Columbia’s Demise 11 Years Ago Today Sparked Regular Shuttle Inspections In Space

A shower of foam debris after the impact on Columbia?s left wing. The event was not observed in real time. Credit: NASA

The Columbia’s shuttle fiery end came as the STS-107 astronauts’ families were waiting runway-side for everyone to come home. NASA’s oldest space shuttle broke up around 9 a.m. Eastern (2 p.m. UTC) on Feb. 1, 2003, scattering debris along east Texas and nearby areas. Its demise was captured on several amateur video cameras, many of which were rebroadcast on news networks.

In the next four months, some 20,000 volunteers fanned out across the southwest United States to find pieces of the shuttle, coming up with 85,000 pieces (38% of the shuttle) as well as human remains. Meanwhile, investigators quickly zeroed in on a piece of foam that fell off of Columbia’s external tank and struck the wing. A seven-month inquiry known as the Columbia Accident Investigation Board eventually yielded that as the ultimate cause of the shuttle’s demise, although there were other factors as well.

The disaster killed seven people: Rick Husband, Willie McCool, Michael Anderson, Kalpana Chawla, David Brown, Laurel Clark and Ilan Ramon (who was Israel’s first astronaut.) At a time when most shuttles were focused on building the International Space Station, this crew’s mandate was different: to spend 24 hours a day doing research experiments. Some of the work was recoverable from the crew’s 16 days in space.

Columbia’s demise brought about several design changes in the external tank as NASA zeroed in on “the foam problem.” NASA put in a new procedure in orbit for astronauts to scan the shuttle’s belly for broken tiles using the robotic Canadarm and video cameras; shuttles also flew to the International Space Station in such a way so that astronauts on station could take pictures of the bottom.

Return-to-flight mission STS-114 in July-August 2005 yielded more foam loss than expected. Then NASA found something. For a long time, workers at the Michoud Assembly Facility were blamed for improper foam installation after partial tests on external tanks, but an X-ray analysis on an entire tank (done for reasons that are explained in this blog post from then-shuttle manager Wayne Hale) revealed it was actually due to “thermal cycles associated with filling the tank.”

“Discovery flew on July 4, 2006; no significant foam loss occurred. I consider that to be the real return to flight for the space shuttle,” he wrote. “So were we stupid? Yes. Can you learn from our mistake? I hope so.”

The Columbia  crew. From the left: Mission Specialist David Brown, Commander Rick Husband, Mission Specialists Laurel Clark, Kalpana Chawla and Michael Anderson, Pilot William McCool and Payload Specialist Ilan Ramon. Credit: NASA.
The Columbia crew. From the left: Mission Specialist David Brown, Commander Rick Husband, Mission Specialists Laurel Clark, Kalpana Chawla and Michael Anderson, Pilot William McCool and Payload Specialist Ilan Ramon. Credit: NASA.

‘Obviously A Major Malfunction’: Today Is Anniversary of Challenger’s Explosion

The crew of Challenger, lost on January 28, 1986. Credit: NASA.

It was on this day (Jan. 28) in 1986 that stunned viewers across the world saw the Challenger space shuttle explode on television. The broadcast (you can see CNN’s above) was being carried all over the place because the crew included the first teacher in space, Christa McAuliffe. The planned six-day mission, however, lasted just over a minute before catastrophe occurred.

Flying aboard mission 51-L were commander Francis “Dick” Scobee, pilot Michael Smith, mission specialists Judith Resnik, Ellison Onizuka and Ronald McNair, and payload specialists Gregory Jarvis and McAuliffe. The physical cause of the explosion was traced back to a faulty O-ring on one of the shuttle’s external boosters, which weakened in the cold before launch and then failed, leading to the explosion about 72 seconds after launch.

Other factors were cited as well by journalists and the Rogers Commission, such as NASA’s desire to keep to what outsiders said was an unrealistic, quick-moving launch schedule that saw shuttles leave the ground every few weeks to carry commercial and military payloads. NASA and contractor Morton Thiokol made changes to the boosters, and NASA further changed the flight rules and other procedures in response to the disaster.

There are many memorials to the fallen crew, but one of the most cited in education is the 40 Challenger Learning Centers that are located in the United States, Canada, United Kingdom and South Korea. The network was founded by June Scobee Rogers (the widow of commander Scobee) and includes participation from other Challenger family members. Their goal is to “give students the chance to become astronauts and engineers and solve real-world problems as they share the thrill of discovery on missions through the Solar System,” the website states.

Challenger’s anniversary comes in a week that includes other tragic anniversaries, including the Apollo 1 pad fire that claimed three astronauts’ lives (Jan. 27, 1967) and Columbia shuttle breakup that killed seven (Feb. 1, 2003). Other astronauts have died in training accidents; you can see a list at the Astronaut Memorial Foundation. Additionally, four cosmonauts died in spaceflight: Vladimir Komarov (Soyuz 1 on April 24, 1967) and Georgi Dobrovolskiy, Viktor Patsayev, and Vladislav Volkov (Soyuz 11 on June 30, 1971).

The Challenger space shuttle a few moments after the rupture took place in the external tank. Credit: NASA
The Challenger space shuttle a few moments after the rupture took place in the external tank. Credit: NASA

Now is Your Last Chance to Visit Inside NASA’s Iconic Vehicle Assembly Building – and maybe see an Orion

NASA’s iconic Vehicle Assembly Building (VAB) and Launch Control Center (LCC) at the Kennedy Space Center, Florida. Public access tours inside the VAB will end on Feb. 11, 2014. NASA's Apollo Saturn V Moon rockets and Space Shuttles were assembled inside. Credit: Ken Kremer - kenkremer.com

NASA’s iconic Vehicle Assembly Building (VAB) and Launch Control Center (LCC) at the Kennedy Space Center, Florida. Public access tours inside the VAB will end on Feb. 11, 2014. NASA’s Apollo Saturn V Moon rockets and Space Shuttles were assembled inside.
Credit: Ken Kremer – kenkremer.com
Story updated- Last chance to visit VAB extended to Feb. 23[/caption]

If you have ever wanted to take a personal trip inside NASA’s world famous Vehicle Assembly Building (VAB) at Kennedy Space Center in Florida, now is the time.

In fact this is your last chance. Because access to the hugely popular public tours will end very soon. And perhaps you’ll see an Orion test capsule too.

Indeed you only have until Feb. 11 [Update: now extended to Feb. 23] to enjoy the KSC “Up-Close Tour” inside the 52 story tall VAB, according to an announcement by the privately run Kennedy Space Center Visitor Complex, which organizes the VAB tours.

The VAB is an iconic world wide symbol of America’s space program.

And it’s home to many of NASA’s finest and most historic exploration achievements – including all the manned Apollo Moon landings and the three decade long Space Shuttle program that launched the Hubble Space Telescope and the International Space Station (ISS) to orbit.

