Plans for a Modular Martian Base that Would Provide its own Radiation Shielding

The idea of exploring and colonizing Mars has never been more alive than it is today. Within the next two decades, there are multiple plans to send crewed missions to the Red Planet, and even some highly ambitious plans to begin building a permanent settlement there. Despite the enthusiasm, there are  many significant challenges that need to be addressed before any such endeavors can be attempted.

These challenges – which include the effects of low-gravity on the human body, radiation, and the psychological toll of being away from Earth – become all the more pronounced when dealing with permanent bases. To address this, civil engineer Marco Peroni offers a proposal for a  modular Martian base (and a spacecraft to deliver it) that would allow for the colonization of Mars while protecting its inhabitants with artificial radiation shielding.

Continue reading “Plans for a Modular Martian Base that Would Provide its own Radiation Shielding”

A Japanese Company is About to Test a Tiny Space Elevator… in Space

Let’s be honest, launching things into space with rockets is a pretty inefficient way to do things. Not only are rockets expensive to build, they also need a ton of fuel in order to achieve escape velocity. And while the costs of individual launches are being reduced thanks to concepts like reusable rockets and space planes, a more permanent solution could be to build a Space Elevator.

And while such a project of mega-engineering is simply not feasible right now, there are many scientists and companies around the world that are dedicated to making a space elevator a reality within our lifetimes. For example, a team of Japanese engineers from Shizuoka University‘s Faculty of Engineering recently created a scale model of a space elevator that they will be launching into space tomorrow (on September 11th).

Continue reading “A Japanese Company is About to Test a Tiny Space Elevator… in Space”

Spinning Heat Shield Concept Could Provide a Lightweight Way to Survive Atmospheric Re-entry

One of the more challenging aspects of space exploration and spacecraft design is planning for re-entry. Even in the case of thinly-atmosphered planets like Mars, entering a planet’s atmosphere is known to cause a great deal of heat and friction. For this reason, spacecraft have always been equipped with heat shields to absorb this energy and ensure that the spacecraft do not crash or burn up during re-entry.

Unfortunately, current spacecraft must rely on huge inflatable or mechanically deployed shields, which are often heavy and complicated to use. To address this, a PhD student from the University of Manchester has developed a prototype for a heat shield that would rely on centrifugal forces to stiffen flexible, lightweight materials. This prototype, which is the first of its kind, could reduce the cost of space travel and facilitate future missions to Mars.

The concept was proposed by Rui Wu, a PhD student from Manchester’s School of Mechanical, Aerospace and Civil Engineering (MACE). He was joined by Peter C.E. Roberts and Carl Driver – a Senior Lecturer in Spacecraft Engineering and a Lecturer at MACE, respectively – and Constantinos Soutis of The University of Manchester Aerospace Research Institute.

The CubeSat-sized prototype heat shield designed by the University of Manchester team. Credit: University of Manchester

To put it simply, planets with atmospheres allow spacecraft to utilize aerodynamic drag to slow down in preparation for landing. This process creates a tremendous amount of heat. In the case of Earth’s atmosphere, temperatures of 10,000 °C (18,000 °F) are generated and the air around the spacecraft can turn into plasma. For this reason, spacecraft require a front-end mounted heat shield that can tolerate extreme heat and is aerodynamic in shape.

When deploying to Mars, the circumstances are somewhat different, but the challenge remains the same. While the Martian atmosphere is less than 1% that of Earth’s – with an average surface pressure of 0.636 kPa compared to Earth’s 101.325 kPa – spacecraft still require heat shields to avoid burnup and carry heavy loads. Wu’s design potentially solves both of these issues.

The prototype’s design, which consists of a skirt-shaped shield designed to spin, seeks to create a heat shield that can accommodate the needs of current and future space missions. As Wu explained:

“Spacecraft for future missions must be larger and heavier than ever before, meaning that heat shields will become increasingly too large to manage… Spacecraft for future missions must be larger and heavier than ever before, meaning that heat shields will become increasingly too large to manage.”

Wu and his colleagues described their concept in a recent study that appeared in the journal Arca Astronautica (titled “Flexible heat shields deployed by centrifugal force“). The design consists of an advanced, flexible material that has a high temperature tolerance and allows for easy-folding and storage aboard a spacecraft. The material becomes rigid as the shield applies centrifugal force, which is accomplished by rotating upon entry.

Wu and his team performing the drop test of their heat shield prototype. Credit: University of Manchester

So far, Wu and his team have conducted a drop test with the prototype from an altitude of 100 m (328 ft) using a balloon (the video of which is posted below). They also conducted a structural dynamic analysis that confirmed that the heat shield is capable of automatically engaging in a sufficient spin rate (6 revolutions per second) when deployed from altitudes of higher than 30 km (18.64 mi) – which coincides with the Earth’s stratosphere.

