Radiation Blast Delays NASA Spacecraft’s Arrival At Dwarf Planet Ceres

Artist's conception of the NASA Dawn spacecraft approaching Ceres. Credit: NASA

NASA’s Dawn spacecraft experienced technical problems in the past week that will force it to arrive at dwarf planet Ceres one month later than planned, the agency said in a statement yesterday (Sept. 16).

Controllers discovered Dawn was in safe mode Sept. 11 after radiation disabled its ion engine, which uses electrical fields to “push” the spacecraft along. The radiation stopped all engine thrusting activities. The thrusting resumed Monday (Sept. 15) after controllers identified and fixed the problem, but then they found another anomaly troubling the spacecraft.

Dawn’s main antenna was also disabled, forcing the spacecraft to send signals to Earth (a 53-minute roundtrip by light speed) through a weaker secondary antenna and slowing communications. The cause of this problem hasn’t been figured out yet, but controllers suspect radiation affected the computer’s software. A computer reset has solved the issue, NASA added. The spacecraft is now functioning normally.

Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. Credit: NASA
Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. Credit: NASA

“As a result of the change in the thrust plan, Dawn will enter into orbit around dwarf planet Ceres in April 2015, about a month later than previously planned. The plans for exploring Ceres once the spacecraft is in orbit, however, are not affected,” NASA’s Jet Propulsion Laboratory stated in a press release.

Dawn is en route to Ceres after orbiting the huge asteroid Vesta between July 2011 and September 2012. A similar suspected radiation blast three years ago also disabled Dawn’s engine before it reached Vesta, but the ion system worked perfectly in moving Dawn away from Vesta when that phase of its mission was complete, NASA noted.

Among Dawn’s findings at Vesta is that the asteroid is full of hydrogen, and it contains the hydrated mineral hydroxyl. This likely came to the asteroid when smaller space rocks brought the volatiles to its surface through low-speed collisions.

Spacecraft can experience radiation through energy from the Sun (particularly from solar flares) and also from cosmic rays, which are electrically charged particles that originate outside the Solar System. Earth’s atmosphere shields the surface from most space-based radiation.

Source: Jet Propulsion Laboratory

Astronaut Snaps Amazing Picture Of His Crewmates Returning To Earth

The Expedition 40 crew returns to Earth, as seen from the International Space Station Sept. 10, 2014. Credit: Reid Wiseman / Twitter

Wow! See that bright streak in the photo above? That’s a shot of the Expedition 40 crew making a flawless return from the International Space Station yesterday (Sept. 10) … a shot taken from space itself.

“Our view of the picture perfect reentry of TMA-12M,” wrote Expedition 41 astronaut Reid Wiseman, who just hours before bid farewell to Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The re-entry was in fact so perfect that TV cameras caught the parachute immediately after deployment, which doesn’t always happen.

As you can see in the video replay below, the Soyuz made a bulls-eye landing near Dzhezkazgan, Kazakhstan at 10:23 p.m. EDT (2:23 a.m. UTC). There are now only three people tending to the space station until the rest of the Expedition 41 crew launches, which is expected to happen Sept. 25.

Sweet Success for SpaceX with Second Successful AsiaSat Launch This Summer

SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: John Studwell/AmericaSpace

Shortly after midnight this morning, Sunday, Sept. 7, SpaceX scored a major success with the spectacular night time launch of the commercial AsiaSat 6 satellite from Cape Canaveral, Florida, that briefly turned night into day along the Florida Space Coast.

A SpaceX Falcon 9 rocket carrying the AsiaSat 6 communications satellite blasted off at 1 a.m. EDT today from Space Launch Complex 40 on Cape Canaveral Air Force Station at the opening of the launch window.

The two stage, 224 foot-tall (68.4 meter-tall) Falcon 9 rocket performed flawlessly, soaring to space and placing the five ton AsiaSat 6 into a geosynchronous transfer orbit.

SpaceX confirmed a successful spacecraft separation about 32 minutes after liftoff and contact with the satellite following deployment at about 1:30 a.m. EDT.

The Falcon 9 delivered AsiaSat 6 satellite into a 185 x 35,786 km geosynchronous transfer orbit at 25.3 degrees.