Why are the interior public tours being halted, barely 2 years after they started?

Because after a bit of a lull following the termination of NASA’s Space Shuttle program, space launch activities are ramping up once again and the agency must complete much needed building renovations to prepare for the next step in human exploration of the cosmos – SLS, Orion and commercial ‘space taxis’.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com

The agency needs unfettered use of the VAB to prepare for assembly, lifting and stacking of the new Orion crew capsule and it’s new monster booster rocket – the Space Launch System (SLS) – slated for its maiden blastoff in 2017.

You can always see the 525 foot tall VAB from the outside, gleaming proudly from miles away.

And it’s a must see from up close outside glimpses aboard tour buses driving by all day long – resplendent with a mammoth red, white and blue American flag painted on its side.

But nothing compares to being an eyewitness to history and seeing it from the inside with your own eyes, especially if you are a space enthusiast!

The VAB is one of the largest and most voluminous buildings in the world.

Since 1978, the VAB interior had been off limits to public visitors for more than 30 years during the shuttle era. It was too hazardous to visit because of the presence of the giant shuttle solid rocket boosters loaded with fuel.

Orion Ground Test Article (GTA) recently displayed on the floor inside the Vehicle Assembly Building (VAB).    Credit: Ken Kremer - kenkremer.com
Orion Ground Test Article (GTA) recently displayed on the floor inside the Vehicle Assembly Building (VAB). Credit: Ken Kremer – kenkremer.com

Inside access was finally restored to guests at Kennedy Space Center Visitor Complex in November 2011, following the retirement of the space shuttles.

Visitors could again “see firsthand where monstrous vehicles were assembled for launch, from the very first Saturn V rocket in the late 1960s to the very last space shuttle, STS-135 Atlantis, in 2011.”

Although the shuttles are now gone, there is a possibility that maybe you’ll be lucky enough to see an Orion test capsule that’s been used in real ground testing to help NASA prepare for upcoming missions.

Since the layout is constantly changing, there is no guarantee on seeing the Orion.

Possibly either an Orion boilerplate test article or the Ground Test Article (GTA) which was the first flight worthy Orion capsule to be built. The GTA is the path finding prototype for the Orion EFT-1 capsule currently in final assembly and slated to launch this Fall 2014.

Perhaps you’ll be lucky enough to snap a shot like one of mine of the Orion GTA on the floor of the main working area of the VAB – known as the transfer aisle.

You will definitely get the feel for the greatest hits in space history inside the place where the moon rockets and space shuttles were lifted, stacked and assembled for flight and then rolled out to either Launch Pad 39 A or 39 B.

Atlantis approaches the VAB for the final time. Credit: Ken Kremer
Atlantis approaches the VAB for the final time during preparations for the STS-135 flight in 2011. Credit: Ken Kremer – kenkremer.com

“Kennedy Space Center Visitor Complex has been honored to give our guests rare access to the VAB for the past two years, yet we knew that the day would come when preparations for the SLS would take precedent,” said Therrin Protze, chief operating officer for the Visitor Complex, in a statement.

“Kennedy Space Center is an operating space program facility, and preparations for the next chapter in space exploration are the utmost priority, and we are very excited about the future.”

Starting in 2017, America will again launch a mighty rocket – the SLS that will blast Americans to deep space after an unbelievable 50 year gap.

Full belly view of Space Shuttle Discovery coated with thousands of protective heat shield tiles in the transfer aisle of the VAB where it was processed for final launch on STS-133 mission.  Note two rectangular attach points holding left and right side main separation bolts. Credit: Ken Kremer - kenkremer.com
Full belly view of Space Shuttle Discovery coated with thousands of protective heat shield tiles in the transfer aisle of the VAB where it was processed for final launch on STS-133 mission. Note two rectangular attach points holding left and right side main separation bolts. Credit: Ken Kremer – kenkremer.com

So for only about the next two weeks, you can see one of the greatest treasures of America’s space program and appreciate the cavernous interior from where our astronauts once set off for the Moon as part of the “Mega Tour”.

The “Mega Tour”, which also included visits to Launch Pad 39 A and the Launch Control Center (LCC) ends on Feb. 11, the visitor complex announced.

However the visitor complex is still offering a modified “Up-Close” tour to Pad 39A and the Launch Control Center (LCC) – at this time. But that’s subject to change at any moment depending on NASA’s priorities.

View of NASA’s 52 story tall Vehicle Assembly Building (VAB) as seen from the top of Launch Pad 39 A.    Credit: Ken Kremer - kenkremer.com
View of NASA’s 52 story tall Vehicle Assembly Building (VAB) as seen from the very top of Launch Pad 39 A gantry. Credit: Ken Kremer – kenkremer.com

And don’t forget that you can also see NASA’s genuine Space Shuttle Atlantis in its new permanent exhibition hall at the Kennedy Space Center Visitor Complex.

Please check the visitor center website for complete details and admission pricing on “Up-Close” tours and everything else – www.kennedyspacecenter.com

There is one thing I can guarantee – if you don’t go you will see nothing!

Catch it if you can. It’s NOT coming back any time soon!

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Space Shuttle Atlantis permanent display at Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer - kenkremer.com
Space Shuttle Atlantis permanent display at Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com

NASA Pressing Towards Fall 2014 Orion Test Flight – Service Module Complete

Engineers prepare Orion’s service module for installation of the fairings that will protect it during launch this fall when Orion launches on its first mission. The service module, along with its fairings, is now complete. Credit: NASA

Engineers prepare Orion’s service module for installation of the fairings that will protect it during launch this fall when Orion launches on its first mission. The service module, along with its fairings, is now complete. Credit: NASA
Story Updated[/caption]

2014 is the Year of Orion.

Orion is NASA’s next human spaceflight vehicle destined for astronaut voyages beyond Earth and will launch for the first time later this year on its inaugural test flight from Cape Canaveral, Florida.

The space agency is rapidly pressing forward with efforts to finish building the Orion crew module slated for lift off this Fall on the unmanned Exploration Flight Test – 1 (EFT-1) mission.

NASA announced today that construction of the service module section is now complete.

NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The Orion module stack is comprised of three main elements – the Launch Abort System (LAS) on top, the crew module (CM) in the middle and the service module (SM) on the bottom.

With the completion of the service module, two thirds of the Orion EFT-1 mission stack are now compete.

LAS assembly was finalized in December.

The crew module is in the final stages of construction and completion is due by early spring.

Orion is being manufactured at NASA’s Kennedy Space Center (KSC) inside a specially renovated high bay in the Operations and Checkout Building (O&C).

“We are making steady progress towards the launch in the fall,” said NASA Administrator Charles Bolden at a media briefing back dropped by the Orion service module inside the O&C facility.

