into its component colors to create spectra, just as prisms do with sunlight. From the spectra, astronomers can interpret the measurements of light to reveal the chemical makeup of an atmosphere.

Continue reading “Sunrises Across the Solar System”

The Sun Might Have Once Had a Binary Companion Star

For some time now, astronomers have known that the majority of systems in our galaxy consist of binary pairs rather than individual stars. What’s more, in recent decades, research has revealed that stars like our Sun are actually born in clusters within solar nebulas. This has led to efforts in recent years to locate G-type (yellow dwarf) stars in our galaxy that could be the Sun’s long-lost “solar siblings.”

And now, a new study by Harvard astronomers Amir Siraj and Prof. Abraham Loeb has shown that the Sun may once have once had a very similar binary companion that got kicked out of our Solar System. If confirmed, the implications of this could be groundbreaking, especially where theories on how the Oort Cloud formed and whether or not our system captured a massive object (Planet Nine) in the past.

Continue reading “The Sun Might Have Once Had a Binary Companion Star”

New Solar Model Successfully Predicted Seven of the Sun’s Last Nine Big Flares

X9.3 Flare blasts off the Sun. Image credit: NASA/GSFC/SDO

Since it launched in 2010, the Solar Dynamics Observatory has helped scientists understand how the Sun’s magnetic field is generated and structured, and what causes solar flares. One of the main goals of the mission was to be able to create forecasts for predicting activity on the Sun.   

Using mission data from the past 10 years, SDO scientists have now developed a new model that successfully predicted seven of the Sun’s biggest flares from the last solar cycle, out of a set of nine.

Continue reading “New Solar Model Successfully Predicted Seven of the Sun’s Last Nine Big Flares”

A Simulation of Sunsets on Other Worlds: From Venus to Titan

When we think of exploring other planets and celestial bodies, we tend to focus on the big questions. How would astronauts live there when they’re not working? What kind of strategies and technology would be needed for people to be there long term? How might the gravity, environment, and radiation effect humans who choose to make places like the Moon, Mars, and other bodies place their home? We tend to overlook the simple stuff…

For example, what will it be like to look up at the sky? How will Earth, the stars, and any moon in orbit appear? And how will it look to watch the sun go down? These are things we take for granted here on Earth and don’t really ponder much. But thanks to NASA, we now have a tool that simulates what sunsets would look like from other bodies in the Solar System – from the hellish surface of Venus to the dense atmosphere of Uranus.

Continue reading “A Simulation of Sunsets on Other Worlds: From Venus to Titan”

The Sun is less active magnetically than other stars

Our Sun is the source of life on Earth. Its calm glow across billions of years has allowed life to evolve and flourish on our world. This does not mean our Sun doesn’t have an active side. We have observed massive solar flares, such as the 1859 Carrington event, which produced northern lights as far south as the Caribbean, and drove electrical currents in telegraph lines. If such a flare occurred in Earth’s direction today, it would devastate our electrical infrastructure. But fortunately for us, the Sun is mostly calm. Unusually calm when compared to other stars.

Continue reading “The Sun is less active magnetically than other stars”

The heliosphere looks a lot weirder than we originally thought

Every second of every day, our sun spits out a stream of tiny high-energy particles, known as the solar wind. This wind blows throughout the solar system, extending far beyond the orbits of the planets and out into interstellar space.

But the farther from the sun the wind gets, the more slowly it streams, changing from the raging torrent that the inner planets experience (strong enough to cause the aurora) into nothing more than an annoying drizzle. And far enough away – about twice the orbit of Neptune – it meets and mingles with all the random bits of energetic junk just floating around amongst the stars.

Continue reading “The heliosphere looks a lot weirder than we originally thought”

Solar Orbiter is Already Starting to Observe the Sun

On February 10th, 2020, the ESA’s Solar Orbiter (SolO) launched and began making its way towards our Sun. This mission will spend the next seven years investigating the Sun’s uncharted polar regions to learn more about how the Sun works. This information is expected to reveal things that will help astronomers better predict changes in solar activity and “space weather”.

Last week (on Thursday, Feb. 13th), after a challenging post-launch period, the first solar measurements obtained by the SolO mission reached its international science teams back on Earth. This receipt of this data confirmed that the orbiter’s instrument boom deployed successfully shortly after launch and that its magnetometer (a crucial instrument for this mission) is in fine working order.

Continue reading “Solar Orbiter is Already Starting to Observe the Sun”