Get Teased by the New “Interstellar” Trailer

Christopher Nolan, the writer and director of Memento, Inception, and the most recent Batman films, is taking up space on the big screen next year — literally. Nolan’s newest film, Interstellar, will be a space exploration adventure featuring Matthew McConaughey, Jessica Chastain, Anne Hathaway, and Michael Caine (of course) and, based on this teaser trailer, maintains a reverent awareness of the iconic missions of the Space Age.

Sweet.
Continue reading “Get Teased by the New “Interstellar” Trailer”

Heat Shield for 2014 Orion Test Flight Arrives at Kennedy Aboard NASA’s Super Guppy

Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER, FL – The heat shield crucial to the success of NASA’s 2014 Orion test flight has arrived at the Kennedy Space Center (KSC) aboard the agency’s Super Guppy aircraft – just spacious enough to fit the precious cargo inside.

Orion is currently under development as NASA’s next generation human rated vehicle to replace the now retired space shuttle. The heat shields advent is a key achievement on the path to the spacecraft’s maiden flight.

“The heat shield which we received today marks a major milestone for Orion. It is key to the continued assembly of the spacecraft,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during an interview at the KSC shuttle landing facility while the offloading was in progress.

“It will be installed onto the bottom of the Orion crew module in March 2014.”

The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission is scheduled to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Wilson told me.

Orion EFT-1 heat shield moved off from NASA’s Super Guppy aircraft after arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Orion EFT-1 heat shield moved off from NASA’s Super Guppy aircraft after arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

The heat shield was flown in from Textron Defense Systems located near Boston, Massachusetts and offloaded from the Super Guppy on Dec. 5 as Universe Today observed the proceedings along with top managers from NASA and Orion’s prime contractor Lockheed Martin.

“The Orion heat shield is the largest of its kind ever built. Its wider than the Apollo and Mars Science Laboratory heat shields,” Todd Sullivan told Universe Today at KSC. Sullivan is the heat shield senior manager at Lockheed Martin.

The state-of-the-art Orion crew capsule will ultimately enable astronauts to fly to deep space destinations including the Moon, Asteroids, Mars and beyond – throughout our solar system.

The heat shield was one of the last major pieces of hardware needed to complete Orion’s exterior structure.

“Production of the heat shields primary structure that carries all the loads began at Lockheed Martin’s Waterton Facility near Denver,” said Sullivan. The titanium composite skeleton and carbon fiber skin were manufactured there to give the heat shield its shape and provide structural support during landing.

“It was then shipped to Textron in Boston in March,” for the next stage of assembly operations, Sullivan told me.

“They applied the Avcoat ablater material to the outside. That’s what protects the spacecraft from the heat of reentry.”

Textron technicians just completed the final work of installing a fiberglass-phenolic honeycomb structure onto the heat shield skin. Then they filled each of the honeycomb’s 320,000 cells with the ablative material Avcoat.

Orion EFT-1 heat shield hauled off NASA’s Super Guppy aircraft after arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Orion EFT-1 heat shield hauled off NASA’s Super Guppy aircraft after arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

Each cell was X-rayed and sanded to match Orion’s exacting design specifications.

“Now we have about two and a half months of work ahead to prepare the Orion crew module before the heat shield is bolted on and installed,” Sullivan explained.

The Avcoat-treated shell will shield Orion from the extreme heat of nearly 4000 degrees Fahrenheit it experiences during the blazing hot temperatures it experiences as it returns at high speed to Earth. The ablative material will wear away as it heats up during the capsules atmospheric re-entry thereby preventing heat from being transferred to the rest of the capsule and saving it and the human crew from utter destruction.

“Testing the heat shield is one of the prime objectives of the EFT-1 flight,” Wilson explained.

“The Orion EFT-1 capsule will return at over 20,000 MPH,” Wilson told me. “That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions.”

“The big reason to get to those high speeds during EFT-1 is to be able to test out the thermal protection system, and the heat shield is the biggest part of that.”

Hoisting Orion heat shield at KSC for transport to Orion crew module in the Operations and Checkout Building. Credit: Ken Kremer/kenkremer.com
Hoisting Orion heat shield at KSC for transport to Orion crew module in the Operations and Checkout Building. Credit: Ken Kremer/kenkremer.com

The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

“Numerous sensors and instrumentation have been specially installed on the EFT-1 heat shield and the back shell tiles to collect measurements of things like temperatures, pressures and stresses during the extreme conditions of atmospheric reentry,” Wilson explained.

Orion managers pose with heat shield at KSC; Scott Wilson, NASA Orion deputy manager of Production Operations; Todd Sullivan, heat shield senior manager at Lockheed Martin; Stu Mcclung, NASA Orion deputy manager of Production Operations. Credit: Ken Kremer/kenkremer.com
Orion managers pose with heat shield at KSC; Scott Wilson, NASA Orion deputy manager of Production Operations; Todd Sullivan, heat shield senior manager at Lockheed Martin; Stu Mcclung, NASA Orion deputy manager of Production Operations. Credit: Ken Kremer/kenkremer.com

The data gathered during the unmanned EFT-1 flight will aid in confirming. or refuting, design decisions and computer models as the program moves forward to the first flight atop NASA’s mammoth SLS booster in 2017 on the EM-1 mission and human crewed missions thereafter.

“I’m very proud of the work we’ve done, excited to have the heat shield here [at KSC] and anxious to get it installed,” Sullivan concluded.

