Spectacular Ultra-High Definition Timelapse from the Space Station

Imagery from the new ESA timelapse in 4K from the International Space Station.

Holy moly! Take a look at this new 4K timelapse video from ESA created from imagery taken by astronaut Alexander Gerst. Before you watch, however, you might want to change your video viewing setting to as high as they can go.

The imagery was taken at a resolution of 4256 x 2832 pixels at a rate of one every second. ESA said the high resolution allowed their production team to create a 3840 x 2160 pixel movie, also known as Ultra HD or 4K.

Playing these sequences at 25 frames per second, the film runs 25 times faster than it looks for the astronauts in space. They also did some nice effects creating trails from from stars and lights from cities on Earth for that “hyper-space” look. There’s a great sequence starting at about :55 of the Orbital Cygnus capsule being unberthed from the ISS and then it zooms away from the station.

Space Station’s Robonaut 2 Is Getting More Astronaut-Like By The Day

Robonaut 2
An example of some of the tasks Robonaut 2 can perform. Credit: NASA

NASA’s large space station robot now has legs and a plan to (eventually) head outside to do spacewalks, to replace some of the more routine tasks taken on by astronauts. Robonaut 2 has actually been on the International Space Station since 2011, but only received the extra appendages in the past few days.

The robot is capable of flipping switches, moving covers and with the legs, clamping on to spots around the station. Check out the videos below to see some of the stuff that it is already capable of. It’s both creepy and amazing to watch.

Eye Problems From Space Affect At Least 21 NASA Astronauts: Study

Expedition 36/37 astronaut Karen Nyberg uses a fundoscope to take still and video images of her eye while in orbit. Credit: NASA

How does microgravity affect your health? One of the chief concerns of NASA astronauts these days is changes to eyesight. Some people come back from long-duration stays in space with what appears to be permanent changes, such as requiring glasses when previously they did not.

And the numbers are interesting. A few months after NASA told Universe Today that 20% of astronauts may face this problem, a new study points out that 21 U.S. astronauts that have flown on the International Space Station for long flights (which tend to be five to six months) face visual problems.

These include “hyperopic shift, scotoma and choroidal folds to cotton wool spots, optic nerve sheath distension, globe flattening and edema of the optic nerve,” states the University of Houston, which is collaborating with NASA on a long-term study of astronauts while they’re in orbit.

The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA
The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA

NASA is flying an instrument on board the International Space Station that does optical coherence tomography, which acts like a microscope on the eye. The technology looks at things such as pressure in the eye and changes in the optic nerve and retinal structures.

The collaboration with the University of Houston recently won Heidelberg Engineering’s annual 2014 Xtreme Research Award. In the long term, the researchers involved are hoping to figure out what changes to make for long-duration missions. One example could be changing carbon dioxide levels on the station, if that is found to play a role.

Long-term health considerations will be one thing examined closely when an astronaut and a cosmonaut spend a year on the International Space Station in 2015, with their milestone bringing them in a small group of people who have spent a year or more consecutively in space.

Source: University of Houston

Boeing Completes All CST-100 Commercial Crew CCiCAP Milestones on Time and on Budget for NASA – Ahead of Competitors

Boeing unveiled full scale mockup of their commercial CST-100 'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer - kenkremer.com

In the ‘new race to space’ to restore our capability to launch Americans to orbit from American soil with an American-built commercial ‘space taxi’ as rapidly and efficiently as possible, Boeing has moved to the front of the pack with their CST-100 spaceship by completing all their assigned NASA milestones on time and on budget in the current phase of the agency’s Commercial Crew Program (CCP).

Boeing is the first, and thus far only one of the three competitors (including Sierra Nevada Corp. and SpaceX) to complete all their assigned milestone task requirements under NASA’s Commercial Crew Integrated Capability (CCiCap) initiative funded under the auspices of the agency’s Commercial Crew Program.

The CST-100 is a privately built, man rated capsule being developed with funding from NASA via the commercial crew initiative in a public/private partnership between NASA and private industry.

The overriding goal is restart America’s capability to reliably launch our astronauts from US territory to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Private space taxis are the fastest and cheapest way to accomplish that and end the gap in indigenous US human spaceflight launches.

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

Boeing announced that NASA approved the completion of the final two commercial crew milestones contracted to Boeing for the CST-100 development.

These last two milestones are the Phase Two Spacecraft Safety Review of its Crew Space Transportation (CST)-100 spacecraft and the Critical Design Review (CDR) of its integrated systems.

The CDR milestone was completed in July and comprised 44 individual CDRs including propulsion, software, avionics, landing, power and docking systems.

