Comet U1 NEOWISE: A Possible Binocular Comet?

Comet C/2016 U1 NEOWISE on December 23rd as seen from Jauerling, Austria. Image credit: Michael Jäger.

Well, it looks like we’ll close out 2016 without a great ‘Comet of the Century.’ One of the final discoveries of the year did, however, grab our attention, and may present a challenging target through early 2017: Comet U1 NEOWISE.

Comet C/2016 U1 NEOWISE is expected to reach maximum brightness during the second week on January. Discovered by the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) space observatory on its extended mission on October 21st, 2016, Comet U1 NEOWISE orbits the Sun on an undefined hyperbolic orbit that is perhaps millions on years long. This also means that this could be Comet C/2016 U1 NEOWISE’s first venture through the inner solar system. Comet C/2016 U1 NEOWISE is set to break binocular +10th magnitude brightness this week, and may just top +6th magnitude (naked eye brightness) in mid-January near perihelion.

The orbit of Comet U1 NEOWISE. Credit: NASA/JPL.

Visibility prospects: At its brightest, Comet C/2016 U1 NEOWISE will pass through the constellations Ophiuchus to Serpens Cauda and Sagittarius, and is best visible in the dawn sky 12 degrees from the Sun at maximum brightness. This apparition favors the northern hemisphere. Perihelion for Comet C/2016 U1 NEOWISE occurs on January 13th, 2017 at 0.319 AU from the Sun, and the comet passed 0.709 AU from the Earth on December 13th.

This is the ninth comet discovered by the extended NEOWISE mission since 2014.

The pre-dawn view on the morning of December 28th. Image credit: Starry Night.

Comet C/2016 U1 NEOWISE ends 2016 and early January 2017 as a difficult early dawn target, sitting 25 degrees above the eastern horizon as seen from latitude 30 degrees north about 30 minutes before dawn. Things will get much more difficult from there, as the comet passes just 12 degrees from the Sun as seen from our Earthly vantage point during the final week of January. The comet sits 16 degrees from the Sun in the southern hemisphere constellation of Microscopium on the final day of January, though it is expected to shine at only +10th magnitude at this point, favoring observers in the southern hemisphere.

The time to try to catch a brief sight of Comet C/2016 U1 NEOWISE is now. Recent discussions among comet observers suggest that the comet may be slowing down in terms of brightness, possibly as a prelude to a pre-perihelion breakup. Keep a eye on the Comet Observer’s database (COBS) for the latest in cometary action as reported and seen by actual observers in the field.

Finding C/2016 U1 NEOWISE will be a battle between spying an elusive fuzzy low-contrast coma against a brightening twilight sky. Sweep the suspect area with binoculars or a wide-field telescopic view if possible.

The path of Comet U1 NEOWISE through perihelion on January 13th. Credit: Starry Night.

Here are some key dates to watch out for in your quest:


25-Crosses in to Ophiuchus.

26-Passes near +3 mag Kappa Ophiuchi.


1-Crosses the celestial equator southward.

3-Passes near M14.

7-Passes near the +3 mag star Nu Ophiuchi.

8-Crosses into the constellation Serpens Cauda.

10-Passes near M16, the Eagle Nebula.

11-Passes near M17 the Omega Nebula, crosses the galactic equator southward.

12-Crosses into the constellation Sagittarius.

13-Passes near M25.

16-Crosses the ecliptic southward.

27-Crosses into the constellation Microscopium.

28-Passes near +4.8 mag star Alpha Microscopii.


1-May drop back below +10 magnitude.

C/2016 U1 NEOWISE (23.nov.2016) from Oleg Milantiev on Vimeo.