Stay tuned here for continuing Orion, Chang’e 3, LADEE, MAVEN and MOM news and Ken’s reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about Orion, MAVEN, MOM, Mars rovers, Chang’e 3, SpaceX, and more at Ken’s upcoming presentations

Dec 10: “Antares ISS Launch from Virginia, Mars and SpaceX Mission Update”, Amateur Astronomers Association of Princeton, Princeton University, Princeton, NJ, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Departure of NASA’s Super Guppy from the shuttle landing runway at the Kennedy Space Center in Florida on Dec. 5, 2013 after removal of Orion heat shield.  Credit: Ken Kremer/kenkremer.com
Takeoff of NASA’s Super Guppy from the shuttle landing runway at the Kennedy Space Center in Florida on Dec. 5, 2013 after removal of Orion heat shield. Credit: Ken Kremer/kenkremer.com

What Day 1 On The International Space Station Was Like For The Astronauts

Astronaut Jerry Ross during one of three December 1998 spacewalks to get the space station ready for human habitation. Reflected in his helmet is NASA astronaut James Newman. Behind is one of the solar arrays for the Russian Zarya module. Credit: NASA

There wasn’t a lot of elbow room when six people from the Endeavour shuttle floated into the baby International Space Station on Dec. 10, 1998, but the cramped quarters resonated with possibility in STS-88 commander Bob Cabana’s mind.

“It’s hard to believe 15 years ago we put those first modules together, and we have this facility today that’s the size of a football field,” said Cabana in an interview today (Nov. 20) with Universe Today.

Cabana, who is now the director of the Kennedy Space Center, oversaw a complex mission that included joining the Russian Zarya and U.S. Unity modules, three spacewalks to get the modules powered and ready for humans to enter, and the pressure of public relations activities surrounding the opening of the station itself.

“That was a very special day, when we went into Unity and Zarya for the first time. There was a lot of excitement and anticipation,” Cabana said. He and Russian Sergei Krikalev — who would go on to become the person who spent the most time in space, at 803 days — entered the tiny hatches side by side to emphasize the international participation.

As is typical of spaceflight, the astronauts spent most of their day at work, busily waking up the station and testing its systems. NASA astronauts Jerry Ross and James Newman put together a communications system. Other crew members tested the videoconference equipment — important for press conferences as well as talking to scientists on the ground. Equipment and supplies in Zarya had to be unstowed and organized.

There also was the first repair on station, when Krikalev and NASA astronaut Nancy Currie replaced a faulty unit in Zarya  “which controlled the discharging of stored energy from one of the module’s six batteries,” NASA wrote in an update at the time.

Cabana wanted his crew to get eight hours of sleep, but the excitement of that first day kept everybody up until 2:30 in the morning despite the wakeup call coming at 7 a.m.

A space station is born. The Russian Zarya module (top) is connected to the U.S. Unity module using the Canadarm on Dec. 6, 1998. Shot is a still from an IMAX camera carried on board shuttle Endeavour. Credit: NASA
A space station is born. The Russian Zarya module (top) is connected to the U.S. Unity module using the Canadarm on Dec. 6, 1998. Shot is a still from an IMAX camera carried on board shuttle Endeavour. Credit: NASA

“We were talking  about what the ISS means, what will be accomplished with this cornerstone,” Cabana recalled, and said he is pleased with what has come to pass in the next 15 years. “It had come true. Everything we thought that could be has come together. That was a very special night, thinking about the future and how important the International Space Station was.”

The heaviest construction finished in 2011, and larger crews of six were allowed on board rather than the beginning crews of just three. NASA is now trying to position the station as a venue for microgravity science to justify the expense of running it. The astronauts, however, must balance their time doing science with the normal chores and maintenance the station requires. (The recent Expedition 35/36 missions were extremely productive in terms of science return, NASA astronaut Chris Cassidy told Universe Today in a past interview.)

All buildings on Earth require upgrades from time to time to stay safe and up to date, and the ISS is no different. Cabana said analysis will be done to “extend the life on some of the modules, but we don’t see that as a large issue.” The reason? The crews do “an outstanding job” keeping the station humming along with routine maintenance, he said.

Today (Nov. 20) marks the 15th anniversary of Zarya’s launch into orbit. The station partners are currently committed until 2020, meaning negotiations are forthcoming to see what to do with the station in the years afterwards. It’s unclear what will happen next — the recession is still reverberating in the United States and overseas — but today, the agencies focused on the successes.

Each partner agency tweeted facts and science concerning the ISS under the hashtag #ISS15, and invited people using all forms of social media to share their thoughts on the station. What are some notable things about the station, and what is a good use of it in the future, in your opinion? Let us know in the comments.

NASA astronaut Bob Cabana (left) and Russian cosmonaut Sergei Krikalev just outside the hatch to the Zarya Russian module  on Dec. 10, 1998. Credit: NASA
NASA astronaut Bob Cabana (left) and Russian cosmonaut Sergei Krikalev just outside the hatch to the Zarya Russian module on Dec. 10, 1998. Credit: NASA

Teenaged Space Station Thriving After 15 Years Of Science, Extreme Construction And Tricky Repairs

The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA

Extreme conditions surround the International Space Station’s scientific work, to say the least. It takes a rocketship to get there. Construction required more than 1,000 hours of people using spacesuits. Astronauts must balance their scientific work with the need to repair stuff when it breaks (like an ammonia coolant leak this past spring.)