Stunning “streak” effect, with high-level clouds illuminated, during first-stage flight of SpaceX Falcon 9 rocket with AsiaSat 6 on Sept. 7, 2014 from Cape Canaveral, FL. Credit: John Studwell/AmericaSpace
Stunning “streak” effect, with high-level clouds illuminated, during first-stage flight of SpaceX Falcon 9 rocket with AsiaSat 6 on Sept. 7, 2014 from Cape Canaveral, FL. Credit: John Studwell/AmericaSpace

Sunday’s liftoff marked a sweet success for SpaceX since it was the second successive launch of an AsiaSat communications satellite in about a month’s time. AsiaSat is a telecommunications operator based in Hong Kong.

The first launch of the two satellite series with AsiaSat 8 took place from Cape Canaveral on Aug. 5.

The launch was webcast live by SpaceX on the firm’s website.

The private satellites will serve markets in Southeast Asia and China.

Thailand’s leading satellite operator, Thaicom, is a partner of AsiaSat on AsiaSat 6 and will be using half of the satellite’s capacity to provide services under the name of THAICOM 7, according to the press kit.

SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida.  Credit: Alan Walters/AmericaSpace
SpaceX Falcon 9 launch of AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: Alan Walters/AmericaSpace

The AsiaSat 6 launch was originally scheduled for Aug. 26, just 3 weeks after AsiaSat 8, but was postponed at the last minute after the detonation of a Falcon 9R test rocket at a SpaceX test site in Texas.

SpaceX CEO Elon Musk said the team needed to recheck the rocket systems to insure a successful blastoff since both rockets use Merlin 1D engines, but are configured with different software.

The Falcon 9 first stage is loaded with liquid oxygen (LOX) and rocket-grade kerosene (RP-1) propellants and powered by nine Merlin 1D engines that generate about 1.3 million pounds of liftoff thrust.

The second stage is powered by a single, Merlin 1D vacuum engine.

SpaceX Falcon 9 soars to space with AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida.  Credit: Alan Walters/AmericaSpace
SpaceX Falcon 9 soars to space with AsiaSat 6 communications satellite at 1 a.m. EDT on Sept. 7, 2014 from Cape Canaveral. Florida. Credit: Alan Walters/AmericaSpace

Today’s liftoff was critical in clearing the path for the next SpaceX launch – the CRS-4 cargo resupply mission for NASA bound for the International Space Station (ISS).

The Falcon 9 launch of the cargo Dragon on the CRS-4 mission is currently targeted for no earlier than Sept. 19. But a firm launch date has not been set.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The official AsiaSat 6 mission patch
The official AsiaSat 6 mission patch

ExoMars Hunting: Where Should The European Rover Land?

An artist's conception of the European Space Agency's ExoMars rover, scheduled to launch in 2018. Credit: ESA

Picking a landing site on Mars is a complex process. There’s the need to balance scientific return with the capabilities of whatever vehicle you’re sending out there. And given each mission costs millions (sometimes billions) of dollars — and you only get one shot at landing — you can bet mission planners are extra-cautious about choosing the right location.

A recent paper in Eos details just how difficult it is to choose where to put down a rover, with reference to the upcoming European ExoMars mission that will launch in 2018.

In March, scientists came together to select the first candidate landing sites and came up with four finalist locations. The goal of ExoMars is to look for evidence of life (whether past or present) and one of its defining features is a 2-meter (6.6-foot) drill that will be able to bore below the surface, something that the NASA Curiosity rover does not possess.

“Among the highest-priority sites are those with subaqueous sediments or hydrothermal deposits,” reads the paper, which was written by Bradley Thomson and Farouk El-Baz (both of Boston University). Of note, El-Baz was heavily involved in landing site selection for the Apollo missions.

Curiosity snaps selfie at Kimberley waypoint with towering Mount Sharp backdrop on April 27, 2014 (Sol 613). Inset shows MAHLI camera image of rovers mini-drill test operation on April 29, 2014 (Sol 615) into “Windjama” rock target at Mount Remarkable butte.  MAHLI color photo mosaic assembled from raw images snapped on Sol 613, April 27, 2014. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer - kenkremer.com
Curiosity snaps selfie at Kimberley waypoint with towering Mount Sharp backdrop on April 27, 2014 (Sol 613). Inset shows MAHLI camera image of rovers mini-drill test operation on April 29, 2014 (Sol 615) into “Windjama” rock target at Mount Remarkable butte. MAHLI color photo mosaic assembled from raw images snapped on Sol 613, April 27, 2014. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer – kenkremer.com

“For example,” the paper continues, “some of the clearest morphological indicators of past aqueous activity are channel deposits indicative of past fluvial activity or the terminal fan, or delta deposits present within basins.”