The team also conducted a thermal analysis that indicated that the heat shield could reduce front end temperatures by 100 K (100 °C; 212 °F) on a CubeSat-sized vehicle without the need for thermal insulation around the shield itself (unlike inflatable structures). The design is also self-regulating, meaning that it does not rely on additional machinery, reducing the weight of a spacecraft even further.

And unlike conventional designs, their prototype is scalable for use aboard smaller spacecraft like CubeSats. By being equipped with such a shield, CubeSats could be recovered after they re-enter the Earth’s atmosphere, effectively becoming reusable. This is all in keeping with current efforts to make space exploration and research cost-effective, in part through the development of reusable and retrievable parts. As Wu explained:

“More and more research is being conducted in space, but this is usually very expensive and the equipment has to share a ride with other vehicles. Since this prototype is lightweight and flexible enough for use on smaller satellites, research could be made easier and cheaper. The heat shield would also help save cost in recovery missions, as its high induced drag reduces the amount of fuel burned upon re-entry.”

When it comes time for heavier spacecraft to be deployed to Mars, which will likely involve crewed missions, it is entirely possible that the heat shields that ensure they make it safely to the surface are composed of lightweight, flexible materials that spin to become rigid. In the meantime, this design could enable lightweight and compact entry systems for smaller spacecraft, making CubeSat research that much more affordable.

Such is the nature of modern space exploration, which is all about cutting costs and making space more accessible. And be sure to check out this video from the team’s drop test as well, courtesy of Rui Wui and the MACE team:

Further Reading: University of Manchester, Acta Astronica

Look at This Adorable Pen-Sized Booster, Perfect for Tiny Satellites

When it comes to space exploration, the motto “keep it simple” isn’t always followed! For the most part, satellites, spacecraft, telescopes, and the many other technologies that allow humans to study and explore the Universe are the result of highly-technical and complex feats of engineering. But sometimes, it is the simplest ideas that offer the most innovative solutions.

This is especially true when it comes to the today’s space agencies, who are concerned with cutting costs and increasing accessibility to space. A good example is the Fenix propulsion system, a proposal created by Italian tech company D-Orbit. As part of the last year’s Space Exploration Masters, this pen-sized booster will allow CubeSats to maneuver and accomplish more in space.

The Space Exploration Masters, which the European Space Agency (ESA) initiated in 2017, seeks to encourage space-based innovation and provide opportunities for commercial development. As such, this annual competition has become central to the implementation of the ESA Space Exploration strategy. For their application last year, D-Orbit was jointly awarded the the ESA and Space Application Services prize.

The Fenix propulsion system, as it would be fitted to a CubeSat. Credit: D-Orbit

The thruster prototype itself measures only 10 cm long and 2 cm wide (~4 by 0.8 inches) and contain solid propellant that is triggered by a simple electrical ignition system. The boosters are designed to be placed at each corner of a 10 x 10 x 10 cm CubeSat, or can be doubled up for added thrust. Thanks to their lightweight and compact size, they do not take up much instrument space or add significantly to a CubeSat’s weight.

Currently, CubeSats are deployed directly into space, deorbit at the end of their missions, and have no means to change their orbits. But with this simple, chemical-propellant thruster, CubeSats could function for longer periods and would be able to take on more complicated missions. For instance, if they can maneuver in orbit, they will be able to study the Moon and asteroids from different angles.

In addition, boosters will allow CubeSats to deorbit themselves once they are finished their missions, thus reducing the threat of space debris. According to the latest report from the Space Debris Office at the European Space Operations Center (ESOC), an estimated 19,894 bits of space junk were circling our planet by the end of 2017, with a combined mass of at least 8135 metric tons (8967 US tons). This problem is only expected to get worse.

In fact, it is estimated that the small satellite market will grow by $5.3 billion in the next decade (according to Space Works and Eurostat) and many private companies are looking to provide regular launch services to accommodate that growth. As such, a propulsion system that not only presents opportunities to do more with CubeSats, but in a way that will not add to problem of space debris, will be highly sought-after.

Artist’s impression of a series of CubeSats orbiting Earth. Credit: ESA/Medialab

In addition to the ESA and Space Application Services prize, D-Orbit won a four-month ticket to test their prototype on the newly-installed ICE Cubes facility, which is located in the Columbus module aboard the International Space Station. This facility is the first European commercial research center to operate aboard the ISS, and the D-Orbit team will use to test the booster’s safe ignition mechanism inside an ICE cube experiment.