But amid these conditions, despite what could have been show-stoppers to construction such as the Columbia shuttle tragedy of 2003, and in the face of changing political priorities and funding from the many nations building the station, there the ISS orbits. Fully built, although more is being added every year. The first module (Zarya) launched into space 15 years ago tomorrow. Humans have been on board continuously since November 2000, an incredible 13 years.

The bulk of construction wrapped up in 2011, but the station is still growing and changing and producing science for the researchers sending experiments up there. Below are some of the milestones of construction in the past couple of decades. Did we miss something important? Let us know in the comments.

It's a baby space station! The Russian Zarya module (left) and U.S. Unity module after they were joined on Dec. 4, 1998. Photograph taken by the STS-88 crew aboard space shuttle Endeavour. Credit: NASA
It’s a baby space station! The Russian Zarya module (left) and U.S. Unity module after they were joined on Dec. 4, 1998. Photograph taken by the STS-88 crew aboard space shuttle Endeavour. Credit: NASA
The space station with newly installed U.S. solar arrays (top) in December 2000. Picture taken by the departing STS-97 crew aboard space shuttle Endeavour. Credit: NASA
The space station with newly installed U.S. solar arrays (top) in December 2000. Picture taken by the departing STS-97 crew aboard space shuttle Endeavour. Credit: NASA
The Expedition 1 crew, which docked with the space station on Nov. 2, 2000. From left, NASA's Bill Shepherd, and Roscosmos' Yuri Gidzenko and Sergei Krikalev. Humans have lived continuously in orbit since that day, more than 13 years ago. Credit: NASA
The Expedition 1 crew, which docked with the space station on Nov. 2, 2000. From left, NASA’s Bill Shepherd, and Roscosmos’ Yuri Gidzenko and Sergei Krikalev. Humans have lived continuously in orbit since that day, more than 13 years ago. Credit: NASA
STS-114 NASA astronaut Steve Robinson in 2005 aboard Canadarm2, a robotic arm designed specifically for International Space Station construction. Canadarm2 was installed during STS-100 in 2001. It took more than 1,000 hours of spacewalking assembly to put the station together. Credit: NASA
STS-114 NASA astronaut Steve Robinson in 2005 aboard Canadarm2, a robotic arm designed specifically for International Space Station construction. Canadarm2 was installed during STS-100 in 2001. It took more than 1,000 hours of spacewalking assembly to put the station together. Credit: NASA
With NASA Expedition 2 astronaut Susan Helms controlling Canadarm2, the Quest airlock is brought over for installation on Unity Node 1 aboard the International Space Station. Today, Quest is the usual departure point for U.S. spacewalks. Credit: NASA
With NASA Expedition 2 astronaut Susan Helms controlling Canadarm2, the Quest airlock is brought over for installation on Unity Node 1 aboard the International Space Station. Today, Quest is the usual departure point for U.S. spacewalks. Credit: NASA
November 3, 2007 – Canadarm2 played a big role in helping astronauts fix a torn solar array.  The arm’s reach was extended by the Orbiter Boom Sensor System, and here, allowing astronaut Scott Parazynski analyses the solar panel while anchored to the boom. Credit: NASA
From time to time, astronauts are called upon to perform tricky repairs to the International Space Station. This October 2007 spacewalk by NASA astronaut Scott Parazynski during shuttle mission STS-120 repaired tears to one of the station’s solar panels — while the panel was powered. Spacewalks have also addressed ammonia leaks, among other things. Credit: NASA
European Space Agency astronaut Hans Schlegel works on installing the ESA Columbus laboratory in 2008. The ten racks on board Columbus can be worked on by astronauts or controlled remotely from a center in Germany. NASA is trying to position the station as an orbiting laboratory that can perform experiments that are impossible on Earth, but astronauts must balance science work with maintenance tasks aboard the station. Credit: NASA
European Space Agency astronaut Hans Schlegel works on installing the ESA Columbus laboratory in 2008. The ten racks on board Columbus can be worked on by astronauts or controlled remotely from a center in Germany. NASA is trying to position the station as an orbiting laboratory that can perform experiments that are impossible on Earth, but astronauts must balance science work with maintenance tasks aboard the station. Credit: NASA
Astronaut Tracy Caldwell Dyson reflects on the view from the ISS's Cupola. Credit: Doug Wheelock/NASA
Astronaut Tracy Caldwell Dyson (Expedition 23/24) reflects on the view from the ISS’s Cupola in 2010. This panoramic window to Earth was a late addition to the station, in February 2010. Credit: Doug Wheelock/NASA
Space station construction is still ongoing. In 2015, the Bigelow Expandable Activity Module (BEAM) will be attached to the station as a sort of inflatable room. The test will examine the viability of inflatable structures in space. Pictured in front are NASA Deputy Administrator Lori Garver and Robert T. Bigelow, president and founder of Bigelow Aerospace in 2013. NASA/Bill Ingalls
Space station construction is still ongoing. In 2015, the Bigelow Expandable Activity Module (BEAM) will be attached to the station as a sort of inflatable room. The test will examine the viability of inflatable structures in space. Pictured in front are NASA Deputy Administrator Lori Garver and Robert T. Bigelow, president and founder of Bigelow Aerospace in 2013. NASA/Bill Ingalls

Orion Service Module Comes Together and Testing Affirms Flight Design for 2014 Blastoff

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann

KENNEDY SPACE CENTER, FL – All of the key hardware elements being assembled for NASA’s new Orion spacecraft launching just under one year from now are nearing completion at the Kennedy Space Center (KSC) – at the same time as a crucial and successful hardware test in California this week helps ensure that the Exploration Flight Test-1 (EFT-1) vehicle will be ready for an on-time liftoff.

Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the moon, Mars and beyond.

In a major construction milestone, Orion’s massive Service Module (SM) was hoisted out from the tooling stand where it was manufactured at the Operations and Checkout Building (O & C) at KSC and moved to the next assembly station where it will soon be mated to the spacecraft adapter cone.

The SM should be mated to the crew module (CM) by year’s end, Orion managers told Universe Today during my recent inspection tour of significant Orion hardware at KSC.

“We are working 24 hours a day, 7 days a week,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive interview with Universe Today inside the Orion clean room at KSC. “We are moving fast!”

The three panel or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin
The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin

The Orion CM recently passed a significant milestone when it was “powered on” for the first time at KSC.

“We are bringing Orion to life. Lots of flight hardware has now been installed.”

And on the other side of the country, the Service Module design passed a key hurdle on Wednesday (Nov. 6) when the trio of large spacecraft panels that surround the SM were successfully jettisoned from the spacecraft during a systems test by Lockheed Martin that simulates what would happen during an actual flight several minutes after liftoff.

“Hardware separation events like this are absolutely critical to the mission and some of the more complicated things we do,” said Mark Geyer, Orion program manager at NASA’s Johnson Space Center in Houston. “We want to know we’ve got the design exactly right and that it can be counted on in space before we ever launch.”

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives. Credit: Ken Kremer/kenkremer.com

Lockheed Martin is the prime contractor for Orion and responsible for assembly, testing and delivery of the Orion EFT-1 spacecraft to NASA that’s slated for an unmanned test flight targeted to lift off from Cape Canaveral, Florida in September 2014.

The CM rests atop the SM similar to the Apollo Moon landing program architecture.

However in a significant difference from Apollo, the Orion fairings support half the weight of the crew module and the launch abort system during launch and ascent. The purpose is to improve performance by saving weight thus maximizing the vehicles size and capability.

The SM also provides in-space power, propulsion capability, attitude control, thermal control, water and air for the astronauts.

At Lockheed Martin’s Sunnyvale, California facility a team of engineers used a series of precisely-timed, explosive charges and mechanisms attached to the Orion’s protective fairing panels in a flight-like test to verify that the spacecraft can successfully and confidently jettison them as required during the ascent to orbit.

The trio of fairing panels protect the SM radiators and solar arrays from heat, wind and acoustics during ascent.

The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin
The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin

“This successful test provides the Orion team with the needed data to certify this new fairing design for Exploration Flight Test-1 (EFT-1) next year. The test also provides significant risk reduction for the fairing separation on future Orion manned missions,” said Lance Lininger, engineering lead for Lockheed Martin’s Orion mechanism systems in a statement.

This was the 2nd test of the fairing jettison system. During the first test in June, one of the three fairing panels did not completely detach due to an interference “when the top edge of the fairing came into contact with the adapter ring and kept it from rotating away and releasing from the spacecraft,” said NASA.

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann
Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann

2013 has been an extremely busy and productive year for the Orion EFT-1 team.

“There are many significant Orion assembly events ongoing this year,” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Space Systems in Denver.

“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles, building the service module and finally mating the crew and service modules (CM & SM),” Price told me.

Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1 Credit: Lockheed Martin
Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1
Credit: Lockheed Martin

The two-orbit, four- hour flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Ken Kremer

Orion Crew Module Comes Alive at T Minus 1 Year to Maiden Blastoff

Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1 Credit: Lockheed Martin

Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1. Credit: Lockheed Martin
Story and imagery updated[/caption]

KENNEDY SPACE CENTER, FL – Orion, the first NASA spaceship that will ever carry Earthlings to deep space destinations, has at last been “powered on” for the first time at the manufacturing facility at the Kennedy Space Center (KSC) where it’s the centerpiece of a beehive humming 24/7 with hi tech processing activities in all directions.

“Power On” marks a major milestone ahead of the maiden space bound Orion test flight dubbed “EFT-1” – now at T-Minus 1 year and counting!

NASA and prime contractor Lockheed Martin recently granted Universe Today an exclusive in depth inspection tour of the impressive Orion EFT-1 crew module, service module and associated hardware destined for the crucial unmanned test flight slated for liftoff from Cape Canaveral in September 2014.

“We are moving fast!” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive interview with Universe Today as we spoke beside the Orion EFT-1 spacecraft inside the clean room.

“We are bringing Orion to life. Lots of flight hardware has now been installed.”

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock ups stacked inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives. Credit: Ken Kremer/kenkremer.com

“We are working 24 hours a day, 7 days a week,” Schneider told me.

Some 200 people are actively employed on building Orion by Lockheed Martin at the Kennedy Space Center.

“There are many significant Orion assembly events ongoing this year,” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Space Systems in Denver.

“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles, building the service module and finally mating the crew and service modules (CM & SM),” Price told me.

Orion is a state of the art crew capsule that will ultimately enable astronauts to fly to deep space destinations including the Moon, Asteroids, Mars and beyond – throughout our solar system.

And Universe Today has had a front row seat.