A rundown on comets in 2016, a look ahead at 2017

C/2016 U1 NEOWISE was one of 50 comets discovered in 2016. Notables for the year included C/2013 X1 PanSTARRS, 252/P LINEAR and C/2013 US10 Catalina. What comets are we keeping an eye on in 2017? Well, Comet 2/P Encke, 41P/Tuttle-Giacobini-Kresak, C/2015 ER61 PanSTARRS, C/2015 V2 Johnson are all expected to reach +10 magnitude brightness in the coming year… and Comet 45P/Honda-Mrkos-Pajdušáková has already done so, a bit ahead of schedule. These are all broken down in our forthcoming guide to the top 101 Astronomical Events for 2017. Again, there’s no great naked eye comet on the horizon (yet), but that all could change… 2017 owes us one!

What is Absolute Pressure?

Absolute Pressure

When it comes to measurements, the everyday kind that deal with things like air pressure, tire pressure, blood pressure, etc., there is no such thing as an absolute accuracy. And yet, as with most things, scientists are able to come up with a relatively accurate way of gauging these things by measuring them relative to other things. When it comes to air pressure (say for example, inside a tire), this takes the form of measuring it relative to ambient air temperature, or a perfect vacuum. The latter case, where zero pressure is referred against a total vacuum, is known as Absolute Pressure. The name may seem slightly ironic, but since the comparison is against an environment in which there is no air pressure to speak of.

In the larger context of pressure measurement, Absolute Pressure is part of the “zero reference” trinity. This includes Absolute Pressure (AP), Gauge Pressure, and Differential Pressure. As already noted, AP is zero referenced against a perfect vacuum. This is the method of choice when measuring quantities where absolute values must be determined. Gauge Pressure, on the other hand, is referenced against ambient air pressure, and is used for conventional purposes such as measuring tire and blood pressure. Differential Pressure is quite simply the difference between the two points.

Cases where AP are used include atmospheric pressures readings: where one is trying to determine air pressure (expressed in units of atm’s, where one is equal to 101,325 Pa), Mean Sea Level pressure (the air pressure at sea level; on average: 101.325 kPa), or the boiling point of water (which varies based on elevation and differences in air pressure). Another instance of AP being the method of choice is with the measurement of deep vacuum pressures (aka. outer space) where absolute readings are needed since scientists are dealing with a near-total vacuum. Altimeter pressure is another instance, where air pressure is used to determine the altitude of an aircraft and absolute values are needed to ensure both accuracy and safety.

To produce an absolute pressure sensor, manufacturer will seal a high vacuum behind the sensing diaphragm. If the connection of an absolute pressure transmitter is open to the air, it will read the actual barometric pressure (which is roughly 14.7 PSI). This is different from most gauges, such as those used to measure tire pressure, in that such gauges are calibrated to take into account ambient air pressure (i.e. registering 14.7 PSI as zero).

We have written many articles about absolute pressure for Universe Today. Here’s an article about Boyle’s Law, and here’s an article about air density.

If you’d like more info on absolute pressure, check out an article about pressure from Wikipedia. Also, here’s another article from Engineering Toolbox.

We’ve also recorded an entire episode of Astronomy Cast all about Temperature. Listen here, Episode 204: Temperature.


What Is A Singularity?

Artist's conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library

Ever since scientists first discovered the existence of black holes in our universe, we have all wondered: what could possibly exist beyond the veil of that terrible void? In addition, ever since the theory of General Relativity was first proposed, scientists have been forced to wonder, what could have existed before the birth of the Universe – i.e. before the Big Bang?

Interestingly enough, these two questions have come to be resolved (after a fashion) with the theoretical existence of something known as a Gravitational Singularity – a point in space-time where the laws of physics as we know them break down. And while there remain challenges and unresolved issues about this theory, many scientists believe that beneath veil of an event horizon, and at the beginning of the Universe, this was what existed.


In scientific terms, a gravitational singularity (or space-time singularity) is a location where the quantities that are used to measure the gravitational field become infinite in a way that does not depend on the coordinate system. In other words, it is a point in which all physical laws are indistinguishable from one another, where space and time are no longer interrelated realities, but merge indistinguishably and cease to have any independent meaning.