The Phase Two Spacecraft Safety Review included an overall hazard analysis of the spacecraft, identifying life-threatening situations and ensuring that the current design mitigated any safety risks, according to Boeing.

“The challenge of a CDR is to ensure all the pieces and sub-systems are working together,” said John Mulholland, Boeing Commercial Crew program manager, in a statement.

“Integration of these systems is key. Now we look forward to bringing the CST-100 to life.”

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Passing the CDR and completing all the NASA milestone requirements is a significant step leading to the final integrated design for the CST-100 space taxi, ground systems and Atlas V launcher that will boost it to Earth orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

The Sierra Nevada Dream Chaser and SpaceX Dragon V2 and are also receiving funds from NASA’s commercial crew program.

All three American aerospace firms vying for the multibillion dollar NASA contract to build an American ‘space taxi’ to ferry US astronauts to the International Space Station and back as soon as 2017.

NASA’s Commercial Crew Program office is expected to announce the winner(s) of the high stakes, multibillion dollar contract to build America’s next crew vehicles in the next program phase, known as Commercial Crew Transportation Capability (CCtCap), “sometime around the end of August/September,” NASA News spokesman Allard Beutel confirmed to me.

“We don’t have a scheduled date for the commercial crew award(s).”

There will be 1 or more CCtCAP winners.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

On June 9, 2014, Boeing revealed the design of their CST-100 astronaut spaceliner by unveiling a full scale mockup of their commercial ‘space taxi’ at the new home of its future manufacturing site at the Kennedy Space Center (KSC) located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for assembly missions to the ISS.

The CST-100 crew transporter was unveiled at the invitation only ceremony and media event held inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.

The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight (STS-135) in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.

Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.

“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”

So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

“The first unmanned orbital test flight is planned in January 2017… and may go to the station,” Ferguson told me during our exclusive interview about Boeing’s CST-100 plans.

Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.

Boeing has received the largest share of funding in the current CCiCAP phase amounting to about $480 million. SpaceX received $460 million for the Dragon V2 and Sierra Nevada Corp. (SNC) has received a half award of $227.5 million for the Dream Chaser mini-shuttle.

SNC will be the next company to complete all of NASA’s milestones this Fall, SNC VP Mark Sirangelo told me in an exclusive interview. SpaceX will be the final company finishing its milestones sometime in 2015.

Stay tuned here for Ken’s continuing Boeing, Sierra Nevada, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

Take a Flight Over a Massive Aurora

When we see an auroral arc - and associated rays - we really seeing a small section of the much larger, permanent aurora called the auroral oval. The northern oval is centered over the geomagnetic north pole located in northern Canada. Credit: NASA

Or perhaps I should say “eine grosse Aurora!” ESA astronaut Alexander Gerst made this time-lapse of a “massive aurora” as seen from the Space Station on August 24. The entire video is beautiful, showing not just a view of the ghostly green aurora but also plenty of stars, airglow, the graceful rotation of the ISS’ solar arrays, and finally the blooming light of dawn – one of sixteen the crew of the Station get to witness every day.

Then again, I’m now wondering: what is the mass of an aurora? Hmm…

Source: ESA on Facebook

Watch A ‘Jellyfish Of Fire’ Created On The International Space Station

A screenshot of an experiment in the Flame Extinguishment Experiment - 2 (FLEX-2) on the International Space Station, taken during Expedition 40 in August 2014. Credit: Reid Wiseman/Vine

Reid Wiseman, NASA astronaut and part-time master of Vine videos, has done it again. This time he’s showing off a flame experiment on the International Space Station called the Flame Extinguishment Experiment-2 (FLEX-2).

“Ignition, jellyfish of fire, warp-drive finish!” wrote Wiseman on Vine yesterday (Aug. 22). He also posted a slow-motion capture of flames in action, which you can see below the jump. FLEX-2, as the name implies, is the second flame experiment on board the International Space Station. NASA states the goal is to understand how small fuel droplets burn in space.

“The FLEX-2 experiment studies how quickly fuel burns, the conditions required for soot to form, and how mixtures of fuels evaporate before burning. Understanding these processes could lead to the production of a safer spacecraft as well as increased fuel efficiency for engines using liquid fuel on Earth,” the agency wrote.

Is A Sitcom Astronaut Hadfield’s Next Frontier? ABC Comedy In The Works, Report Says

Chris Hadfield all dressed up for another day in space. Credit: Chris Hadfield (Twitter)

It’s possible that Chris Hadfield’s best-selling book will become a sitcom! The astronaut who quickly became the world’s most-wanted Canadian last year, based on his amusing YouTube videos and stunning space pictures, is involved in production of a sitcom based on An Astronaut’s Guide To Life On Earth, Deadline reports.