I have been very fortunate to periodically visit Orion up close over the past year and half to evaluate the testing and assembly progress inside the Operations and Checkout Building at KSC where the vehicle is now rapidly coming together, since the bare bones pressure vessel arrived to great fanfare in June 2012.

For the first time Orion looked to my eyes like a real spaceship, rather than the backbone shell outfitted with hundreds of important test harnesses, strain gauges and wiring to evaluate its physical and structural integrity.

Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1 Credit: Lockheed Martin
Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1. Credit: Lockheed Martin

Engineers and technicians at KSC have removed the initial pressure testing gear and are now installing all the flight systems and equipment – such as avionics, instrumentation, flight computers, thrusters, wiring, plumbing, heat shield and much more – required to transform the initial empty shell into a fully functioning spacecraft.

“The Orion skeleton was here before. Now we are putting in all of the other systems,” Schneider explained to me.

“We are really busy.”

“So far over 66,000 Orion parts have been shipped to KSC from over 40 US states,” Price explained.

The heat shield was due to arrive soon and technicians were drilling its attachment ring holes as I observed the work in progress.

“The propulsion, environmental control and life support systems are now about 90% in. The ammonia and propylene glycol loops for the thermal control system are in. Many of the flight harnesses are installed.”

“All of the reaction control thrusters are in – fueled by hydrazine – as well as the two hydrazine tanks and a helium tank. Altogether there are 12 hydrazine pods with two thrusters each,” Schneider elaborated.

The power distribution unit (PDU) – which basically functions as Orion’s computer brains – was installed just prior to my visit. All four PDU’s – which issue commands to the vehicle – were built by Honeywell.

Technicians were actively installing fiber optic and coaxial cables as I watched. They also were conducting leak tests on the environmental control coolant (ECLS) systems which had to be completed before the ‘power on’ testing could begin – in order to cool the avionics systems.

Thermal protection system (TPS) tiles were being bonded to the back panels which ring Orion. The TPS panels get attached early in 2014.

“This is real stuff,” said Schneider gleefully.

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a tile technician works on a section of thermal protection system tiles seen by Universe Today  and that will be installed on the Orion crew module. Credit: NASA/Dimitri Gerondidakis
Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a tile technician works on a section of thermal protection system tiles seen by Universe Today and that will be installed on the Orion crew module. Credit: NASA/Dimitri Gerondidakis

NASA says that “the preliminary data indicate Orion’s vehicle management computer, as well as its innovative power and data distribution system — which use state-of-the-art networking capabilities — performed as expected” during the initial crew module power on.

About two months or so of power on functional testing of various systems will follow.

Just like the configuration used in the Apollo era, the Orion crew module will sit atop a service module – and that work is likewise moving along at a rapid clip.

“The Orion service module (SM) is also almost complete,” Schneider said as he showed me the service module structure.

“Structurally the SM is 90% done. The active thermal control system is in and all the fluid systems are welded in and pressure tested.”

Cutaway diagram of Orion components including crew module and service module and adapters. Credit: NASA
Cutaway diagram of Orion components including crew module and service module and adapters. Credit: NASA

Orion EFT-1 will blastoff atop a mammoth United Launch Alliance Delta IV Heavy rocket – the most powerful booster in America’s arsenal since the shuttle’s retirement in 2011.

The crew module and service module (CM/SM) will be mated inside the O&C and then be placed onto a mission adapter that eventually attaches to the top of the Delta IV Heavy booster.

They will be mated at the exact same spot in the O&C Building where the Apollo era command and service modules were stacked four decades ago.

Currently, the schedule calls for the Orion CM/SM stack to roll out to Kennedy’s Payload Hazardous Services Facility (PHSF) for servicing and fueling late this year, said Larry Price.

After that the CM/SM stack is transported to the nearby Launch Abort System Facility (LASF) for mating to the emergency Launch Abort System (LAS).

All that work could be done around March 2014 so that ground operations preparing for launch can commence, according to Price.

“In March 2014 we’ll be ready for ground ops. The normal launch processing flow starts in June 2014 leading to Orion’s launch from pad 37 in September 2014.”

“It’s very exciting and a tribute to the NASA and contractor teams,” Price said.

The 2014 uncrewed flight will be loaded with a wide variety of instruments to evaluate how the spacecraft behaves during launch, in space and then through the searing heat of reentry.

The two-orbit, four- hour flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

An artist concept shows Orion as it will appear in space for the Exploration Flight Test-1 attached to a Delta IV second stage.   Credit: NASA
An artist concept shows Orion as it will appear in space for the Exploration Flight Test-1 attached to a Delta IV second stage. Credit: NASA

Although the mission will only last a few hours it will be high enough to send the vehicle plunging back into the atmosphere and a Pacific Ocean splashdown to test the craft and its heat shield at deep-space reentry speeds of 20,000 mph and endure temperatures of 4,000 degrees Fahrenheit – like those of the Apollo moon landing missions.

The Orion EFT-1 mission will end with a splashdown in the Pacific Ocean. During the stationary recovery test of Orion at Norfolk Naval Base on Aug. 15, 2013, US Navy divers attached tow lines and led the test capsule to a flooded well deck on the USS Arlington. Credit: Ken Kremer/kenkremer.com.
The Orion EFT-1 mission will end with a splashdown in the Pacific Ocean. During the stationary recovery test of Orion at Norfolk Naval Base on Aug. 15, 2013, US Navy divers attached tow lines and led the test capsule to a flooded well deck on the USS Arlington. Credit: Ken Kremer/kenkremer.com.