This experiment, which will not involve firing the actual propulsion system, will help ensure that the booster can operate safe and effectively in space. Sensors and cameras will record the sparks, triggered by an electrical impulse, while the team relies on the ICE Cubes facility’s dedicated control center to provide them with remote viewing opportunities from the ground.

The Fenix boosters are set to launch for the ISS by the end of next year and, if successful, D-Orbit will likely secure permission to test their propulsion system in space. And if all goes well, future generations of CubeSats – which have already made Low Earth Orbit (LEO) accessible to private companies and research institutes – will be capable of performing far more tasks in orbit.

For this year’s Space Exploration Masters, the ESA is partnering with the United Nations World Health Organization (WHO) to address health and food. For the main challenge, participants will be tasked with coming up with applications that promote nutritious food and food security, both on- and 0ff-planet. Among other challenges, this year’s SEM will also be looking for ideas that make missions more sustainable and new ways to use future spacecraft.

For more information on this year’s Space Exploration Masters, check out the ESA website page.

Further Reading: ESA

NASA is Looking for New Ways to Deal With Trash on Deep Space Missions

Life aboard the International Space Station is characterized by careful work and efficiency measures. Not only do astronauts rely on an average of 12 metric tons of supplies a year – which is shipped to the station from Earth – they also produce a few metric tons of garbage. This garbage must be carefully stored so that it doesn’t accumulate, and is then sent back to the surface on commercial supply vehicles.

This system works well for a station in orbit. But what about spacecraft that are conducted long-duration missions? These ships will not have the luxury of meeting with a regular cadence of commercial ships that will drop off supplies and haul away their garbage. To address this, NASA is investigating possible solutions for how to handle space trash for deep space missions.

For this purpose, NASA is turning to its partners in the commercial sector to develop concepts for Trash Compaction and Processing Systems (TCPS). In a solicitation issued through the Next Space Technologies for Exploration Partnerships (NextSTEP), NASA recently issued a Board Agency Announcement that called for the creation of prototypes and eventually flight demonstrations that would fly to the ISS.

The International Space Station (ISS), seen here with Earth as a backdrop. Credit: NASA

The details of the proposal were outlined in Appendix F of the Board Agency Announcement, titled “Logistics Reduction in Space by Trash Compaction and Processing System“. As they state in this section:

“NASA’s ultimate goal is to develop capabilities to enable missions that are not reliant on resupply from Earth thus making them more sustainable and affordable. NASA is implementing this by employing a capability-driven approach to its human spaceflight strategy. The approach is based on developing a suite of evolving capabilities that provide specific functions to solve exploration challenges. These investments in initial capabilities can continuously be leveraged and reused, enabling more complex operations over time and exploration of more distant solar system destinations.”

When it comes right down to it, storing trash inside a spacecraft is serious challenge. Not only does it consume precious volume, it can also create physical and biological hazards for the crew. Storing garbage also means that leftover resources can not be repurposed or recycled. All told, the BAA solicitation is looking for solutions that will compact trash, remove biological and physical hazards, and recover resources for future use.

To this end, they are looking for ideas and technologies for a TCPS that could operate on future generations of spaceships. As part of the Advanced Exploration Systems (AES) Habitat’s Logistics Reduction (LR), the TCPS is part of NASA’s larger goal of identifying and developing technologies that reduce logistical mass, volume, and the amount of time the crew dedicates to logistics management.

NASA’ Heat Melt Compactor (HMC), a device that will recover residual water from astronaut’s trash and compact the trash to provide volume reduction, or perhaps some usefulness as an ionizing radiation shield. Credit: NASA

The objectives of the TCPS , as is stated in the Appendix, are fourfold:

“(1) trash compaction to a suitable form for efficient long-endurance storage; (2) safe processing of trash to eliminate and/or reduce the risk of biological activity; (3) stabilize the trash physically, geometrically, and biologically; and (4) manage gaseous, aqueous, and particulate effluents. The TCPS will be the first step toward development and testing of a fully-integrated unit for further Exploration Missions and future space vehicles.”

The development will occur in two phases. In Phase A, selected companies will create a concept TCPS system, conduct design reviews with NASA, and validate them through prototype ground demonstrations. In Phase B, a system will be prepared for transport to the ISS so that a demonstration cant take place aboard the station as early as 2022.

The various companies that submit proposals will not be working in the dark, as NASA has been developing waste management systems since the 1980s. These include recent developments like the Heat Melt Compactor (HMC) experiment, a device that will recover residual water from astronaut’s garbage and compact trash to provide volume reduction (or perhaps an ionizing radiation shield).