“The TV series is described as a family comedy about an astronaut who is back from space and finds that re-entering domestic life might be the hardest mission he’s ever faced,” wrote Deadline. Hadfield is slated to be the consulting producer on the show, which has been approved for pilot production.

Hadfield made headlines during his third and final spaceflight in 2012-13, part of which saw him was commander of the International Space Station’s Expedition 35. His five-month flight in space saw his Twitter numbers soar as he virtually hobnobbed with celebrities and worked social media every day, with the help of his son Evan. (This was done in between running one of the most scientifically productive missions on the station ever.)

Chris Hadfield in the Cupola of the ISS. Credit: NASA
Chris Hadfield in the Cupola of the ISS. Credit: NASA

Weeks after returning to Earth, Hadfield retired from the Canadian Space Agency. His second book, You Are Here: Around the World in 92 Minutes, is expected to be released in October.

Space is a serious business, but there are some comedies associated with it. Former NASA astronaut Mike Massimino has been a repeat guest on The Big Bang Theory, particularly when one of the main characters went into space. NBC is also working on a sitcom called Mission Controlwhich describes the challenges of a female aerospace engineer trying to make her way in the male-dominated field of the 1960s.

ABC also is taking space to a more serious side, as it is expected to make a miniseries based on the Lily Koppel bestseller The Astronaut Wives Club — a look at the wives of the first astronauts in the 1960s.

Watch A ‘Swan’ Fly Free From Its Trap In A Space Robotic Arm

Space Station robotic arm releases Cygnus after detachment from the ISS Harmony node. Credit: NASA TV

What does it look like when a cargo ship goes flying away from the International Space Station? This timelapse gives you a sense of what to expect. Here, you can see the handiwork of the (off-camera) Expedition 40 crew as they use the robotic Canadarm2 to let go of the Cygnus spacecraft.

“Great feeling to release a captured swan back into the wild last week,” wrote Alexander Gerst, an astronaut with the European Space Agency, on Twitter with the video.

Cygnus (Latin for “swan”, and a northern constellation) is a commercial spacecraft manufactured by Orbital Sciences Corp., and is one of two regular private visitors to the space station. The other one is Dragon, which is manufactured by SpaceX. Both companies have agreements with NASA to run periodic cargo flights to the station so that the astronauts can receive fresh equipment, food and personal items.

Both spacecraft are designed to be captured and released by Canadarm2, which the astronauts operate. When the Canadarm2 captures the spacecraft, it is referred to as a “berthing” (as opposed to a docking, when a spacecraft directly latches on to the station.)

Cygnus made a (planned) fiery re-entry Sunday that the astronauts captured on camera from their orbiting perch. Besides the inherent spectacular value of looking at the pictures, they could also be useful to help plan the eventual de-orbiting of the space station.

What Are These Mysterious Green Lights Photographed From the Space Station?

NASA astronaut Reid Wiseman Tweeted this photo of Thailand at night on Aug. 18, 2014

“Bangkok is the bright city. The green lights outside the city? No idea…” This was the description accompanying the photo above, perplexingly Tweeted by Expedition 40/41 astronaut Reid Wiseman on Aug. 18, 2014. And while we’ve all seen fascinating photos of our planet shared by ISS crew members over the years this one is quite interesting, to say the least. Yes, there’s the bright illumination of Bangkok’s city lights, along with some stars, moonlit cloud cover extending northeast and the fine line of airglow over the horizon, but what are those acid-green blotches scattered throughout the darkness of the Gulf of Thailand? Bioluminescent algal blooms? Secret gamma-ray test labs? Underwater alien bases? 

The answer, it turns out, actually is quite fishy.

The offshore illumination comes from fishing boats, which use enormous arrays of bright green LED lights to attract squid and plankton to the surface.

According to an an Oct. 2013 article on NASA’s Earth Observatory site by Michael Carlowicz, “…fishermen from South America and Southeastern Asia light up the ocean with powerful lamps that attract the plankton and fish species that the squid feed on. The squid follow their prey toward the surface, where they are easier for fishermen to catch with jigging lines. Squid boats can carry more than a hundred of these lamps, generating as much as 300 kilowatts of light per boat.”

Seen from orbit, the lights from squid fishing fleets rival the glow of the big cities! What might this look like from sea level? According to photos shared by one travel blogger in 2013, this.