The EFT-1 mission will provide engineers with critical data about Orion’s heat shield, flight systems and capabilities to validate designs of the spacecraft, inform design decisions, validate existing computer models and guide new approaches to space systems development. All these measurements will aid in reducing the risks and costs of subsequent Orion flights before it begins carrying humans to new destinations in the solar system.

“The Orion hardware and the Delta IV Heavy booster for the EFT-1 launch are on target for launch in 2014,” Scott Wilson, NASA’s Orion Manager of Production Operations, told Universe Today in an interview.

Ken Kremer

…………….

Learn more about Orion, MAVEN, Mars rovers and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Orion EFT-1 capsule under construction inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer, Universe Today.  Credit: Ken Kremer - kenkremer.com
Orion EFT-1 capsule under construction inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer, Universe Today. Credit: Ken Kremer – kenkremer.com

Damaged Dream Chaser Can be Fixed and Program to Move Forward with Flight Tests – Video

Left landing gear failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2103. Credit: Sierra Nevada Corp. See video below

Left landing gear tire visibly failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.
Watch approach and landing test video below[/caption]

The privately built Dream Chaser ‘space taxi’ that was damaged after landing during its otherwise successful first ever free-flight glide test on Saturday, Oct 26, is repairable and the program will live on to see another day, says the developer Sierra Nevada Corp., (SNC).

The Dream Chaser engineering test vehicle skidded off the runway and landed sideways when its left landing gear failed to deploy at the last second during touchdown on runway 22L at Edwards Air Force Base, Calif., said Mark Sirangelo, corporate vice president for SNC Space Systems, at a media teleconference.

The primary goal of the Oct. 26 drop test was to see whether the Dream Chaser mini-shuttle would successfully fly free after being released by an Erickson Air-Crane from an altitude of over 12,000 feet and glide autonomously for about a minute to a touchdown on the Mojave desert landing strip.

“We had a very successful day with an unfortunate anomaly at the end of the day on one of the landing gears,” said Sirangelo.

Dream Chaser is one of three private sector manned spaceships being developed with funding from NASA’s commercial crew program known as Commercial Crew Integrated Capability (CCiCap) initiative to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station – totally lost following the space shuttle retirement.

Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

The unmanned approach and landing test (ALT) accomplished 99% of its objectives and was only marred by the mechanical failure of the left tire to drop down and deploy for a safe and smooth rollout.

SNC released a short 1 minute video of the test flight – see below – showing the helicopter drop, dive, glide and flare to touchdown. The failure of the landing gear to drop is clearly seen. But the video cuts away just prior to touchdown and does not show the aftermath of the skid or damage to the vehicle.

“The Dream Chaser spacecraft automated flight control system gently steered the vehicle to its intended glide slope. The vehicle adhered to the design flight trajectory throughout the flight profile. Less than a minute later, Dream Chaser smoothly flared and touched down on Edwards Air Force Base’s Runway 22L right on centerline,” said SNC in a statement with the video.

The vehicle is “repairable and flyable again,” Sirangelo noted.

More good news is that the ships interior was not damaged and the exterior can be fixed.

Dream Chaser measures about 29 feet long with a 23 foot wide wing span and is about one third the size of NASA’s space shuttle orbiters.

Left landing gear failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Left landing gear failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

Since there was no pilot in the cockpit no one was injured. That also meant that no evasive action could be taken to drop the gear.

“We don’t think it’s actually going to set us back,” Sirangelo noted. “In some interesting way, it might actually accelerate it.

NASA’s commercial crew initiative aims at restoring America’s manned spaceflight access to low Earth orbit and the International Space Station (ISS) – perhaps by 2017 – following the forced shutdown of the Space Shuttle program in 2011.

Until an American commercial space taxi is ready for liftoff, NASA is completely dependent on the Russian Soyuz capsule for astronaut rides to the ISS at a cost of roughly $70 million per seat.

Because Congress continues to significantly cut NASA’s budget further delays can be expected – inevitably meaning more payments to Russia and no savings for the American tax payer.

SNC was awarded $227.5 million in the current round of NASA funding and must successfully complete specified milestones, including up to five ALT drop tests to check the aerodynamic handling in order to receive payment.

Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

This particular vehicle had been intended to fly two test flights. Further drop tests were planned with a new test vehicle to be constructed.

The way forward is being evaluated.

“We don’t think there is going to be any significant delay to the program as a result of this. This was meant to be a test vehicle with a limited number of flights,” Sirangelo said.

SNC and NASA have assembled a team to investigate the cause of the anomaly.

“SNC cannot release any further video at this time,” said SNC.

Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the space shuttle.

Ken Kremer

Dream Chaser spaceship test article damaged during 1st Free-Flight Drop Test

Sierra Nevada Dream Chaser engineering test article in flight during a captive-carry test this past summer. Credit: NASA

The engineering test article of the commercial Dream Chaser spaceship being developed by Sierra Nevada Corp (SNC) suffered some significant damage during its critical 1st ever approach-and-landing (ALT) drop test on Saturday, Oct. 26, in California due to an unspecified type of malfunction with the deployment of the left landing gear.

The Dream Chaser mini-shuttle suffered “an anomaly as it touched down on the Runway 22L at Edwards Air Force Base, Calif.,” according to a post-test statement from NASA.