“It’s very exciting because it signals we are almost there getting back to deep space and going much more distant than where we are operating in low Earth orbit at the ISS.”

“And I’m very excited for the young people who will have an opportunity to fly Orion,” Bolden told me in the O&C.

Lockheed Martin is the prime contractor for Orion under terms of a contract from NASA.

Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the Moon, Mars and beyond.

The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission is on schedule to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during a recent interview at KSC.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Service Module at bottom. Credit: Ken Kremer/kenkremer.com

Orion is currently under development as NASA’s next generation human rated vehicle to replace the now retired space shuttle.

Concurrently, NASA’s commercial crew initiative is fostering the development of commercial space taxi’s to ferry US astronauts to low Earth orbit and the International Space Station (ISS).

Get the details in my interview with SpaceX CEO Elon Musk about his firm’s Dragon ‘space taxi’ launching aboard the SpaceX upgraded Falcon 9 boosterhere.

The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

The crew module rests atop the service module, similar to the Apollo Moon landing program architecture.

Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center.   Credit: Ken Kremer/kenkremer.com
Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The SM provides in-space power, propulsion capability, attitude control, thermal control, water and air for the astronauts.

For the EFT-1 flight, the SM is not fully outfitted. It is a structural representation simulating the exact size and mass.

In a significant difference from Apollo, Orion is equipped with a trio of massive fairings that encase the SM and support half the weight of the crew module and the launch abort system during launch and ascent. The purpose is to improve performance by saving weight from the service module, thus maximizing the vehicles size and capability in space.

All three fairings are jettisoned at an altitude of 100 miles up when they are no longer need to support the stack.

The fairings that will protect it during launch are added to Orion’s service module at the Operations and Checkout facility at Kennedy Space Center.  Credit: NASA
The fairings that will protect it during launch are added to Orion’s service module at the Operations and Checkout facility at Kennedy Space Center. Credit: NASA

On the next Orion flight in 2017, the service module will be manufactured built by the European Space Agency (ESA).

“When we go to deep space we are not going alone. It will be a true international effort including the European Space Agency to build the service module,” said Bolden.

The new SM will be based on components from ESA’s Automated Transfer Vehicle (ATV) which is an unmanned resupply spacecraft used to deliver cargo to the ISS.

A key upcoming activity for the CM is installation of the thermal protection system, including the heat shield.

The heat shield is the largest one ever built. It arrived at KSC last month loaded inside NASA’s Super Guppy aircraft while I observed. Read my story – here.

The 2014 EFT-1 test flight was only enabled by the extremely busy and productive year of work in 2013 by the Orion EFT-1 team.

“There were many significant Orion assembly events ongoing on 2013” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Martin Space Systems in Denver.

“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles and building the service module which finally leads to mating the crew and service modules (CM & SM) in early 2014,” Price told me.

Orion was originally planned to send American astronauts back to Moon – until Project Constellation was cancelled by the Obama Administration.

Now with Orion moving forward and China’s Yutu rover trundling spectacularly across the Moon, one question is which country will next land humans on the Moon – America or China?

Read my story about China’s manned Moon landing plans – here.

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Orion schematic. Credit: NASA
Orion schematic. Credit: NASA
NASA Administrator Charles Bolden meets the media including Ken Kremer/Universe Today to discuss NASA’s human spaceflight initiatives and Orion crew capsule being assembled at the Kennedy Space Center. Credit: Urijan Poerink
NASA Administrator Charles Bolden meets the media including Ken Kremer/Universe Today to discuss NASA’s human spaceflight initiatives and Orion crew capsule being assembled at the Kennedy Space Center. Credit: Urijan Poerink

Extend ISS to 2050 as Stepping Stone to Future Deep Space Voyages – Orbital VP/Astronaut tells Universe Today

The International Space Station as seen from the crew of STS-119. Credit: NASA

The International Space Station could potentially function far beyond its new extension to 2024. Perhaps out to 2050. The ISS as seen from the crew of STS-119. Credit: NASA
Story updated[/caption]

WALLOPS ISLAND, VA – Just days ago, the Obama Administration approved NASA’s request to extend the lifetime of the International Space Station (ISS) to at least 2024. Ultimately this will serve as a stepping stone to exciting deep space voyages in future decades.

“I think this is a tremendous announcement for us here in the space station world,” said Bill Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate, at a press briefing on Jan. 8.

But there’s really “no reason to stop it there”, said Frank Culbertson, VP at Orbital Sciences and former NASA astronaut and shuttle commander, to Universe Today when I asked him for his response to NASA’s station extension announcement.

“It’s fantastic!” Culbertson told me, shortly after we witnessed the picture perfect blastoff of Orbital’s Antares/Cygnus rocket on Jan. 9 from NASA’s Wallops launch facility in Virginia, bound for the ISS.

“In my opinion, if it were up to me, we would fly it [the station] to 2050!” Culbertson added with a smile. “Of course, Congress would have to agree to that.”

Gerstenmaier emphasized that the extension will allow both the research and business communities to plan for the longer term and future utilization, be innovative and realize a much greater return on their investments in scientific research and capital outlays.

“The station is really our stepping stone,” Robert Lightfoot, NASA Associate Administrator, told me at Wallops following Antares launch.

The Alpha Magnetic Spectrometer (AMS) – which is searching for elusive dark matter – was one of the key science experiments that Gerstenmaier cited as benefitting greatly from the ISS extension to 2024. The AMS is the largest research instrument on the ISS.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port on Jan. 12, 2014. Credit: NASA TV

The extension will enable NASA, the academic community and commercial industry to plan much farther in the future and consider ideas not even possible if the station was de-orbited in 2020 according to the existing timetable.

Both the Antares rocket and Cygnus cargo freighter are private space vehicles developed and built by Orbital Sciences with seed money from NASA in a public-private partnership to keep the station stocked with essential supplies and research experiments and to foster commercial spaceflight.

So I asked Culbertson and Lightfoot to elaborate on the benefits of the ISS extension to NASA, scientific researchers and commercial company’s like Orbital Sciences.

“First I think it’s fantastic that the Administration has committed to extending the station, said Culbertson. “They have to work with the ISS partners and there is a lot to be done yet. It’s a move in the right direction.”

“There is really no reason to stop operations on the space station until it is completely no longer usable. And I think it will be usable for a very long time because it is very built and very well maintained.”

“If it were up to me, we would fly it to 2050!”

“NASA and the engineers understand the station very well. I think they are operating it superbly.”

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer

“The best thing about the station is it’s now a research center. And it is really starting to ramp up. It’s not there yet. But it is now finished [the assembly] as a station and a laboratory.”

“The research capability is just starting to move in the right direction.”

The Cygnus Orbital 1 cargo vehicle launched on Jan. 9 was loaded with approximately 2,780 pounds/1,261 kilograms of cargo for the ISS crew for NASA including vital science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

The research investigations alone accounted for over 1/3 of the total cargo mass. It included a batch of 23 student designed experiments representing over 8700 students sponsored by the National Center for Earth and Space Science Education (NCESSE).