But no landing site selection is perfect. The scientists note that Curiosity, for all of its successes, seems unlikely to achieve its primary science objectives in its two-year mission because the commissioning phase took a while, and the rover moves relatively slowly.

That said, NASA has argued that the rover achieved its goal of finding past habitable environments already, with discoveries such as extensive evidence of a past potentially life-bearing lake now called Yellowknife Bay.

Outcrops in Yellowknife Bay are being exposed by wind driven erosion. These rocks record superimposed ancient lake and stream deposits that offered past environmental conditions favorable for microbial life. This image mosaic from the Mast Camera instrument on NASA's Curiosity Mars rover shows a series of sedimentary deposits in the Glenelg area of Gale Crater, from a perspective in Yellowknife Bay looking toward west-northwest.  The "Cumberland" rock that the rover drilled for a sample of the Sheepbed mudstone deposit (at lower left in this scene) has been exposed at the surface for only about 80 million years. Credit: NASA/JPL-Caltech/MSSS
Outcrops in Yellowknife Bay are being exposed by wind driven erosion. These rocks record superimposed ancient lake and stream deposits that offered past environmental conditions favorable for microbial life. This image mosaic from the Mast Camera instrument on NASA’s Curiosity Mars rover shows a series of sedimentary deposits in the Glenelg area of Gale Crater, from a perspective in Yellowknife Bay looking toward west-northwest. The “Cumberland” rock that the rover drilled for a sample of the Sheepbed mudstone deposit (at lower left in this scene) has been exposed at the surface for only about 80 million years. Credit: NASA/JPL-Caltech/MSSS

What could change the area of the landing could be using different types of entry, descent and landing technologies, the authors add. If the parachute opened depending on how far the spacecraft was from the ground — instead of how fast it was going — this could make the landing ellipse smaller.

This could place the rover “closer to targets of interest that are too rough for a direct landing and reducing necessary traverse distances,” the paper says.

You can read the paper in its entirety at this link, which also goes over the history of selecting landing sites for the Apollo missions as well as the Mars Exploration Rovers (Spirit and Opportunity).

Here’s Your Chance To Send A Message To An Asteroid

NASA is planning to launch a time capsule aboard the Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx) spacecraft, which is expected to head to an asteroid in 2016. Credit: Heather Roper/University of Arizona/OSIRIS-REx

What’s your vision for solar system exploration? And how cool would it be to send it literally into the solar system?

NASA is offering its fans the chance to compose a tweet or send a picture showing how we can step out into the cosmos. The best ones among these will be placed aboard a spacecraft that will zoom to an asteroid in 2016.

The “time capsule” will be placed aboard the Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx). If all goes to plan, it will meet with the asteroid Bennu in 2019, pick up a sample and then return it to Earth in 2023.

And by the way, you can also send your name to Bennu via this form (a joint initiative of NASA and the Planetary Society.) Seems a good chance to get your name off of Earth, until the time when space travel becomes affordable to ordinary citizens.

For more details about the tweets and images time capsule, visit this NASA website. Make sure to submit your message before Sept. 30.

Source: NASA

SpaceX Rocket Prototype Explodes In Texas; ‘Rockets Are Tricky’, Musk Says

SpaceX's F9R rocket prototype during a successful test in May 2014. Credit: SpaceX/YouTube (screenshot)

No injuries are reported after a SpaceX rocket prototype detonated in Texas today (Aug. 22) after an anomaly was found in the rocket, the company said in a statement.

The  Falcon 9 Reusable (F9R) — a successor to the Grasshopper vertical take-off and landing rocket — was completing the latest in a series of ambitious tests that previously saw the prototype successfully testing new steerable fins.

“Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test,” SpaceX said in a statement (which you can read in full below the jump.) “As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.”


