Crew Dragon Rolls Out to the Launch Pad. Demo-1 Flight Should Happen Shortly

An artist's illustration of the SpaceX Dragon lifting off. Image Credit: SpaceX

The long-anticipated first flight of the SpaceX Crew Dragon is almost here. Early in January, the Crew Dragon was rolled out of its hangar at Kennedy Space Center, and on January 24th it performed a brief static firing as part of its testing. The Crew Dragon’s inaugural flight, called Demo-1, is not far off.

Neither NASA nor SpaceX has given us a date for Demo-1, but we’re getting close.

Continue reading “Crew Dragon Rolls Out to the Launch Pad. Demo-1 Flight Should Happen Shortly”

The Prototype for the Starship has been Assembled, Hop Tests Could be Happening Soon

The prototype Starship. Image: SpaceX

In an announcement sure to make you quiver with delight, Elon Musk says that SpaceX could begin short-hop test flights of its Starship prototype as early as next Spring. The Starship, which looks like something from a 1950’s sci-fi novel cover (awesome!) is intended to carry people to the Moon and Mars. When the spacecraft design was originally announced in 2016, it was called the Mars Colonial Transporter, and it sent shockwaves through the community.

Now, it’s almost test-flight time.

Continue reading “The Prototype for the Starship has been Assembled, Hop Tests Could be Happening Soon”

Prototype Version of the SpaceX Starship with a Stainless Steel Skin is Under Construction

Elon Musk has been a busy man in recent years. In September of 2016, he unveiled his company’s plan for a super-heavy launch vehicle – the Interplanetary Transport System (ITS). The following year, Musk presented the world with an updated design of the vehicle, which had been renamed the Big Falcon Rocket (BFR) and the Big Falcon Spacecraft (BFS). This past November, the launch system was renamed yet again to the Starship.

Musk also recently indicated that his company would be building a smaller version of the Starship to test the design. As the mission architecture has evolved, Musk has kept the public apprised of the progress of the ship’s construction. As usual, the latest update was provided via Twitter, where Musk shared images of the pieces of the mini-Starship ( aka. Starship Alpha) being rolled out in preparation for construction.

Continue reading “Prototype Version of the SpaceX Starship with a Stainless Steel Skin is Under Construction”

Going 1 Million Miles per Hour With Advanced Propulsion

Advanced propulsion breakthroughs are near. Spacecraft have been stuck at slow chemical rocket speeds for years and weak ion drive for decades. However, speeds over one million miles per hour before 2050 are possible. There are surprising new innovations with technically feasible projects.

NASA Institute for Advanced Concepts (NIAC) is funding two high potential concepts. New ion drives could have ten times better in terms of ISP and power levels ten thousand times higher. Antimatter propulsion and multi-megawatt ion drives are being developed.

Continue reading “Going 1 Million Miles per Hour With Advanced Propulsion”

Virgin Orbit Shows off its “Launcher One”, a Rocket Carried by an Airplane

Launcher One being maneuvered into position under Cosmic Girl. Image: Virgin Orbit

The commercial space sector is about to get a little more crowded. SpaceX and Blue Origin have created headlines with their ongoing development of reusable launch vehicles. Now Virgin Orbit‘s “Launcher One” is carving out its own niche in the commercial space market, as an efficient, flexible launcher of small satellites.

Continue reading “Virgin Orbit Shows off its “Launcher One”, a Rocket Carried by an Airplane”

Russia and China Are Working on Space and Counterspace Weapons

Every year, the Department of National Intelligence (DNI) releases its Worldwide Threat Assessment of the US Intelligence Community. This annual report contains the intelligence community’s assessment of potential threats to US national security and makes recommendations accordingly. In recent years, these threats have included the development and proliferation of weapons, regional wars, economic trends, terrorism, cyberterrorism, etc.

This year’s assessment, which was released on February 8th, 2018, was certainly a mixed bag of warnings. Among the many potential threats to national security, the authors emphasized the many recent developments taking place in space. According to their assessment, the expansion of the global space industry, growing cooperation between the private and public sector, and the growth of various states in space, could constitute a threat to US national security.