“So extending it [ISS] gives not only commercial companies but also researchers the idea that ‘Yes I can do long term research on the station because it will be there for another 10 years. And I can get some significant data.”

“I think that’s really important for them [the researchers] to understand, that it will be backed for that long time and that they won’t be cut off short in the middle of preparing an experiment or flying it.”

Robert Lightfoot; NASA Associate Administrator, and Frank Culbertson; executive vice president and general manager of Orbital's advanced spaceflight programs group and former Space Shuttle commander, at NASA Wallops Flight Facility, VA discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff bound for the station loaded with science experiments.  Credit: Ken Kremer – kenkremer.com
Robert Lightfoot; NASA Associate Administrator, and Frank Culbertson; executive vice president and general manager of Orbital’s advanced spaceflight programs group and former Space Shuttle commander, at NASA Wallops Flight Facility, VA discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff bound for the station loaded with science experiments. Credit: Ken Kremer – kenkremer.com

“So I think that first of all it demonstrates the commitment of the government to continue with NASA. But also it presents a number of opportunities for a number of people.”

What does the ISS extension mean for Orbital?

The purpose for NASA and Orbital Sciences in building Antares and Cygnus was to restore America’s ability to launch cargo to the ISS – following the shutdown of NASA’s space shuttles – by using commercial companies and their business know how to thereby significantly reduce the cost of launching cargo to low Earth orbit.

“As far as what it [the ISS extension] means for Orbital and other commercial companies – Yes, it does allow us to plan long term for what we might be able to do in providing a service for NASA in the future,” Culbertson replied.

“It also gives us the chance to be innovative and maybe invest in some improvements in how we can do this [cargo service] – to make it more cost effective, more efficient, turnaround time quicker, go more often, go a lot more often!”

“So it allows us the chance to think long term and make sure we can get a return on our investment.”

What does the ISS extension mean for NASA?

“The station is really our stepping stone,” Robert Lightfoot, NASA Associate Administrator, told Universe Today. “If you use that analogy of stepping stones and the next stone. We need to use this stone to know what the next stone looks like. So we can get ready. Whether that’s research or whether that things about the human body. You don’t want to jump off that platform before you are ready.”

“We are learning every day how to live and operate in space. Fortunately on the ISS we are close to home. So if something comes up we can get [the astronauts] home.”

The ISS extension is also the pathway to future exciting journey’s beyond Earth and into deep space, Culbertson and Lightfoot told Universe Today.

“It actually also presents a business opportunity that can be expanded not just to the station but to other uses in spaceflight, such as exploration to Asteroids, Mars and wherever we are going,” said Culbertson.

And we hope it will extend to other civilian uses in space also. Maybe other stations in space will follow this one and we’ll be able to participate in that.”

Lightfoot described the benefits for astronaut crews.

“The further out we go, the more we need to know about how to operate in space, what kind of protection we need, what kind of research we need for the astronauts,” said Lightfoot.

“Orbital is putting systems up there that allow us to test more and more. Get more time. Because when we get further away, we can’t get home as quick. So those are the kinds of things we can do.

“So with this extension I can make those investments as an Agency. And not just us, but also our academic research partners, our industry partners, and the launch market too is part of this.”

He emphasized the benefits for students, like those who flew experiments on Cygnus, and how that would inspire the next generation of explorers!

“You saw the excitement we had today with the students at the viewing area. For example with those little cubesats, 4 inches by 4 inches, that they worked on, and got launched today!”

“That’s pretty cool! And that’s exactly what we need to be doing!

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
These are among the students benefiting from ISS extension
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

“So eventually they can take our jobs. And as long as they know that station will be there for awhile, the extension gives them the chance to get the training and learning and do the research we need to take people further out in space.”

“The station is the stepping stone.”

“And it really is important to have this station extension,” Lightfoot explained to me.

The Jan. 9 launch of the Orbital-1 mission is the first of eight operational Antares/Cygnus flights to the space station scheduled through 2016 by Orbital Sciences under its $1.9 Billion Commercial Resupply Services (CRS) contract with NASA to deliver 20,000 kg of cargo to orbit.

Orbital Sciences and SpaceX – NASA’s other cargo provider – will compete for follow on ISS cargo delivery contracts.

The next Antares/Cygnus flight is slated for about May 1 from NASA Wallops.

In an upcoming story, I’ll describe Orbital Sciences’ plans to upgrade both Antares and Cygnus to meet the challenges of the ISS today and tomorrow.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
Frank Culbertson; executive vice president and general manager of Orbital's advanced spaceflight programs group and former Space Shuttle commander, and Ken Kremer; Universe Today, at NASA Wallops Flight Facility, VA, discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff.  Credit: Ken Kremer – kenkremer.com
Frank Culbertson; executive vice president and general manager of Orbital’s advanced spaceflight programs group and former Space Shuttle commander, and Ken Kremer; Universe Today, at NASA Wallops Flight Facility, VA, discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff. Credit: Ken Kremer – kenkremer.com

Private Cygnus Freighter Berths at Space Station with Huge Science Cargo and Ant Colony

Orbital Sciences' Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA

With the Moon as a spectacular backdrop, an Orbital Sciences’ Cygnus cargo spacecraft speeding at 17500 MPH on a landmark flight and loaded with a huge treasure trove of science, belated Christmas presents and colonies of ants rendezvoued at the space station early this Sunday morning (Jan. 12), captured and then deftly parked by astronauts guiding it with the Canadian robotic arm.

Cygnus is a commercially developed resupply freighter stocked with 1.5 tons of vital research experiments, crew provisions and student science projects that serves as an indispensible “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.

Following a two day orbital chase that started with the spectacular blastoff on Jan. 9 atop Orbital’s private Antares booster from NASA Wallops Flight Facility, Va., Cygnus fired its on board thrusters multiple times to approach in close proximity to the million pound International Space Station (ISS) by 3 a.m. Sunday.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

When Cygnus had moved further to within 30 feet (10 meters) NASA Astronaut and station crew member Mike Hopkins – working inside the Cupola – then successfully grappled the ship with the stations 57 foot long Canadarm2 at 6:08 a.m. EST to complete the first phase of today’s operations.

“Capture confirmed,” radioed Hopkins as the complex was flying 258 miles over the Indian Ocean and Madagascar.

“Congratulations to Orbital and the Orbital-1 team and the family of C. Gordon Fullerton,” he added. The ship is named in honor of NASA shuttle astronaut G. Gordon Fullerton who passed away in 2013.