The company said it would provide more updates as it found information. SpaceX founder Elon Musk issued a brief statement of his own on Twitter:

Screenshot of a June 2014 F9R test flight.
Screenshot of a June 2014 F9R test flight.

Below is SpaceX’s statement:

Earlier today, in McGregor, Texas, SpaceX conducted a test flight of a three-engine version of the F9R test vehicle (successor to Grasshopper.) During the flight, an anomaly was detected in the vehicle and the flight termination system automatically terminated the mission.

Throughout the test and subsequent flight termination, the vehicle remained in the designated flight area. There were no injuries or near injuries. An FAA representative was present at all times.

With research and development projects, detecting vehicle anomalies during the testing is the purpose of the program. Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test. As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.

SpaceX will provide another update when the flight data has been fully analyzed.

Here are some recent Universe Today stories on the rocket:

Space Shapes: Watch This Origami Solar Array Prototype Unfurl

NASA's Jet Propulsion Laboratory is working on a solar array that would fold up like an origami shape, to make it easier to unfurl. Credit: BYU

From paper cranes to solar sails, looks like the Japanese art of origami is making its way into the space world. As you can see in the video above, origami serves a great purpose for launching sails into space — it makes them easy to fold. And this makes it easier to pack into a rocket for the crucial launch phase, before unfurling in orbit.

“This is a unique crossover of art and culture and technology,” stated Brian Trease, a mechanical engineer at NASA’s Jet Propulsion Laboratory who co-created the concept with Shannon Zirbel, a Ph.D. student in mechanical engineering at Brigham Young University in Utah.

Origami and solar arrays have been explored before, particularly with a type of fold named after Koryo Mirua (a Japanese astrophysicist). This allows structures to unfold with a single tug; in fact, there’s only one way to open or close the structure. This was tested in space on a Japanese satellite called the Space Flyer Unit in 1995.

This new solar array, by contrast, uses several kinds of folds that makes it look “like a blooming flower that expands into a large, flat circular surface,” NASA stated. While the technology is in the early stages, it’s possible these could be used on CubeSats (small satellites) in the future.

Source: NASA

 

Watch A ‘Swan’ Fly Free From Its Trap In A Space Robotic Arm

Space Station robotic arm releases Cygnus after detachment from the ISS Harmony node. Credit: NASA TV

What does it look like when a cargo ship goes flying away from the International Space Station? This timelapse gives you a sense of what to expect. Here, you can see the handiwork of the (off-camera) Expedition 40 crew as they use the robotic Canadarm2 to let go of the Cygnus spacecraft.

“Great feeling to release a captured swan back into the wild last week,” wrote Alexander Gerst, an astronaut with the European Space Agency, on Twitter with the video.

Cygnus (Latin for “swan”, and a northern constellation) is a commercial spacecraft manufactured by Orbital Sciences Corp., and is one of two regular private visitors to the space station. The other one is Dragon, which is manufactured by SpaceX. Both companies have agreements with NASA to run periodic cargo flights to the station so that the astronauts can receive fresh equipment, food and personal items.

Both spacecraft are designed to be captured and released by Canadarm2, which the astronauts operate. When the Canadarm2 captures the spacecraft, it is referred to as a “berthing” (as opposed to a docking, when a spacecraft directly latches on to the station.)

Cygnus made a (planned) fiery re-entry Sunday that the astronauts captured on camera from their orbiting perch. Besides the inherent spectacular value of looking at the pictures, they could also be useful to help plan the eventual de-orbiting of the space station.

Europe’s Last ATV Cargo Ship Docks Safely At Space Station

The European Space Agency cargo ship Georges Lemaître, the last automated transfer vehicle, docked safely at the International Space Station Aug. 12, 2014. Credit: NASA/Twitter

It took two weeks to get there, but all indications is it was worth the wait. The final automated transfer vehicle of the European Space Agency successfully docked with the International Space Station today (Aug. 12) at 9:30 a.m. EDT (1:30 p.m. UTC) — right on time.

The cargo vehicle has about seven tons of stuff on board, ranging from science experiments to fresh food. The astronauts always enjoy it when fruit and other new food arrives in these shipments, given so many of their meals are freeze-dried.