Credit: ESA/Hubble, ESO, M. Kornmesser
This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. Credit: ESA/Hubble, ESO, M. Kornmesse

Origin of Theory:

Singularities were first predicated as a result of Einstein’s Theory of General Relativity, which resulted in the theoretical existence of black holes. In essence, the theory predicted that any star reaching beyond a certain point in its mass (aka. the Schwarzschild Radius) would exert a gravitational force so intense that it would collapse.

At this point, nothing would be capable of escaping its surface, including light. This is due to the fact the gravitational force would exceed the speed of light in vacuum – 299,792,458 meters per second (1,079,252,848.8 km/h; 670,616,629 mph).

This phenomena is known as the Chandrasekhar Limit, named after the Indian astrophysicist Subrahmanyan Chandrasekhar, who proposed it in 1930. At present, the accepted value of this limit is believed to be 1.39 Solar Masses (i.e. 1.39 times the mass of our Sun), which works out to a whopping 2.765 x 1030 kg (or 2,765 trillion trillion metric tons).

Another aspect of modern General Relativity is that at the time of the Big Bang (i.e. the initial state of the Universe) was a singularity. Roger Penrose and Stephen Hawking both developed theories that attempted to answer how gravitation could produce singularities, which eventually merged together to be known as the Penrose–Hawking Singularity Theorems.

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit:

According to the Penrose Singularity Theorem, which he proposed in 1965, a time-like singularity will occur within a black hole whenever matter reaches certain energy conditions. At this point, the curvature of space-time within the black hole becomes infinite, thus turning it into a trapped surface where time ceases to function.

The Hawking Singularity Theorem added to this by stating that a space-like singularity can occur when matter is forcibly compressed to a point, causing the rules that govern matter to break down. Hawking traced this back in time to the Big Bang, which he claimed was a point of infinite density. However, Hawking later revised this to claim that general relativity breaks down at times prior to the Big Bang, and hence no singularity could be predicted by it.

Some more recent proposals also suggest that the Universe did not begin as a singularity. These includes theories like Loop Quantum Gravity, which attempts to unify the laws of quantum physics with gravity. This theory states that, due to quantum gravity effects, there is a minimum distance beyond which gravity no longer continues to increase, or that interpenetrating particle waves mask gravitational effects that would be felt at a distance.

Types of Singularities:

The two most important types of space-time singularities are known as Curvature Singularities and Conical Singularities. Singularities can also be divided according to whether they are covered by an event horizon or not. In the case of the former, you have the Curvature and Conical; whereas in the latter, you have what are known as Naked Singularities.

A Curvature Singularity is best exemplified by a black hole. At the center of a black hole, space-time becomes a one-dimensional point which contains a huge mass. As a result, gravity become infinite and space-time curves infinitely, and the laws of physics as we know them cease to function.

Conical singularities occur when there is a point where the limit of every general covariance quantity is finite. In this case, space-time looks like a cone around this point, where the singularity is located at the tip of the cone. An example of such a conical singularity is a cosmic string, a type of hypothetical one-dimensional point that is believed to have formed during the early Universe.

And, as mentioned, there is the Naked Singularity, a type of singularity which is not hidden behind an event horizon. These were first discovered in 1991 by Shapiro and Teukolsky using computer simulations of a rotating plane of dust that indicated that General Relativity might allow for “naked” singularities.

In this case, what actually transpires within a black hole (i.e. its singularity) would be visible. Such a singularity would theoretically be what existed prior to the Big Bang. The key word here is theoretical, as it remains a mystery what these objects would look like.

For the moment, singularities and what actually lies beneath the veil of a black hole remains a mystery. As time goes on, it is hoped that astronomers will be able to study black holes in greater detail. It is also hoped that in the coming decades, scientists will find a way to merge the principles of quantum mechanics with gravity, and that this will shed further light on how this mysterious force operates.

We have many interesting articles about gravitational singularities here at Universe Today. Here is 10 Interesting Facts About Black Holes, What Would A Black Hole Look Like?, Was the Big Bang Just a Black Hole?, Goodbye Big Bang, Hello Black Hole?, Who is Stephen Hawking?, and What’s on the Other Side of a Black Hole?