“Capturing a free flyer is one of the most critical operations on the ISS,” explained NASA astronaut and ISS alum Cady Coleman during live NASA TV coverage.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

Koichi Wakata of the Japan Aerospace Exploration Agency then took command of the robotic arm and maneuvered Cygnus to berth it at the Earth-facing (nadir) port on the station’s Harmony Node at 8:05 a.m while soaring over Australia.

16 bolts will be driven home and 4 latches tightly hooked to firmly join the two spacecraft together and insure no leaks.

The Orbital -1 spaceship is conducting the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA that runs through 2016.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

The purpose of the unmanned, private Cygnus spaceship – and the SpaceX Dragon – is to restore America’s cargo to orbit capability that was terminated following the shutdown of NASA’s space shuttles.

Cygnus and Dragon will each deliver 20,000 kg (44,000 pounds) of cargo to the station according to the NASA CRS contracts.

“This cargo operation is the lifeline of the station,” said Coleman.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12
Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

The six person crew of Expedition 38 serving aboard the ISS is due to open the hatch to Cygnus tomorrow, Monday, and begin unloading the 2,780 pounds (1,261 kilograms) of supplies packed inside.

“Our first mission under the CRS contract with NASA was flawlessly executed by our Antares and Cygnus operations team, from the picture-perfect launch from NASA’s Wallops Flight Facility to the rendezvous, capture and berthing at the space station this morning,” said Mr. David W. Thompson, Orbital’s President and Chief Executive Officer, in a statement from Orbital.

“From the men and women involved in the design, integration and test, to those who launched the Antares and operated the Cygnus, our whole team has performed at a very high level for our NASA customer and I am very proud of their extraordinary efforts.”

Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com
Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com

Science experiments weighing 1000 pounds account for nearly 1/3 of the cargo load.

Among those are 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The students are part of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).

Student Space Flight team  at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today.  23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station.  Credit: Ken Kremer - kenkremer.com
Student Space Flight team at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today. 23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station. Credit: Ken Kremer – kenkremer.com

Ant colonies from three US states are also aboard, living inside 8 habitats. The “ants in space” experiment will be among the first to be unloaded from Cygnus to insure the critters are well fed for their expedition on how they fare and adapt in zero gravity.

33 cubesats are also aboard that will be deployed from the Japanese Experiment Module airlock.

“One newly arrived investigation will study the decreased effectiveness of antibiotics during spaceflight. Another will examine how different fuel samples burn in microgravity, which could inform future design for spacecraft materials,” said NASA in a statement.

Cygnus is currently scheduled to remain berthed at the ISS for 37 days until February 18.

The crew will reload it with all manner of no longer need trash and then send it off to a fiery and destructive atmospheric reentry so it will burn up high over the Pacific Ocean on Feb. 19.

Cygnus departure is required to make way for the next cargo freighter – the SpaceX Dragon, slated to blast off from Cape Canaveral, Florida on Feb. 22 atop the company’s upgraded Falcon 9.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Cygnus berthed at Harmony node on ISS. Credit: NASA TV
Cygnus berthed at Harmony node on ISS. Credit: NASA TV

Cygnus Commercial Carrier Hurtling towards Space Station Rendezvous Following Spectacular Antares Blastoff – Photo & Video Gallery

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 9. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 12. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com
See Photo Gallery below
Story updated[/caption]

WALLOPS ISLAND, VA – The Cygnus commercial resupply freighter is hurtling towards the International Space Station (ISS) at 17,500 MPH following the flawless Jan. 9 blastoff from NASA Wallops Island, Va., atop the Orbital Sciences Corp. Antares rocket.

Cygnus is bound for the ISS on its historic first operational mission to deliver over 1.5 tons of science experiments, provisions and belated Christmas presents to the six man crew aboard the massive orbiting outpost, under Orbital Science’s $1.9 Billion resupply contract with NASA.

See our up close photo and video gallery of the spectacular Jan 9. Launch – above and below.

The privately built Cygnus cargo vessel is in the midst of a two and a half day high speed orbital chase and is scheduled to rendezvous and dock with the station early Sunday morning, Jan 12.

The Orbital-1 ship is named the “SS C. Gordon Fullerton” in honor of NASA space shuttle astronaut C. Gordon Fullerton who later worked at Orbital Sciences and passed away in 2013.

The imagery was shot by remote cameras set up all around the NASA Wallops Launch Pad 0A as well as from the media viewing site some 2 miles away.

Orbital Sciences Antares rocket blasts off on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission bound for ISS.  Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com
Orbital Sciences Antares rocket blasts off on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission bound for ISS. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com

Currently, the Cygnus spacecraft is barely 12 hours from its carefully choreographed arrival at the station on Sunday morning.

NASA TV will provide live coverage starting at 5 a.m. EST Sunday – http://www.nasa.gov/multimedia/nasatv/

Orbital Sciences’ first dedicated Cygnus mission gets underway at 1:07 p.m. EST, Thursday, 9 January, with the launch of Antares from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Va. Credit: Mike Killian/mikekillianphotography.com
Orbital Sciences’ first dedicated Cygnus mission gets underway at 1:07 p.m. EST, Thursday, 9 January, with the launch of Antares from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Va. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace

“All Cygnus systems are performing as expected with no issues,” said Orbital Sciences in an update.

“The spacecraft has conducted five orbit-raising maneuvers and is on track for rendezvous with the International Space Station tomorrow morning [Sunday, Jan. 12].”

“Cygnus will maneuver to a distance of about 30 feet from the station,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle commander.

The third Antares rocket springs away from Pad 0A on a mission which firmly establishes Orbital Sciences Corp. as one of NASA’s Commercial Resupply Services (CRS) suppliers.   Credit: Mike Killian/mikekillianphotography.com
The third Antares rocket springs away from Pad 0A on a mission which firmly establishes Orbital Sciences Corp. as one of NASA’s Commercial Resupply Services (CRS) suppliers. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace

The goal of Orbital Sciences Cygnus – and the Space X Dragon – is to restore America’s cargo delivery capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles, by utilizing new and privately developed resupply freighters that will cuts costs.

Cygnus is packed with 2,780 pounds (1261 kg) of station supplies and vital research experiments.

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
This Cygnus is streaking to the ISS and docks on Jan. 12
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Docking mechanism to ISS at right. Credit: Ken Kremer – kenkremer.com

Expedition 38 crew members Engineers Mike Hopkins and Koichi Wakata aboard the station will reach out and with the stations 57 foot long Canadarm2 and grapple Cygnus with the robotic arm on Sunday at 6:02 a.m. EDT.

Hopkins and Wakata will then carefully maneuver the robot arm and guide Cygnus to its berthing port on the Earth-facing side of the Harmony node.

The installation begins around 7:20 a.m. EDT. And NASA TV will provide continuous live coverage of Cygnus rendezvous, docking and berthing operations.