Also on board was a new rendezvous system manufactured by Canadian company Neptec, which is testing out new ways of docking for future cargo vehicles. And when it’s time for Georges Lemaître to leave the station around January 2015, sensors inside will monitor its planned destruction to make future cargo vehicles better equipped to survive re-entry.

Georges Lemaître left Earth July 29 from French Guiana, as did its four predecessors. The series of ATVs started in March 2008 when Jules Verne departed to resupply the Expedition 16 crew. The other vehicles were called Johannes Kepler, Edoardo Amaldi and Albert Einstein.

The new vehicle will be opened up on Wednesday. It will be a busy week for cargo vehicles at the station, as the privately constructed Cygnus spacecraft (from Orbital Sciences) is expected to leave the station on Friday at 6:40 a.m. EDT (10:40 a.m. UTC). Both Alexander Gerst (ESA) and Reid Wiseman (NASA) will release Cygnus using Canadarm2, a robotic arm on station.

Pictures: Punishing Mars Plateau For Curiosity Rover And Damaged Wheels

NASA's Curiosity rover looks across a rock field in this raw picture from Mars taken Aug. 8, 2014. Credit: NASA/JPL-Caltech

This picture alone illustrates the challenge NASA has as it slowly moves the Curiosity rover across Mars to its mountainous destination. You can see rocks surrounding the rover on Sol 713 (on Aug. 8), which is a challenge because of the ongoing wear and tear on Curiosity’s aluminum wheels.

In mid-July, Curiosity crossed one of the most difficult stretches of terrain yet since NASA spotted the damage and took measures to mitigate further problems, which includes picking out the smoothest terrain possible for its rover — which just celebrated two years on the Red Planet.

“For about half of July, the rover team at NASA’s Jet Propulsion Laboratory in Pasadena, California, drove Curiosity across an area of hazardous sharp rocks on Mars called ‘Zabriskie Plateau’,”  NASA wrote in a recent press release.

A closeup of Curiosity's wheels on Mars on Aug. 9, 2014. Credit: NASA/JPL-Caltech
A closeup of Curiosity’s wheels on Mars on Aug. 9, 2014. Credit: NASA/JPL-Caltech

“Damage to Curiosity‘s aluminum wheels from driving across similar terrain last year prompted a change in route, with the plan of skirting such rock-studded terrain wherever feasible. The one-eighth mile (200 meters) across Zabriskie Plateau was one of the longest stretches without a suitable detour on the redesigned route toward the long-term science destination.”

The rover is planning to make its way up the slope of science destinations on Mount Sharp, which is about two miles (3 kilometers) away. NASA pointed out that an interim stop for the rover will take place less than a third of a mile away (500 meters).

“The wheels took some damage getting across Zabriskie Plateau, but it’s less than I expected from the amount of hard, sharp rocks embedded there,” added Jim Erickson, project manager for Curiosity at NASA’s Jet Propulsion Laboratory, in a statement.

A low view of the terrain taken by the Mars Curiosity rover in August 2014. Credit: NASA/JPL-Caltech
A low view of the terrain taken by the Mars Curiosity rover in August 2014. Credit: NASA/JPL-Caltech

“The rover drivers showed that they’re up to the task of getting around the really bad rocks. There will still be rough patches ahead. We didn’t imagine prior to landing that we would see this kind of challenge to the vehicle, but we’re handling it.”

Curiosity has driven out of its landing ellipse and will continue the trek to the mountain, stopping to perform science along the way.

NASA plans to heavily borrow from Curiosity’s design for its next rover, called Mars 2020. The science instruments for that rover were selected last week. While Curiosity was made to seek potentially habitable environments in the past or present, Mars 2020 will have the capability to search for organic materials that could indicate precursors to life.

The Mars Curiosity rover leaves tracks in the sand in this picture taken Aug. 9, 2014. Credit: NASA/JPL-Caltech
The Mars Curiosity rover leaves tracks in the sand in this picture taken Aug. 9, 2014. Credit: NASA/JPL-Caltech
A shadow of Mars Curiosity lies across the surface in this picture taken Aug. 9, 2014. Credit: NASA/JPL-Caltech
A shadow of Mars Curiosity lies across the surface in this picture taken Aug. 9, 2014. Credit: NASA/JPL-Caltech