The Kounotori2 H-II Transfer Vehicle (HTV-2), after taken on the ISS’ trash, is moved from the space station by the Canadarm 2 to await the arrival of the Space Shuttle Discovery’s STS-133 mission. Credit: NASA

Other examples include the “trash to gas” technologies, which are currently being pursued under the Logistics Reduction and Repurposing project (LRR). Using the HMC, this process involves creating methane gas from trash to make rocket propellant. Together, these technologies would not only allow astronauts on long-duration spaceflights to conserve room, but also extract useful resources from their garbage.

NASA plans to host an industry day on July 24th in order to let potential industry partners know exactly what they are looking for, describe available NASA facilities, and answer questions from potential respondents. Official proposals from aspiring partners are due no later than August 22nd, 2018, and whichever proposals make the cut will be tested on the ISS in the coming decade!

Further Reading: NASA, FBO

Astronaut Scott Tingle Was Able To Control A Ground-Based Robot… From Space.

If something called “Project METERON” sounds to you like a sinister project involving astronauts, robots, the International Space Station, and artificial intelligence, I don’t blame you. Because that’s what it is (except for the sinister part.) In fact, the Meteron Project (Multi-Purpose End-to-End Robotic Operation Network) is not sinister at all, but a friendly collaboration between the European Space Agency (ESA) and the German Aerospace Center (DLR.)

The idea behind the project is to place an artificially intelligent robot here on Earth under the direct control of an astronaut 400 km above the Earth, and to get the two to work together.

“Artificial intelligence allows the robot to perform many tasks independently, making us less susceptible to communication delays that would make continuous control more difficult at such a great distance.” – Neil Lii, DLR Project Manager.

On March 2nd, engineers at the DLR Institute of Robotics and Mechatronics set up the robot called Justin in a simulated Martian environment. Justin was given a simulated task to carry out, with as few instructions as necessary. The maintenance of solar panels was the chosen task, since they’re common on landers and rovers, and since Mars can get kind of dusty.

Justin is a pretty cool looking robot. Image: (DLR) German Aerospace Center (CC-BY 3.0)

The first test of the METERON Project was done in August. But this latest test was more demanding for both the robot and the astronaut issuing the commands. The pair had worked together before, but since then, Justin was programmed with more abstract commands that the operator could choose from.

American astronaut Scott Tingle issued commands to Justin from a tablet aboard the ISS, and the same tablet also displayed what Justin was seeing. The human-robot team had practiced together before, but this test was designed to push the pair into more challenging tasks. Tingle had no advance knowledge of the tasks in the test, and he also had no advance knowledge of Justin’s new capabilities. On-board the ISS, Tingle quickly realized that the panels in the simulation down here were dusty. They were also not pointed in the optimal direction.

This was a new situation for Tingle and for Justin, and Tingle had to choose from a range of commands on the tablet. The team on the ground monitored his choices. The level of complexity meant that Justin couldn’t just perform the task and report it completed, it meant that Tingle and the robot also had to estimate how clean the panels were after being cleaned.

“Our team closely observed how the astronaut accomplished these tasks, without being aware of these problems in advance and without any knowledge of the robot’s new capabilities,” says DLR engineer Daniel Leidner.

Streaks of dust or sand on NASA’s Mars rover Opportunity show what can happen to solar panels on the red planet. For any more permanent structures that we may put on Mars, an artificially intelligent maintenance robot under the control of an astronaut in orbit could be the perfect solution to the maintenance of solar panels. Credits: NASA/JPL-Caltech

The next test will take place in Summer 2018 and will push the system even further. Justin will have an even more complex task before him, in this case selecting a component on behalf of the astronaut and installing it on the solar panels. The German ESA astronaut Alexander Gerst will be the operator.

If the whole point of this is not immediately clear to you, think Mars exploration. We have rovers and landers working on the surface of Mars to study the planet in increasing detail. And one day, humans will visit the planet. But right now, we’re restricted to surface craft being controlled from Earth.

What METERON and other endeavours like it are doing, is developing robots that can do our work for us. But they’ll be smart robots that don’t need to be told every little thing. They are just given a task and they go about doing it. And the humans issuing the commands could be in orbit around Mars, rather than being exposed to all the risks on the surface.

“Artificial intelligence allows the robot to perform many tasks independently, making us less susceptible to communication delays that would make continuous control more difficult at such a great distance,” explained Neil Lii, DLR Project Manager. “And we also reduce the workload of the astronaut, who can transfer tasks to the robot.” To do this, however, astronauts and robots must cooperate seamlessly and also complement one another.

These two images from the camera on NASA’s Mars Global Surveyor show the effect that a global dust storm has on Mars. On the left is a normal view of Mars, on the right is Mars obscured by the haze from a dust storm. Image: NASA/JPL/MSSS

That’s why these tests are important. Getting the astronaut and the robot to perform well together is critical.

“This is a significant step closer to a manned planetary mission with robotic support,” says Alin Albu-Schäffer, head of the DLR Institute of Robotics and Mechatronics. It’s expensive and risky to maintain a human presence on the surface of Mars. Why risk human life to perform tasks like cleaning solar panels?

“The astronaut would therefore not be exposed to the risk of landing, and we could use more robotic assistants to build and maintain infrastructure, for example, with limited human resources.” In this scenario, the robot would no longer simply be the extended arm of the astronaut: “It would be more like a partner on the ground.”

Special Skinsuits Could Help Astronauts Avoid Back Pain When Their Spines Expand In Space

The microgravity in space causes a number of problems for astronauts, including bone density loss and muscle atrophy. But there’s another problem: weightlessness allows astronauts’ spines to expand, making them taller. The height gain is permanent while they’re in space, and causes back pain.

A new SkinSuit being tested in a study at King’s College in London may bring some relief. The study has not been published yet.

The constant 24 hour microgravity that astronauts live with in space is different from the natural 24 hour cycle that humans go through on Earth. Down here, the spine goes through a natural cycle associated with sleep.

Sleeping in a supine position allows the discs in the spine to expand with fluid. When we wake up in the morning, we’re at our tallest. As we go about our day, gravity compresses the spinal discs and we lose about 1.5 cm (0.6 inches) in height. Then we sleep again, and the spine expands again. But in space, astronauts spines have been known to grow up to 7 cm. (2.75 in.)

Study leader David A. Green explains it: “On Earth your spine is compressed by gravity as you’re on your feet, then you go to bed at night and your spine unloads – it’s a normal cyclic process.”

In microgravity, the spine of an astronaut is never compressed by gravity, and stays unloaded. The resulting expansion causes pain. As Green says, “In space there’s no gravitational loading. Thus the discs in your spine may continue to swell, the natural curves of the spine may be reduced and the supporting ligaments and muscles — no longer required to resist gravity – may become loose and weak.”

The SkinSuit being developed by the Space Medicine Office of ESA’s European Astronaut Centre and the King’s College in London is based on work done by the Massachusetts Institute of Technology (MIT). It’s a spandex-based garment that simulates gravity by squeezing the body from the shoulders to the feet.

ESA astronauts have tested the SkinSuit both in weightless parabolic flights, and on-board the ISS. Image: CNES/Novespace, 2014

The Skinsuits were tested on-board the International Space Station by ESA astronauts Andreas Mogensen and Thomas Pesquet. But they could only be worn for a short period of time. “The first concepts were really uncomfortable, providing some 80% equivalent gravity loading, and so could only be worn for a couple of hours,” said researcher Philip Carvil.

Back on Earth, the researchers worked on the suit to improve it. They used a waterbed half-filled with water rich in magnesium salts. This re-created the microgravity that astronauts face in space. The researchers were inspired by the Dead Sea, where the high salt content allows swimmers to float on the surface.

“During our longer trials we’ve seen similar increases in stature to those experienced in orbit, which suggests it is a valid representation of microgravity in terms of the effects on the spine,” explains researcher Philip Carvil.

The SkinSuit has evolved through several designs to make it more wearable, comfortable, and effective. Image: Kings College London/Philip Carvill

Studies using students as test subjects have helped with the development of the SkinSuit. After lying on the microgravity-simulating waterbed both with and without the SkinSuit, subjects were scanned with MRI’s to test the SkinSuit’s effectiveness. The suit has gone through several design revisions to make it more comfortable, wearable, and effective. It’s now up to the Mark VI design.

“The Mark VI Skinsuit is extremely comfortable, to the point where it can be worn unobtrusively for long periods of normal activity or while sleeping,” say Carvil. “The Mk VI provides around 20% loading – slightly more than lunar gravity, which is enough to bring back forces similar to those that the spine is used to having.”

“The results have yet to be published, but it does look like the Mk VI Skinsuit is effective in mitigating spine lengthening,” says Philip. “In addition we’re learning more about the fundamental physiological processes involved, and the importance of reloading the spine for everyone.”

SpaceX Performs an Experimental High Retrothrust and Survives a Water Landing

SpaceX’s most recent rocket launch saw the Falcon 9 perform a high retro-thrust over water, with no drone ship in sight. SpaceX never intended to reuse this rocket, and they haven’t said exactly why.

This launch was conducted on January 31st, and the payload was a communications satellite called GovSat-1. It’s a public-private partnership, and GovSat-1 is a heavy satellite which was placed into a particularly high orbit. It will be used by the government of Luxembourg, and by a private European company called SES. It’ll provide secure communications and surveillance for the military, and it has anti-jamming features to help it resist attack.