Billowing smoke and flame in all directions, ORB-1 takes flight on Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com
Billowing smoke and flame in all directions, ORB-1 takes flight on Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com

The majestic blastoff of Orbital Science’s two stage Antares rocket took place from a beachside pad at NASA’s Wallop’s Flight Facility along the eastern shore of Virginia, Thursday, at 1:07 p.m. EST.

The station was flying about 260 miles over the Atlantic Ocean just off the coast of Brazil as Antares soared aloft.

Following the 10 minute ascent to orbit, Cygnus separated as planned from the ATK built upper stage about 30 minutes after launch. The Ukrainian supplied first stage fired for approximately four and one half minutes

The solar arrays deployed as planned once Cygnus was in Earth orbit to provide life giving energy required to command the spacecraft.

The picture perfect launch of the 133 foot tall Antares put on a spectacular sky show following a trio of delays since mid- December 2013.

The first postponement was forced when spacewalking astronauts were called on to conduct urgent repairs to fix an unexpected malfunction in the critical cooling system on board the station.

Then, unprecedented frigid weather caused by the ‘polar vortex’ forced a one day from Jan. 7 to Jan. 8.

Finally, an unexpected blast of solar radiation from the Earth’s Sun on Tuesday (Jan. 7) caused another 24 postponement because the highly energetic solar particles could have fried the delicate electronics controlling the rockets ascent with disastrous consequences.

Cygnus is loaded with science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

“The crew will unload Cygnus starting probably the next day after it docks at station,” said Culbertson.

Among the research items packed aboard the Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The student experiments selected are from 6 middle school and high school teams from Michigan, Texas, Colorado, and Washington, DC.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer.com
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer.com
Antares soars aloft on Jan. 9, 2014 from NASA Wallops.  Credit: Elliot Severn/SpaceFlight Insider
Antares soars aloft on Jan. 9, 2014 from NASA Wallops. Credit: Elliot Severn/SpaceFlight Insider
Antares soars from NASA Wallops. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace
Antares soars from NASA Wallops. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace
Antares rocket the night before launch beautifully reflected in icy water at NASA Wallops launch pad amidst bone chilling cold during remote camera setup for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Antares rocket the night before launch beautifully reflected in icy water at NASA Wallops launch pad amidst bone chilling cold during remote camera setup for the photos featured herein. Credit: Ken Kremer – kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein. Credit: Ken Kremer – kenkremer.com

NASA Antares Jan. 9, 2014 Launch Video



Video caption: U.S. Cargo Ship Launches to ISS on First Resupply Mission from NASA Wallops

Antares Private Rocket Thunders off Virginia Coast bound for Space Station – Marks 2nd US Commercial Launch This Week

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer
Story updated[/caption]

WALLOPS ISLAND, VA – A private Antares rocket thundered off a Virginia launch pad today (Jan. 9) bound for the International Space Station on a breakthrough mission that marks the second successful commercial rocket launch by an American aerospace company this week – a feat that’s sure to send shock waves reverberating around the globe as well as providing an absolutely crucial life line to the station.

The majestic blastoff of Orbital Science’s Antares rocket took place from a beach side pad at NASA’s Wallop’s Flight Facility along the eastern shore of Virginia, Thursday, at 1:07 p.m. EST.

A flock of birds flew by just as Antares soared off the pad – see my lucky shot above.

The milestone flight was conducted under Orbital’s $1.9 Billion contract to NASA as the firm’s first operational cargo delivery flight to the ISS using their own developed Cygnus resupply vehicle.

“Today’s launch gives the cargo capability to keep the station going,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle commander.

“Everything was right on the money.”

And with the ISS lifetime in Earth orbit now newly extended by the Obama Administration to 2024, the resupply freighters pioneered by Orbital Sciences and SpaceX – in partnership with NASA – are even more important than ever before to keep the station well stocked and humming with an ever increasing array of research projects.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

The goal was to restore America’s cargo and crew capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles.

Cygnus is packed chock full with a myriad of science experiments for dozens of new NASA science investigations as well as two dozen student science experiments from school across the country.

Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station. Credit: Ken Kremer - kenkremer.com
Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

Both the terrestrial and space weather forecasts improved dramatically in the final hours of the countdown and cooperated to allow today’s magnificent Antares launch.

The launch of the two stage, 133 foot tall Antares put on a spectacular sky show that may – because of crystal clear skies – have been visible to millions of spectators spread across the US east coast from the Carolina’s to Connecticut.

Antares beautiful liftoff on Thursday comes on the heels of Monday’s (Jan. 6) SpaceX Falcon 9 liftoff .

Furthermore, it marks a grand success for the innovative US strategy of forging low cost, reliable and effective access to space by handing the task of building the rockets and cargo vehicles to US commercial companies for routine jobs in Earth orbit while NASA focuses on investing in deep space exploration.

“Today’s launch demonstrates how our strategic investments in the American commercial spaceflight industry are helping create new jobs here at home and keep the United States the world leader in space exploration,” NASA Administrator Charles Bolden said in a NASA statement.

“American astronauts have been living and working continuously in space for the past 13 years on board the International Space Station, and we’re once again sending them supplies launched from U.S. soil.”

“In addition to the supplies, the passion and hard work of many researchers and students are being carried by Cygnus today. I congratulate Orbital and the NASA teams that made this resupply mission possible.”

Antares soars to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer – kenkremer.com

The fourth launch attempt was finally the charm after a trio of postponements since mid- December 2013 to fix the malfunctioning cooling system on the station, unprecedented frigid weather and then an unexpected blast of solar radiation from the Sun on Tuesday (Jan. 7) that could have fried the delicate electronics controlling the rockets ascent with disastrous consequences.

Gorgeous Wallops Sunrise greets Antares rocket poised at Launch Pad 0A on Virginia shoreline.  A blast of solar radiation on Jan. 7 postponed Antares blastoff from Jan 8 to Jan 9, 2014. Credit: Mike Killian/mikekillianphotography.com
Gorgeous Wallops Sunrise greets Antares rocket poised at Launch Pad 0A on Virginia shoreline. A blast of solar radiation on Jan. 7 postponed Antares blastoff from Jan. 8 to Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com

Both the Antares and Cygnus are private vehicles built by Orbital Sciences under a $1.9 Billion supply contract with NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware to the ISS.

Orbital Sciences commercial competitor, SpaceX, is likewise under contract with NASA to deliver 20,000 kg of supplies to the ISS with the SpaceX Falcon 9/Dragon architecture.

Antares majestic contrail soaring to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer - kenkremer.com
Antares majestic contrail as it experiences maximum dynamic pressure (MAX-Q) and flies down range over Atlantic ocean soaring to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer – kenkremer.com

Both the Orbital Sciences Antares/Cygnus and SpaceX Falcon 9/Dragon vehicles were developed from the start with seed money from NASA in a public-private partnership.