Naturally, the two chief actors that are singled out were China and Russia. As they indicate, these countries will be leading the pack in the coming years when it comes to expanding space-based reconnaissance, communications and navigation systems. This will not only enable their abilities (and those of their allies) when it comes to space-based research, but will have military applications as well.

The second flight of the Long March 5 lifting off from Wenchang on July 2nd, 2017. Credit: CNS

As they state in the section of the report titled “Space and Counhttps://www.dni.gov/files/documents/Newsroom/Testimonies/2018-ATA—Unclassified-SSCI.pdfterspace“:

“Continued global space industry expansion will further extend space-enabled capabilities and space situational awareness to nation-state, nonstate, and commercial space actors in the coming years, enabled by the increased availability of technology, private-sector investment, and growing international partnerships for shared production and operation… All actors will increasingly have access to space-derived information services, such as imagery, weather, communications, and positioning, navigation, and timing for intelligence, military, scientific, or business purposes.”

A key aspect of this development is outlined in the section titled “Emerging and Disruptive Technology,” which addresses everything from the development of AI and internet technologies to additive manufacturing and advanced materials. In short, it not just the development of new rockets and spacecraft that are at issue here, but the benefits brought about by cheaper and lighter materials, more rapid information sharing and production.

“Emerging technology and new applications of existing technology will also allow our adversaries to more readily develop weapon systems that can strike farther, faster, and harder and challenge the United States in all warfare domains, including space,” they write.

Artist’s illustration of China’s 8-ton Tiangong-1 space station, which is expected to fall to Earth in late 2017. Credit: CMSE

Specifically, anti-satellite (ASAT) weapons are addressed as the major threat. Such technologies, according to the report, have the potential to reduce US and allied military effectiveness by disrupting global communications, navigation and coordination between nations and armies. These technologies could be destructive, in the form of anti-satellite missiles, but also nondestructive – i.e. electromagnetic pulse (EMP) devices. As they indicate:

“We assess that, if a future conflict were to occur involving Russia or China, either country would justify attacks against US and allied satellites as necessary to offset any perceived US military advantage derived from military, civil, or commercial space systems. Military reforms in both countries in the past few years indicate an increased focus on establishing operational forces designed to integrate attacks against space systems and services with military operations in other domains.”

The authors further anticipate that Russian and Chinese destructive ASAT technology could reach operational capacity within a few years time. To this end, they cite recent changes in the People’s Liberation Army (PLA), which include the formation of military units that have training in counter-space operations and the development of ground-launched ASAT missiles.

While they are not certain about Russia’s capability to wage ASAT warfare, they venture that similar developments are taking place. Another area of focus is the development of directed-energy weapons for the purpose of blinding or damaging space-based optical sensors. This technology is similar to what the US investigated decades ago for the sake of strategic missile defense – aka. the Strategic Defense Initiative (SDI).

An artist’s concept of a Space Laser Satellite Defense System. Credit: USAF

While these weapons would not be used to blow up satellites in the conventional sense, they would be capable of blinding or damaging sensitive space-based optical sensors. On top of that, the report cites how Russia and China continue to conduct on-orbit activities and launching satellites that are deemed “experimental”. A good example of this was a recent proposal made by researchers from the Information and Navigation College at China’s Air Force Engineering University.

The study which detailed their findings called for the deployment of a high-powered pulsed ablative laser that could be used to break up space junk. While the authors admit that such technology can have peaceful applications – ranging from satellite inspection, refueling and repair – they could also be used against other spacecraft. While the United States has been researching the technology for decades, China and Russia’s growing presence in space threatens to tilt this balance of power.

Moreover, there are the loopholes in the existing legal framework – as outlined in the Outer Space Treaty – which the authors believe China and Russia are intent on exploiting:

“Russia and China continue to publicly and diplomatically promote international agreements on the nonweaponization of space and “no first placement” of weapons in space. However, many classes of weapons would not be addressed by such proposals, allowing them to continue their pursuit of space warfare capabilities while publicly maintaining that space must be a peaceful domain.”

Artist’s impression of a laser removing orbital debris, based on NASA pictures. Credit: Fulvio314/NASA/Wikipedia Commons

For example, the Outer Space Treaty bars signatories from placing weapons of mass destruction in orbit of Earth, on the Moon, on any other celestial body, or in outer space in general. By definition, this referred to nuclear devices, but does not extend to conventional weapons in orbit. This leaves room for antisatellite platforms or other conventional space-based weapons that could constitute a major threat.