A report at NASA Spaceflight.com indicated that the Dream Chaser “flipped over on the runway” after touchdown.

The full extent of damage to the winged vehicle or whether it can be repaired and reflown is not known at this time. No photos or details explaining the damage have yet emerged – beyond brief press releases issued by SNC and NASA.

The performance of the vehicles’ nose skid, brakes, tires and other flight systems is being tested to prove that it can safely land an astronaut crew returning from the space station after surviving the searing heat of re-entry from Earth orbit.

This initial atmospheric drop test was conducted in an automated mode. There was no pilot on board and no one was hurt on the ground.

“No personnel were injured. Damage to property is being assessed,” said NASA. “Edwards Air Force Base emergency personnel responded to scene as a precaution.

“Support personnel are preparing the vehicle for transport to a hangar.”

Dream Chaser is one of three private sector manned spaceships being developed with funding from NASA’s commercial crew program known as Commercial Crew Integrated Capability (CCiCap) initiative to develop a next-generation crew transportation vehicle.

Dream Chaser on the runway with landing gear deployed. Credit: NASA
Dream Chaser on the runway with landing gear deployed. Credit: NASA

The NASA seed money aims at restoring America’s manned spaceflight access to low Earth orbit and the International Space Station (ISS) – perhaps by 2017 – following the forced shutdown of the Space Shuttle program in 2011.

Until one of the American commercial space taxis is ready for liftoff, NASA is completely dependent on the Russian Soyuz capsule for astronaut rides to the ISS at a cost of roughly $70 million per seat.

SNC was awarded $227.5 million in the current round of NASA funding and must complete specified milestones including up to five ALT drop tests to check the aerodynamic handling.

To date this test vehicle has successfully accomplished a series of runway tow and airborne captive carry tests.

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS
Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Development of crew versions of the SpaceX Dragon and Boeing CST-100 capsules are also being funded by NASA’s commercial crew program office.

Dream Chaser can carry a crew of up to seven and is the only reusable, lifting body shuttle type vehicle with runway landing capability among the three competitors.

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon.
Credit: Ken Kremer/kenkremer.com

During Saturday’s test, SNC was performing the first in a series of free-flight approach-and-landing tests with the Dream Chaser prototype test vehicle known as the ETA.

The prototype spaceship was released as planned from its carrier aircraft, an Erickson Air-Crane helicopter, at approximately 11:10 a.m. Pacific Standard Time (2:10 p.m. EDT), said SNC in a statement.

Dream Chaser awaits launch atop United Launch Alliance Atlas V rocket
Dream Chaser awaits launch atop United Launch Alliance Atlas V rocket
The post release flare and touchdown appeared normal at first until the left landing gear deployment failed at some point after runway touchdown.

“Following release, the Dream Chaser spacecraft automated flight control system gently steered the vehicle to its intended glide slope. The vehicle adhered to the design flight trajectory throughout the flight profile. Less than a minute later, Dream Chaser smoothly flared and touched down on Edwards Air Force Base’s Runway 22L right on centerline,” according to the SNC press release.

SNC went on to say that reviews are in progress to determine the cause of the landing gear failure.

“While there was an anomaly with the left landing gear deployment, the high-quality flight and telemetry data throughout all phases of the approach-and-landing test will allow SNC teams to continue to refine their spacecraft design. SNC and NASA Dryden are currently reviewing the data. As with any space flight test program, there will be anomalies that we can learn from, allowing us to improve our vehicle and accelerate our rate of progress.”

The engineering test article (ETA) is a full sized vehicle.

Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the space shuttle.

“It’s not outfitted for orbital flight. It is outfitted for atmospheric flight tests,” said Marc Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman told Universe Today previously.

“The best analogy is it’s very similar to what NASA did in the shuttle program with the Enterprise, creating a vehicle that would allow it to do significant flights whose design then would filter into the final vehicle for orbital flight,” Sirangelo told me.

We’ll provide further details as they become known.

Ken Kremer

Space Trucks! A Pictorial History Of These Mighty Machines

A view of Orbital Sciences' Cygnus spacecraft while it was being released from the International Space Station on Oct. 22. Credit: NASA/Karen Nyberg

Cargo resupply ships are vital for space exploration. These days they bring food, experiments and equipment to astronauts on the International Space Station. And in recent years, it hasn’t just been government agencies sending these things up; SpaceX’s Dragon spacecraft and (just this week) Orbital Sciences’ Cygnus spacecraft brought up cargo of their own to station in recent months.

NASA just published a brief timeline of (real-life) cargo spacecraft, so we thought we’d adapt that information in pictorial form. Here are some of the prominent members of that elite group. Did we miss anything? Let us know in the comments.

Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
SpaceX’s Dragon in orbit during the CRS-2 mission. It was the first commercial spacecraft to resupply the space station, and since 2012 has completed resupply missions. Credit: NASA/CSA/Chris Hadfield
Thrust
Space shuttle Discovery heads to space after lifting off from Launch Pad 39A at NASA’s Kennedy Space Center in Florida to begin its final flight to the International Space Station on the STS-133 mission. The shuttle was NASA’s main human spacecraft between 1981 and 2011. Credit: NASA
Progress 51 on final approach to the International Space Station. The stuck antenna is visible below the crosshairs. Credit: NASA TV (screencap)
Progress 51 on final approach to the International Space Station. The Russians have been flying versions of this cargo spacecraft since 1978. Credit: NASA TV (screencap)
JAXA's H-II Transfer Vehicle during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA
JAXA’s H-II Transfer Vehicle (HTV) during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA

 

The ATV Johannes Kepler docked at the International Space Station. Credit: NASA
The ATV Johannes Kepler docked at the International Space Station. Versions of this spacecraft have flown since 2008. Credit: NASA
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons

Cygnus Commercial Cargo Craft Completes Historic First Flight to Space Station

The Cygnus commercial resupply craft departed the ISS this morning (Oct. 22) to complete its maiden voyage after being released from Canadarm2 by station astronauts. Credit: NASA TV

Commercial space took another major leap forward this morning, Oct 22., when the privately developed Cygnus cargo vehicle undocked from the International Space Station on its historic maiden flight and successfully completed a highly productive month long stay during its demonstration mission – mostly amidst the US government shutdown.

The Cygnus was maneuvered about 10 meters (30 feet) away from the station and held in the steady grip of the stations fully extended robotic arm when astronauts Karen Nyberg and Luca Parmitano unlatched the arm and released the ship into free space at 7:31 a.m. EDT today – signifying an end to joint flight operations.

The next Cygnus resupply vessel is due to blast off in mid-December and is already loaded with new science experiments for microgravity research and assorted gear and provisions.

After the Expedition 37 crew members quickly pulled the arm back to a distance 1.5 meters away from Cygnus, ground controllers issued a planned “abort” command to fire the ships thrusters and safely depart from the massive orbiting lab complex.

Space Station robotic arm releases Cygnus after detachment from the ISS Harmony node. Credit: NASA TV
Space Station robotic arm releases Cygnus after detachment from the ISS Harmony node. Credit: NASA TV

“It’s been a great mission. Nice work today!” radioed Houston Mission Control at NASA’s Johnson Space Center.

The vehicles were flying over the Atlantic Ocean and off the east coast of Argentina as Cygnus left the station some 250 miles (400 km) overhead in low Earth orbit.

The event was carried live on NASA TV and Cygnus was seen moving rapidly away.

Barely five minutes later Cygnus was already 200 meters away, appeared very small in the cameras view and exited the imaginary “Keep Out Sphere” – a strictly designated safety zone around the million pound station.

Cygnus commercial cargo craft rapidly departed the ISS this morning (Oct. 22) after release from the Canadarm2 robotic arm. Station modules visible at bottom. Credit: NASA TV
Cygnus commercial cargo craft rapidly departed the ISS this morning (Oct. 22) after release from the Canadarm2 robotic arm. Station modules visible at bottom. Credit: NASA TV

The Cygnus resupply ship delivered about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the six person Expedition 37 crew.

After the crew unloaded all that cargo, they packed the ship with 2,850 pounds of no longer needed trash.

On Wednesday (Oct. 23), a pair of deorbit burns with target Cygnus for a destructive reentry back into the Earth’s atmosphere at 2:18 p.m. EDT, to plummet harmlessly into the Pacific Ocean.

Cygnus was developed by Orbital Sciences Corp. with seed money from NASA in a public-private partnership between NASA and Orbital Sciences under NASA’s COTS commercial transportation initiative.

SpaceX Corp. was also awarded a COTS contract to develop the Dragon cargo carrier so that NASA would have a dual capability to stock up the station.

COTS was aimed at fostering the development of America’s commercial space industry to deliver critical and essential supplies to the ISS following the retirement of the Space Shuttle program.

“Congratulations to the teams at Orbital Sciences and NASA who worked hard to make this demonstration mission to the International Space Station an overwhelming success,” NASA Administrator Charles Bolden said in a statement.

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer (kenkremer.com)
Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)

“We are delighted to now have two American companies able to resupply the station. U.S. innovation and inspiration have once again shown their great strength in the design and operation of a new generation of vehicles to carry cargo to our laboratory in space. Orbital’s success today is helping make NASA’s future exploration to farther destinations possible.”

America completely lost its capability to send humans and cargo to the ISS when NASA’s space shuttles were forcibly retired in 2011. Orbital Sciences and SpaceX were awarded NASA contracts worth over $3 Billion to restore the unmanned cargo resupply capability over 20 flights totally.

Cygnus was launched to orbit on its inaugural flight on Sept. 18 atop Orbital’s commercial Antares rocket from NASA’s Wallops Flight Facility on the Eastern shore of Virginia.

The initially planned Sept. 22 berthing of the spacecraft at a port on the Earth facing Harmony node was delayed a week to Sept. 29 due to an easily fixed communications glitch. It was no worse for the wear and performed admirably.

“Antares next flight is scheduled for mid December,” according to Frank Culbertson, former astronaut and now Orbital’s executive Vice President responsible for the Antares and Cygnus programs.

Ken Kremer

After launching to orbit atop the Antares rocket on Sept. 18, the first ever Cygnus cargo spacecraft is chasing the ISS and set to dock on Sept 22. Until then you may be able to track it in the night skies. Here is full scale, high fidelity mockup of Cygnus to give a feel for its size being similar to a small room. Credit: Ken Kremer (kenkremer.com)
After launching to orbit atop the Antares rocket on Sept. 18, the first ever Cygnus cargo spacecraft chased the ISS and docked on Sept 29. Here is full scale, high fidelity mockup of Cygnus to give a feel for its size being similar to a small room. Credit: Ken Kremer (kenkremer.com)