The flight is designated the Orbital-1, or Orb-1 mission.

A total of eight Antares/Cygnus missions to the space station are scheduled over the next two to three years by Orbital under its Commercial Resupply Services (CRS) contract with NASA.

Two additional Antares/Cygnus flight are slated for this year.

They are slated to lift off around May 1 and early October, said Culbertson.

This launch follows a pair of successful launches in 2013, including the initial test launch in April and the 1st demonstration launch to the ISS in September.

Cygnus is loaded with approximately 2,780 pounds / 1,261 kilograms of cargo for the ISS crew for NASA including science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

33 cubesats are also on board that will be deployed over time by the 6 person crew living aboard the ISS.

Among the research items packed aboard the Antares/Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The student experiments selected are from middle school and high school teams from Michigan, Texas, Colorado, and Washington, DC.

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

There is also an ant farm aboard with ant colonies from Colorado, North Carolina and of course host state Virginia too. The goal is to study ant behavior in space in zero gravity and compare that to ants on Earth living under normal gravity.

Cygnus will rendezvous with the station on Sunday, Jan 12.

Expedition 38 crew members aboard the station will grapple Cygnus with the stations robotic arm Sunday at 6:02 a.m. EDT.

NASA TV will provide live coverage of Sunday’s docking.

Antares commercial rocket built by Orbital Sciences Corp. glistens at dusk on Jan. 7 amidst bone chilling cold ahead of blastoff scheduled for Jan. 8, 2014 from NASA Wallops Island, Virginia. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket built by Orbital Sciences Corp. glistens at dusk on Jan. 7 amidst bone chilling cold ahead of blastoff on Jan. 9, 2014 from NASA Wallops Island, Virginia. Credit: Ken Kremer – kenkremer.com

Watch for my ongoing Antares launch reports from on site at NASA Wallops.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Cygnus is loaded with 2780 pounds of cargo and 23 student experiments. Credit: Ken Kremer – kenkremer.com

Private Antares/Cygnus rocket Glistens and Go for Launch as Polar Vortex Sweeps in Brutal Bone Chilling Cold

Antares commercial rocket built by Orbital Sciences Corp. glistens at dusk on Jan. 7 amidst bone chilling cold ahead of blastoff scheduled for Jan. 8, 2014 from NASA Wallops Island, Virginia. Credit: Ken Kremer - kenkremer.com

UPDATE: Orbital announced the Antares launch today (Jan. 8) has been scrubbed because of solar activity. More info on the issue and a new launch date will be forthcoming.

Update: NASA and Orbital have set Thursday, Jan. 9 as the new Antares launch date. Liftoff is targeted for 1:07 p.m. (EST) Watch the launch live, below.

WALLOPS ISLAND, VA – Launch managers gave the “GO” for launch of the private Antares/Cygnus rocket to the space station on Wednesday, Jan. 8, even as the polar vortex swept in bone chilling cold to the launch site on the Virginia shore and across much of the United States.

At a launch readiness review today (Jan. 7), managers for spacecraft builder Orbital Sciences approved the launch, pending completion of a few remaining items, said Mike Pinkston, Antares program director for Orbital, at a media briefing today.

The commercial Antares rocket is launching the Cygnus cargo spacecraft on its first operational mission bound for the International Space Station (ISS) with a huge bounty of science experiments.



Live streaming video by Ustream

Antares commercial rocket spacecraft awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com
Blastoff is slated for 1:32 p.m. EST from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops, Virginia.

There is only a 5 minute launch window that extends to 1:37 p.m.

The launch of the two stage, 133 foot tall Antares could put on a spectacular sky show.

Antares blastoff may be visible to millions of spectators up and down the US East Coast spanning from South Carolina to Massachusetts – weather permitting.

Read my complete launch viewing guide – here.

The Antares launch comes amidst the unprecedented, unrelenting and dangerous cold arctic air mass sweeping across the US.

Frigid, high winds buffeted the rocket and launch site all day today as technicians continued last minute preparations, taking care to insure safety for the rocket and themselves.

But tonight Antares and Cygnus were glistening beautifully under star lit skies during my up close visit to the launch pad.

Antares commercial rocket awaits Jan. 8 blastoff to the ISS from on ramp at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket awaits Jan. 8 blastoff to the ISS from on ramp at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com

The launch was originally scheduled for Tuesday, but was postponed a day to Wednesday because the rocket is only certified to lift off when the temperature is above 20 degrees Fahrenheit, said Frank Culberton, executive vice president and general manager of Orbital’s advanced spaceflight programs group.

Today’s temperatures at Wallops were only in the single digits and teens and felt much lower with the blustery conditions all day long.

Temperatures are expected to ‘skyrocket’ to the balmy 30’s on Wednesday.

Antares commercial rocket awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com

There is a 95 percent chance of favorable weather at the time of launch, NASA said. High, thick clouds are the primary concern for a weather violation, but they are minor.

Both the Antares and Cygnus are private vehicles built by Orbital Sciences under a $1.9 Billion supply contract with NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware to the ISS.

Antares commercial rocket spacecraft awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares commercial spacecraft awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com
The flight is designated the Orbital-1, or Orb-1 mission.

Orbital Sciences commercial competitor, SpaceX, is likewise under contract with NASA to deliver 20,000 kg of supplies to the ISS with the SpaceX Falcon 9/Dragon architecture.

Both the Orbital Sciences Antares/Cygnus and SpaceX Falcon 9/Dragon vehicles were developed from the start with seed money from NASA in a public-private partnership.

A total of eight Antares/Cygnus missions to the space station are scheduled over the next two to three years by Orbital under its Commercial Resupply Services (CRS) contract with NASA.

This launch follows a pair of successful launches in 2013, including the initial test launch in April and the 1st demonstration launch to the ISS in September.

Cygnus is loaded with approximately 2,780 pounds / 1,261 kilograms of cargo for the ISS crew for NASA including science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

Among the research items packed aboard the Antares/Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

Cygnus cargo vessel up close view at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Cygnus cargo vessel up close view at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com
There is also an ant farm aboard with ant colonies from Colorado, North Carolina and of course host state Virginia too. The goal is to study ant behavior in space in zero gravity and compare that to ants on Earth living under normal gravity.

So you can watch the launch either with your own eyes, if possible, or via the NASA TV webcast.

NASA Television coverage of the Antares launch will begin at 1 p.m. on Jan. 8 – www.nasa.gov/ntv

A launch on either Jan. 8 or Jan. 9 will result in a grapple of Cygnus by the Expedition 38 crew aboard the station on Sunday, Jan. 12 at 6:02 a.m. EDT.