A high orbit and a heavy payload means that the Falcon 9 that launched it might not have had enough fuel for its customary drone landing. But other Falcon 9s have launched payloads this high and landed on droneships for reuse. So what gives?

According to SpaceX, they never planned to land and reuse this one. They didn’t exactly say why they did it this way, but it’s been speculated that this one was an older iteration of the Falcon 9 known as the Block3. This is the second time SpaceX flew a Block 3 iteration without trying to reuse it. The first time they launched one without reusing it, it carried 10 Iridium satellites into low-Earth orbit.

The Falcon 9 is flying in Block 4 configuration now, with Block 5 coming in the near future. SpaceX says that the Falcon 9 Block 5 will improve the performance and the reusability of the rocket in the future. They’ve also stated that the Block 5 will be the final configuration. Maybe they let this one land in the ocean because it’s just not needed anymore.

SpaceX’s reusable rocketry technology is their primary development. The main booster of their Falcon 9 can be reconditioned and used again and again, keeping costs down. After lift-off, and after the primary stage is released, the main-stage booster lands on a SpaceX drone ship, where it is secured and delivered to shore to be reused.

In this case, SpaceX wanted to test a high retro-thrust landing. The test consisted of three separate burns performed over water, rather than on a drone ship, to avoid damaging the ship. The rocket itself wasn’t expected to survive, but did. Or it partly survived, anyway. As Elon Musk confirmed in his tweet:

The retro-thrust rockets on SpaceX rockets like the Falcon 9 allow the rocket to land softly. They thrust in the opposite direction the rocket is landing, and cushion the Falcon 9’s landing on the droneship.

With the successful static test of SpaceX’s Falcon Heavy last week, a first launch for the Heavy is in sight. Testing high retro-thrust landings could be related to the upcoming first launch, even though, as Elon Musk said, merely getting the Falcon Heavy off the pad and back would constitute a successful first flight. But that’s just a guess.

The Falcon Heavy is designed to be reusable, just like its little brother, the Falcon 9. Reusability is key to SpaceX and is the whole reason Musk started the company: to make spaceflight more affordable, and to help humanity travel beyond the Moon.

SpaceX plans to tow this Falcon 9 back to shore and see if it can be salvaged. But after being dunked in salt water, any meaningful salvage seems unlikely. Who knows. Maybe Elon Musk will use it for flame-thrower target practice.

But the fate of this single rocket isn’t really that important in the grand scheme of things. What’s important is that SpaceX is still testing designs, and still pushing the boundaries of lower-cost spaceflight.

With that in mind, here’s hoping the whiz kids at SpaceX can destroy a few more rockets. After all, it’s all in the name of science.

Microbes May Help Astronauts Turn Human Waste Into Food

Researchers at Penn State University are developing a way to use microbes to turn human waste into food on long space voyages. Image: Yuri Gorby, Rensselaer Polytechnic Institute

Geoscience researchers at Penn State University are finally figuring out what organic farmers have always known: digestive waste can help produce food. But whereas farmers here on Earth can let microbes in the soil turn waste into fertilizer, which can then be used to grow food crops, the Penn State researchers have to take a different route. They are trying to figure out how to let microbes turn waste directly into food.

There are many difficulties with long-duration space missions, or with lengthy missions to other worlds like Mars. One of the most challenging difficulties is how to take enough food. Food for a crew of astronauts on a 6-month voyage to Mars, and enough for a return trip, weighs a lot. And all that weight has to be lifted into space by expensive rockets.

SpaceX's reusable rockets are bringing down the cost of launching things into space, but the cost is still prohibitive. Any weight savings contribute to a missions feasibility, including a reduction in food supplies for long space journeys. In this image, a SpaceX Falcon 9 recycled rocket lifts off at sunset at 6:53 PM EDT on 11 Oct 2017.  Credit: Ken Kremer/Kenkremer.com
SpaceX’s reusable rockets are bringing down the cost of launching things into space, but the cost is still prohibitive. Any weight savings contribute to a missions feasibility, including a reduction in food supplies for long space journeys. In this image, a SpaceX Falcon 9 recycled rocket lifts off at sunset at 6:53 PM EDT on 11 Oct 2017. Credit: Ken Kremer/Kenkremer.com

Carrying enough food for a long voyage in space is problematic. Up until now, the solution for providing that food has been focused on growing it in hydroponic chambers and greenhouses. But that also takes lots of space, water, and energy. And time. It’s not really a solution.

“It’s faster than growing tomatoes or potatoes.” – Christopher House, Penn State Professor of Geosciences

What the researchers at Penn State, led by Professor of Geosciences Christopher House, are trying to develop, is a method of turning waste directly into an edible, nutritious substance. Their aim is to cut out the middle man, as it were. And in this case, the middle men are plants themselves, like tomatoes, potatoes, or other fruits and vegetables.

We've always assumed that astronauts working on Mars would feed themselves by growing Earthly crops in simulated Earth conditions. But that requires a lot of energy, space, and materials. It may not be necessary. An artist's illustration of a greenhouse on Mars. Image Credit: SAIC
We’ve always assumed that astronauts working on Mars would feed themselves by growing Earthly crops in simulated Earth conditions. But that requires a lot of energy, space, and materials. It may not be necessary. An artist’s illustration of a greenhouse on Mars. Image Credit: SAIC

“We envisioned and tested the concept of simultaneously treating astronauts’ waste with microbes while producing a biomass that is edible either directly or indirectly depending on safety concerns,” said Christopher House, professor of geosciences, Penn State. “It’s a little strange, but the concept would be a little bit like Marmite or Vegemite where you’re eating a smear of ‘microbial goo.'”

The Penn State team propose to use specific microorganisms to turn waste directly into edible biomass. And they’re making progress.

At the heart of their work are things called microbial reactors. Microbial reactors are basically vessels designed to maximize surface area for microbes to populate. These types of reactors are used to treat sewage here on Earth, but not to produce an edible biomass.

“It’s a little strange, but the concept would be a little bit like Marmite or Vegemite where you’re eating a smear of ‘microbial goo.'” – Christopher House, Penn State Professor of Geosciences

To test their ideas, the researchers constructed a cylindrical vessel four feet long by four inches in diameter. Inside it, they allowed select microorganisms to come into contact with human waste in controlled conditions. The process was anaerobic, and similar to what happens inside the human digestive tract. What they found was promising.

“Anaerobic digestion is something we use frequently on Earth for treating waste,” said House. “It’s an efficient way of getting mass treated and recycled. What was novel about our work was taking the nutrients out of that stream and intentionally putting them into a microbial reactor to grow food.”

One thing the team discovered is that the process readily produces methane. Methane is highly flammable, so very dangerous on a space mission, but it has other desirable properties when used in food production. It turns out that methane can be used to grow another microbe, called Methylococcus capsulatus. Methylococcus capsulatus is used as an animal food. Their conclusion is that the process could produce a nutritious food for astronauts that is 52 percent protein and 36 percent fats.

“We used materials from the commercial aquarium industry but adapted them for methane production.” – Christopher House, Penn State Professor of Geosciences

The process isn’t simple. The anaerobic process involved can produce pathogens very dangerous to people. To prevent that, the team studied ways to grow microbes in either an alkaline environment or a high-heat environment. After raising the system pH to 11, they found a strain of the bacteria Halomonas desiderata that thrived. Halomonas desiderata is 15 percent protein and 7 percent fats. They also cranked the system up to a pathogen-killing 158 degrees Fahrenheit, and found that the edible Thermus aquaticus grew, which is 61 percent protein and 16 percent fats.

Conventional waste treatment plants, like this one in England, take several days to treat waste. The anerobic system tested by the Penn State team treated waste in as little as 13 hours. Image: Nick Allen, CC BY-SA 4.0

Their system is based on modern aquarium systems, where microbes live on the surface of a filter film. The microbes take solid waste from the stream and convert it to fatty acids. Then, those fatty acids are converted to methane by other microbes on the same surface.

Speed is a factor in this system. Existing waste management treatment typically takes several days. The team’s system removed 49 to 59 percent of solids in 13 hours.

This system won’t be in space any time soon. The tests were conducted on individual components, as proof of feasibility. A complete system that functioned together still has to be built. “Each component is quite robust and fast and breaks down waste quickly,” said House. “That’s why this might have potential for future space flight. It’s faster than growing tomatoes or potatoes.”

The team’s paper was published here, in the journal Life Sciences In Space Research.

SpaceX Resuming Launches from Damaged Pad 40 on Dec. 4 with Station Resupply Flight for NASA; Covert Zuma Remains on Hold

SpaceX Dragon CRS-9 was the last International Space Station resupply mission to lift off successfully from pad 40 on July 18, 2016, prior to the Cape Canaveral, FL, launch pad explosion with the Amos-6 payload that heavily damaged the pad and infrastructure on Sept. 1, 2016. Cargo launches for NASA will resume with Dragon CRS-13 in December 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After postponing last week’s liftoff of the covert ‘Zuma’ spy satellite due to last minute concerns about the reliability of the payload fairing encapsulating it while poised for liftoff at KSC pad 39, SpaceX is set to at last resume launches from their previously damaged and now repaired Cape Canaveral pad 40 with a cargo resupply mission for NASA to the International Space Station (ISS) on Dec 4.