Watch a video time-lapse from an ISS pass over the same region on Jan. 30, 2014.

A Twitter HT to Reid Wiseman and Peter Caltner for the photo and information on the cause, respectively.

Update 8/20/14: This article and image have been mentioned on NASA’s Earth Observatory site in a new post by Michael Carlowicz.

Cygnus Cargo Carrier Concludes with Fiery Reentry Aug. 17 – Amazing Astronaut Photos

Cygnus reentry [17 Aug 2014]. In 84 days Reid, Max and I will ride home inside such an amazing fireball! Credit: NASA/ESA/Alexander Gerst

Cygnus reentry [17 Aug 2014]. In 84 days Reid, Max and I will ride home inside such an amazing fireball! Credit: NASA/ESA/Alexander Gerst
Story updated[/caption]

Farewell Cygnus!

The flight of the Orbital Sciences’ Cygnus commercial cargo carrier concluded this morning, Sunday Aug. 17, in a spectacular fireball as planned upon reentry into Earth’s atmosphere at approximately 9:15 a.m. (EDT). And the fireworks were captured for posterity in a series of amazing photos taken by the Expedition 40 crew aboard the International Space Station (ISS). See astronaut photos above and below.

ESA astronaut Alexander Gerst and Russian Cosmonaut Maxim Suraev documented the breakup and disintegration of Cygnus over the Pacific Ocean east of New Zealand today following precise thruster firings commanded earlier by Orbital Sciences mission control in Dulles, VA, that slowed the craft and sent it on a preplanned destructive reentry trajectory.

Cygnus reentry on 17 Aug 2014.  Credit: NASA/ESA/Alexander Gerst
Cygnus reentry on 17 Aug 2014. Credit: NASA/ESA/Alexander Gerst

Gerst was truly moved by the spectacle of what he saw as a portent for his voyage home inside a Soyuz capsule barely three months from now, with crew mates Maxim Suraev and NASA astronaut Reid Wiseman.

“In 84 days Reid, Max and I will ride home inside such an amazing fireball! In 84 Tagen werden Reid, Max & ich in solch einem Feuerball nach Hause fliegen!” – Gerst wrote from the station today in his social media accounts with the fireball photos.

Cygnus was loaded with no longer needed trash and fell harmlessly over an uninhabited area of the South Pacific Ocean.

Today’s spectacular reentry fireworks concluded the hugely successful flight of the Cygnus resupply ship named in honor of astronaut Janice Voss on the Orb-2 mission.

ISS Crewmate Max Suraev just caught this amazing photo of Cygnus Orb2 disintegrating on reentry.   Credit: Roscosmos/ Max Suraev via ISS crew mate Reid Wiseman
ISS Crew mate Max Suraev just caught this amazing photo of Cygnus Orb2 disintegrating on reentry. Credit: Roscosmos/ Max Suraev via ISS crew mate Reid Wiseman

The astronaut photos may be helpful to engineers planning the mechanics of the eventual deorbiting of the ISS at some point in the hopefully distant future.

Cygnus finished it’s month-long resupply mission two days ago when it was unberthed from the International Space Station (ISS) on Friday, Aug. 15, and station astronaut Alex Gerst released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.

“From start to finish, we are very pleased with the results of this mission. Our team is proud to be providing essential supplies to the ISS crew so they can carry out their vital work in space,” said Mr. Frank Culbertson, Executive Vice President and General Manager of Orbital’s Advanced Programs Group, in a statement.

Goodbye, Cygnus!  Credit: NASA/ESA/Alexander Gerst
Goodbye, Cygnus! Credit: NASA/ESA/Alexander Gerst

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

It arrived at the station after a three day chase and was captured with the 58-foot (17-meter) long Canadian robotic arm on July 16, 2014 by Station Commander Steve Swanson working at a robotics workstation in the cupola.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus arrival at the ISS took place on the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission by Neil Armstrong, Buzz Aldrin and Michael Collins.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

This mission dubbed Orbital-2, or Orb-2, marks the second of at least eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m.  EDT, Friday, Aug. 15, 2014.  Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

The next resupply launch of the private Cygnus Orb-3 craft atop the Orbital Sciences’ Antares rocket is currently scheduled for October 2014 from NASA’s Wallops Flight Facility, VA.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

“With three fully successful cargo delivery missions now complete, it is clear our public-private partnership with NASA is proving to be a positive asset to the productivity of the ISS. We are looking forward to the next Antares launch and the Cygnus cargo delivery mission that is coming up in about two months,” said Culbertson.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing ISS, Rosetta, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer