Earth’s toughest bacteria can survive unprotected in space for at least a year

Credit: Ott, E., Kawaguchi, Y., Kölbl, D. et al.

A remarkable microbe named Deinococcus radiodurans (the name comes from the Greek deinos meaning terrible, kokkos meaning grain or berry, radius meaning radiation, and durare meaning surviving or withstanding) has survived a full year in the harsh environment of outer space aboard (but NOT inside) the International Space Station. This plucky prokaryote is affectionately known by fans as Conan the Bacterium, as seen in this classic 1990s NASA article.

The JAXA (Japanese Aerospace Exploration Agency) ISS module Kib? has an unusual feature for spacecraft, a front porch! This exterior portion of the space station is fitted with robotic equipment to complete various experiments in outer space’s brutal conditions. One of these experiments was to expose cells of D. radiodurans for a year and then test the cells to see if they not only would survive but could reproduce effectively afterward. D. radiodurans proved to be up to the challenge, and what a challenge it was!

Continue reading “Earth’s toughest bacteria can survive unprotected in space for at least a year”

A Microorganism With a Taste for Meteorites Could Help us Understand the Formation of Life on Earth

From the study of meteorite fragments that have fallen to Earth, scientists have confirmed that bacteria can not only survive the harsh conditions of space but can transport biological material between planets. Because of how common meteorite impacts were when life emerged on Earth (ca. 4 billion years ago), scientists have been pondering whether they may have delivered the necessary ingredients for life to thrive.

In a recent study, an international team led by astrobiologist Tetyana Milojevic from the University of Vienna examined a specific type of ancient bacteria that are known to thrive on extraterrestrial meteorites. By examining a meteorite that contained traces of this bacteria, the team determined that these bacteria prefer to feed on meteors – a find which could provide insight into how life emerged on Earth.

Continue reading “A Microorganism With a Taste for Meteorites Could Help us Understand the Formation of Life on Earth”

The Milky Way Could Be Spreading Life From Star to Star

For almost two centuries, scientists have theorized that life may be distributed throughout the Universe by meteoroids, asteroids, planetoids, and other astronomical objects. This theory, known as Panspermia, is based on the idea that microorganisms and the chemical precursors of life are able to survive being transported from one star system to the next.

Expanding on this theory, a team of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study that considered whether panspermia could be possible on a galactic scale. According to the model they created, they determined that the entire Milky Way (and even other galaxies) could be exchanging the components necessary for life.

Continue reading “The Milky Way Could Be Spreading Life From Star to Star”