NASA and SpaceX have jointly decided to move forward with the Dragon CRS-13 cargo blastoff apparently because the mission does not involve use of the problematical payload fairing that halted last weeks planned Falcon 9 launch with the rocket and the mysterious Zuma payload.

Zuma was ready and waiting at pad 39A for the GO to launch that never came.

Then after a series of daily delays SpaceX ultimately announced a ‘stand down’ for super secret Zuma at pad 39A on Friday, Nov. 17, for the foreseeable future.

SpaceX engineers also had to deal with the after effects of a fire that broke out on a Merlin engine test stand during preparations for a hot fire test that resulted from a leak during a ‘LOX drop’ that halted testing of the Block 5 version of the Merlin 1D.

SpaceX Falcon 9 rocket blastoff of clandestine Zuma spysat to low earth orbit for a classified US government customer is postponed indefinitely from Launch Complex 39A at the Kennedy Space Center, FL, from last targeted launch date of 17 Nov 2017. Credit: Ken Kremer/Kenkremer.com

Since SpaceX’s gumdrop shaped Dragon cargo freighter launches as a stand alone aerodynamically shielded spacecraft atop the Falcon 9, it does not require additional protection from atmospheric forces and friction housed inside a nose cone during ascent to orbit unlike satellites with many unprotected exposed surfaces, critical hardware and delicate instruments.

Thus Dragon is deemed good to go since there currently appear to be no other unresolved technical issues with the Falcon 9 rocket.

“NASA commercial cargo provider SpaceX is targeting its 13th commercial resupply services mission to the International Space Station for no earlier than 2:53 p.m. EST Monday, Dec. 4,” NASA announced on the agency blog and social media accounts.

The Dec. 4 launch date for Dragon CRS-13 was announced by NASA’s space station manager Dan Hartman during the Orbital ATK Antares/Cygnus launch campaign that culminated with a successful blastoff last Sunday, Nov 12 from NASA’s Wallops Flight Facility on Virginia’s eastern shore.

But the targeted Dec 4 liftoff from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL, was cast in doubt after SpaceX disclosed the payload fairing issue related launch delay on Friday.

Since last week SpaceX engineers have been busy taking the time to carefully scrutinize all the pertinent fairing data before proceeding with the top secret Zuma launch.

“We have decided to stand down and take a closer look at data from recent fairing testing for another customer,” said SpaceX spokesman John Taylor last Friday.

Covert Zuma spysat is encapsulated inside the nose cose at the top of the SpaceX Falcon 9 rocket in this up-close view from Launch Complex 39A at the Kennedy Space Center, FL, taken on Nov. 17, 2017. An unresolved issue with the nose cone caused indefinite launch postponement. Credit: Ken Kremer/Kenkremer.com

All of SpaceX’s launches this year from Florida’s Spaceport have taken place from NASA’s historic Launch Complex-39A at the Kennedy Space Center.

Pad 39A became SpaceX’s only operational Florida Space Coast launch pad following a catastrophic launch pad accident last year on Sept. 1, 2016 that took place during a routine fueling test that suddenly ended in a devastating explosion and fire that completely consumed the Falcon 9 rocket and Amos-6 payload and heavily damaged the pad and support infrastructure.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Since the Amos-6 accident workers raced to finish refurbishments to NASA’s long dormant pad 39A to transform into operational status and successfully launched a dozen missions this year.

Simultaneously additional crews have been hard at work to repair damaged pad 40 so that flights can resume there as soon as possible for the bulk of NASA, commercial and military contracted missions.

Meanwhile SpaceX wants to upgrade pad 39A to launch the Falcon Heavy and crewed Dragon flight. But those launches cant take place until pad 40 resumes operational status.

The Dragon CRS-13 mission was recently announced as the maiden mission for the reopening of pad 40.

Altogether Dragon CRS-13 will count as the fourth SpaceX Dragon liftoff of 2017.

The 20-foot high, 12-foot-diameter Dragon CRS-13 vessel will carry about 3 tons of science and supplies to the orbiting outpost and stay about 4 weeks.

It will be a reused Dragon that previously flew on the CRS-6 mission.

“The Dragon [CRS-13] spacecraft will spend about a month attached to the space station,” NASA said.

SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

The prior Dragon CRS-12 resupply ship launched from pad 39A on Aug. 14, 2017 from KSC pad 39A and carried more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

Dragon CRS-9 was the last ISS resupply mission to launch from pad 40 on July 18, 2016.

The recently arrived Orbital ATK Cygnus cargo ship is expected to depart the station from the Earth facing Unity node on Dec. 3 to make way for Dragon’s berthing at the Harmony node.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of SpaceX CRS-13, Zuma and KoreaSat-5A & Orbital ATK OA-8 Cygnus and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com