Beyond China and Russia, the report also indicates that Iran’s growing capabilities in rocketry and missile technology could pose a threat down the road. As with the American and Russian space programs, developments in space rocketry and ICBMs are seen as being complimentary to each other:

“Iran’s ballistic missile programs give it the potential to hold targets at risk across the region, and Tehran already has the largest inventory of ballistic missiles in the Middle East. Tehran’s desire to deter the United States might drive it to field an ICBM. Progress on Iran’s space program, such as the launch of the Simorgh SLV in July 2017, could shorten a pathway to an ICBM because space launch vehicles use similar technologies.”

All told, the report makes some rather predictable assessments. Given China and Russia’s growing power in space, it is only natural that the DNI would see this as a potential threat. However, that does not mean that one should assume an alarmist attitude. When it comes to assessing threats, points are awarded for considering every contingency. But if history has taught us anything, it’s that assessment and realization are two very different things.

Remember Sputnik? The lesson there was clear. Don’t panic!

Further Reading: DNI

Finally! SpaceX’s Falcon Heavy Does its Static Fire Test. Actual Flight Should Be “In A Week Or So”

The Falcon Heavy Rocket being fired up at launch site LC-39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. Image: SpaceX

The long-awaited Static Fire of SpaceX’s Falcon Heavy rocket has been declared a success by SpaceX founder Elon Musk. After this successful test, the first launch of the Falcon Heavy is imminent, with Musk saying in a Tweet, “Falcon Heavy hold-down firing this morning was good. Generated quite a thunderhead of steam. Launching in a week or so.”

This is a significant milestone for the Falcon Heavy, considering that SpaceX initially thought the Heavy’s first flight would be in 2013. The first launch for the Falcon Heavy has always seemed to be tantalizingly out of reach. If space enthusiasts could’ve willed the thing into space, it would’ve launched years ago. But that’s not how it goes.

The Falcon Heavy generated an enormous amount of steam when it fired all 27 of its engines. Image: SpaceX
The Falcon Heavy generated an enormous amount of steam when it fired all 27 of its engines. Image: SpaceX

Developing rockets like the Falcon Heavy is not a simple matter. Even Musk himself admitted this when he said in July, “At first it sounds real easy: you just stick two first stages on as strap-on boosters. But then everything changes. All the loads change; aerodynamics totally change. You’ve tripled the vibration and acoustics.” So it’s not really a surprise that the Falcon Heavy’s development has seen multiple delays.

After first being announced in 2011, the rocket’s first flight was set for 2013. That date came and went, then in 2015 rocket failures postponed the flight. Failures postponed SpaceX again in 2016. New target dates were set for late 2016, then early 2017, then late 2017. But with this successful test, long-suffering space fans can finally breathe a sigh of relief, and their collective sigh will last about as long as the static fire: only a few seconds.

The Falcon Heavy has a total of 27 individual rocket engines, and all 27 of them were fired in this test, though the Heavy never left the launch pad. For those who don’t know, the Falcon Heavy is based on SpaceX’s successful Falcon 9 rocket, a nine-engine machine that made SpaceX the first commercial space company to visit the International Space Station, when the Falcon 9 delivered SpaceX’s Dragon capsule to the ISS in 2012. Since then, the Falcon has a track record of delivering cargo to the ISS and launching satellites into orbit.

The Heavy is like a Falcon 9 with two more 9-engine boosters strapped on. It will be the most powerful rocket in operation, by a large margin. (It won’t be the most powerful rocket in history though. That title still belongs to the Saturn V rocket, last launched in 1973.)

SpaceX Falcon 9 blasts off with KoreaSat-5A comsat from Launch Complex 39A at the Kennedy Space Center, FL, on 30 Oct 2017. The Falcon 9 has one core of 9 Merlin engines. Credit: Jeff Seibert

The Falcon Heavy will create 5 million pounds of thrust at lift-off, and will be able to carry about 140,000 lbs, which is about three times what the Falcon can carry. The Falcon’s engine core is reusable, and returns itself to Earth after detaching from the second stage. The Falcon Heavy will do the same, with all three cores returning to Earth for reuse. The two outer cores will return to the launch pad at Cape Canaveral, and the center core will land on a drone ship in the Atlantic. This is part of the genius behind the SpaceX designs: reusable components keep the cost down.