Watch for my ongoing Antares launch reports from on site at NASA Wallops.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares Jan. 8 launch, SpaceX, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Just a GORGEOUS view of Antares at Wallops pad 0A this evening. Space journalists Ken Kremer /Universe Today (right) and Mike Killian (left) setting remote cameras at Antares launch pad amidst bone chilling cold.  Credit: Alan Walters/awaltersphoto.com
Just a GORGEOUS view of Antares at Wallops pad 0A this evening. Space journalists Ken Kremer /Universe Today (right) and Mike Killian (left) setting remote cameras at Antares launch pad amidst bone chilling cold. Credit: Alan Walters/awaltersphoto.com

What’s Ahead for Human Rated SpaceX Dragon in 2014 – Musk tells Universe Today

Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. During 2014, SpaceX plans two flight tests simulating Dragon emergency abort scenarios launching from pad 40. Credit: Ken Kremer/www.kenkremer.com

Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. During 2014, SpaceX plans two flight tests simulating human crewed Dragon emergency abort scenarios launching from right here at pad 40. Credit: Ken Kremer/www.kenkremer.com
Story updated[/caption]

CAPE CANAVERAL AIR FORCE STATION, FL – A trio of American companies – SpaceX, Boeing, and Sierra Nevada – are working diligently to restore America’s capability to launch humans into low Earth orbit from US soil, aided by seed money from NASA’s Commercial Crew Program in a public-private partnership.

We’ve been following the solid progress made by all three companies. Here we’ll focus on two crucial test flights planned by SpaceX in 2014 to human rate and launch the crewed version of their entry into the commercial crew ‘space taxi’ sweepstakes, namely the Dragon spacecraft.

Recently I had the opportunity to speak about the upcoming test flights with the head of SpaceX, Elon Musk.

So I asked Musk, the founder and CEO of SpaceX, about “what’s ahead in 2014”; specifically related to a pair of critical “abort tests” that he hopes to conduct with the human rated “version of our Dragon spacecraft.”

“Assuming all goes well, we expect to conduct [up to] two Dragon abort tests next year in 2014,” Musk told me.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite  from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The two abort flight tests in 2014 involve demonstrating the ability of the Dragon spacecraft abort system to lift an uncrewed spacecraft clear of a simulated launch emergency.

The crewed Dragon – also known as DragonRider – will be capable of lofting up to seven astronauts to the ISS and remaining docked for at least 180 days.

First a brief overview of the goals of NASA’s Commercial Crew Program. It was started in the wake of the retirement of NASA’s Space Shuttle program which flew its final human crews to the International Space Station (ISS) in mid-2011.

“NASA has tasked SpaceX, Boeing, and Sierra Nevada to develop spacecraft capable of safely transporting humans to the space station, returning that capability to the United States where it belongs,’ says NASA Administrator Charles Bolden.

Since 2011, US astronauts have been 100% dependent on the Russians and their Soyuz capsules to hitch a ride to low Earth orbit and the ISS.

The abort tests are essential for demonstrating that the Dragon vehicle will activate thrusters and separate in a split second from a potentially deadly exploding rocket fireball to save astronauts lives in the event of a real life emergency – either directly on the launch pad or in flight.

“We are aiming to do at least the pad abort test next year [in 2014] with version 2 of our Dragon spacecraft that would carry astronauts,” Musk told me.

This is the Dragon mock-up that will be used for an upcoming pad abort test on Cape Canaveral Air Force Station's Space Launch Complex 40.  Credit: SpaceX
This is the Dragon mock-up that will be used for an upcoming pad abort test on Cape Canaveral Air Force Station’s Space Launch Complex 40. Credit: SpaceX

SpaceX plans to launch the crewed Dragon atop the human rated version of their own developed Falcon 9 next generation rocket, which is also being simultaneously developed to achieve all of NASA’s human rating requirements.

The initial pad abort test will test the ability of the full-size Dragon to safely push away and escape in case of a failure of its Falcon 9 booster rocket in the moments around launch, right at the launch pad.

“The purpose of the pad abort test is to demonstrate Dragon has enough total impulse (thrust) to safely abort,” SpaceX spokeswoman Emily Shanklin informed me.

For that test, Dragon will use its pusher escape abort thrusters to lift the Dragon safely away from the failing rocket. The vehicle will be positioned on a structural facsimile of the Dragon trunk in which the actual Falcon 9/Dragon interfaces will be represented by mockups.

This test will be conducted on SpaceX’s launch pad 40 at Cape Canaveral Air Force Station in Florida. It will not include an actual Falcon 9 booster.

The second Dragon flight test involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure at about T plus 1 minute, to save astronauts lives. The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted landing into the Atlantic Ocean.

“Assuming all goes well we expect to launch the high altitude abort test towards the end of next year,” Musk explained.

The second test will use the upgraded next generation version of the Falcon 9 that was successfully launched just weeks ago on its maiden mission from Cape Canaveral on Dec. 3. Read my earlier reports – starting here.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. The upgraded Falcon 9 will be used to launch the human rated SpaceX Dragon spacecraft to the ISS. Credit: Ken Kremer/kenkremer.com

To date, SpaceX has already successfully launched the original cargo version of the Dragon a total of three times. And each one docked as planned at the ISS.

The last cargo Dragon blasted off on March 1, 2013. Read my prior articles starting – here.

The next cargo Dragon bound for the ISS is due to lift off on Feb. 22, 2014 from Cape Canaveral, FL.

SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA
SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Orbital Sciences – the commercial ISS cargo competitor to SpaceX – plans to launch its Cygnus cargo vehicle on the Orb-1 mission bound for the ISS on Jan. 7 atop the firms Antares rocket from NASA Wallops Flight Facility in Virginia. Watch for my on site reports from NASA Wallops.

NASA’s Commercial Crew Program’s goal is launching American astronauts from U.S. soil within the next four years – by 2017 to the ISS.

The 2017 launch date is dependent on funding from the US federal government that will enable each of the firms to accomplish a specified series of milestones. NASA payments are only made after each companies milestones are successfully achieved.

SpaceX was awarded $440 million in the third round of funding in the Commercial Crew integrated Capability (CCiCAP) initiative which runs through the third quarter of 2014. As of November 2013, NASA said SpaceX had accomplished 9 of 15 milestones and was on track to complete all on time.

Musk hopes to launch an initial Dragon orbital test flight with a human crew of SpaceX test pilots perhaps as early as sometime in 2015 – if funding and all else goes well.

Either a US commercial ‘space taxi’ or the Orion exploration capsule could have blasted off with American astronauts much sooner – if not for the continuing year-by-year slashes to NASA’s overall budget forced by the so called ‘political leaders’ of all parties in Washington, DC.

SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida.  Credit: Ken Kremer/kenkremer.com
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss SpaceX upcoming flight plans by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about SpaceX, Orbital Sciences Antares Jan. 7 launch, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 6-8: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 7”; Rodeway Inn, Chincoteague, VA, evening

NASA Administrator Charles Bolden discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com