An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX

We aren’t exactly sure when the first launch of the Falcon Heavy will be, and its first launch may be a very short flight. It’s possible that it may only get a few feet off the launch pad. At a conference in July, Musk said, “I hope it makes it far enough beyond the pad so that it does not cause pad damage. I would consider even that a win, to be honest.”

We know a few things about the eventual first launch and flight of the Falcon. There won’t be any scientific or commercial payload on-board. Rather, Musk intends to put his own personal Tesla roadster on-board as payload. If successful, it will be the first car to go on a trip around the Sun. (I call Shotgun!) It’s kind of silly to use a rocket to send a car around the Sun, but it will generate publicity. Not only for SpaceX, but for Tesla too.

If the launch is successful, the Falcon Heavy will be open for business. SpaceX already has some customers lined up for the Falcon Heavy, with a Saudi Arabian communications satellite first in line. After that, its second commercial mission will place several satellites in orbit. The US Air Force will be watching these launches closely, with an eye to using the Falcon Heavy for their own purposes.

But the real strength of the Falcon Heavy is not blasting cars on frivolous trips around the Sun, or placing communications satellites in orbit. Its destination is deep space.

Originally, SpaceX planned to use the Falcon Heavy to send people to Mars in a Dragon capsule. They’ve cancelled that idea, but the Heavy still has the capability to send rovers or other cargo to Mars and beyond. Who knows what uses it will be put to, once it has a track record of success.

We’re all eager to see the successful launch of the Falcon heavy, but while we wait for it, we can enjoy this animation from SpaceX.

S.S Gene Cernan Honoring Last Moonwalker Arrives at International Space Station Carrying Tons of Research Gear and Supplies

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The S.S. Gene Cernan Cygnus spacecraft named in honor of the Apollo 17 lunar landing commander and launched by Orbital ATK from the eastern shore of Virgina at breakfast time Sunday, Nov. 12, arrived at the International Space Station early Tuesday morning, Nov 14, carrying over 3.7 tons of research equipment and supplies for the six person resident crew.

Soon thereafter at 5:04 a.m., Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik successfully captured Orbital ATK’s Cygnus cargo freighter using the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Nespoli and Bresnik were working at a robotics work station inside the seven windowed domed Cupola module that offers astronauts the most expansive view outside to snare Cygnus with the robotic arms end effector.

The Cygnus cargo freighter – named after the last man to walk on the Moon – reached its preliminary orbit nine minutes after blasting off early Sunday atop the upgraded 230 version of the Orbital ATK Antares rocket from NASA’s Wallops Flight Facility in Virginia.

The flawless liftoff of the two stage Antares rocket took place shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Sunday’s spectacular Antares launch delighted spectators – but came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a completely reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.

After a carefully choreographed series of intricate thruster firings to raise its orbit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

With Cygnus firmly in the grip of the robots hand, ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, maneuvered the arm towards the exterior hull and berth the cargo ship at the Earth-facing port of the stations Unity module.

1st stage capture was completed at 7:08 a. EST Nov 14.

After driving in the second stage gang of bolts, hard mate and capture were completed at 7:15 a.m.

The station was flying 252 miles over the North Pacific in orbital night at the time of berthing.

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

NASA TV provided live coverage of the rendezvous and grappling.

Including Cygnus there are now five visiting vehicle spaceships parked at the space station including also the Russian Progress 67 and 68 resupply ships and the Russian Soyuz MS-05 and MS-06 crew ships.

International Space Station Configuration. Five spaceships are parked at the space station including the Orbital ATK Cygnus after Nov. 14, 2017 arrival, the Progress 67 and 68 resupply ships and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

On this flight, the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cernan was commander of Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Apollo17, NASA’s final lunar landing mission, on December 7, 1972, as seen from the KSC press site. Credit: Mark and Tom Usciak

………….

Ken’s upcoming outreach events:

Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 16, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Nov 15, 17: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com

The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/Kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com