If you’d like more info on singularity, check out these articles from NASA and Physlink.

Astronomy Cast has some relevant episodes on the subject. Here’s Episode 6: More Evidence for the Big Bang, and Episode 18: Black Holes Big and Small and Episode 21: Black Hole Questions Answered.


What is Gravitational Force?

Why Do Planets Orbit the Sun

Newton’s Law of Universal Gravitation is used to explain gravitational force. This law states that every massive particle in the universe attracts every other massive particle with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. This general, physical law was derived from observations made by induction. Another way, more modern, way to state the law is: ‘every point mass attracts every single other point mass by a force pointing along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between the point masses’.

Gravitational force surrounds us. It is what decides how much we weigh and how far a basketball will travel when thrown before it returns to the surface. The gravitational force on Earth is equal to the force the Earth exerts on you. At rest, on or near the surface of the Earth, the gravitational force equals your weight. On a different astronomical body like Venus or the Moon, the acceleration of gravity is different than on Earth, so if you were to stand on a scale, it would show you that you weigh a different amount than on Earth.

When two objects are gravitational locked, their gravitational force is centered in an area that is not at the center of either object, but at the barycenter of the system. The principle is similar to that of a see-saw. If two people of very different weights sit on opposite sides of the balance point, the heavier one must sit closer to the balance point so that they can equalize each others mass. For instance, if the heavier person weighs twice as much as the lighter one, they must sit at only half the distance from the fulcrum. The balance point is the center of mass of the see-saw, just as the barycenter is the balance point of the Earth-Moon system. This point that actually moves around the Sun in the orbit of the Earth, while the Earth and Moon each move around the barycenter, in their orbits.

Each system in the galaxy, and presumably, the universe, has a barycenter. The push and pull of the gravitational force of the objects is what keeps everything in space from crashing into one another.

We have written many articles about gravitational force for Universe Today. Here’s an article about gravity in space, and here’s an article about the discovery of gravity.

If you’d like more info on Gravity, check out The Constant Pull of Gravity: How Does It Work?, and here’s a link to Gravity on Earth Versus Gravity in Space: What’s the Difference?.

We’ve also recorded an entire episode of Astronomy Cast all about Gravity. Listen here, Episode 102: Gravity.

What is Schrodinger’s Cat?

Schrodinger’s cat is named after Erwin Schrödinger, a physicist from Austria who made substantial contributions to the development of quantum mechanics in the 1930s (he won a Nobel Prize for some of this work, in 1933). Apart from the poor cat (more later), his name is forever associated with quantum mechanics via the Schrödinger equation, which every physics student has to grapple with.

Schrodinger’s cat is actually a thought experiment (Gedankenexperiment) – and the cat may not have been Erwin’s, but his wife’s, or one of his lovers’ (Erwin had an unconventional lifestyle) – designed to test a really weird implication of the physics he and other physicists was developing at the time. It was motivated by a 1935 paper by Einstein, Podolsky, and Rosen; this paper is the source of the famous EPR paradox.

In the thought experiment, Schrodinger’s cat is placed inside a box containing a piece of radioactive material, and a Geiger counter wired to a flask of poison in such a way that if the Geiger counter detects a decay, then the flask is smashed, the poison gas released, and the cat dies (fun piece of trivia: an animal rights group accused physicists of cruelty to animals, based on a distorted version of this thought experiment! though maybe that’s just an urban legend). The half-life of the radioactive material is an hour, so after an hour, there is a 50% probability that the cat is dead, and an equal probability that it is alive. In quantum mechanics, these two states are superposed (a technical term), and the cat is neither dead nor alive, or half-dead and half-alive, or … which is really, really weird.

Now the theory – quantum mechanics – has been tested perhaps more thoroughly than any other theory in physics, and it seems to describe how the universe behaves with extraordinary accuracy. And the theory says that when the box is opened – to see if the cat is dead, alive, half-dead and half-alive, or anything else – the wavefunction (describing the cat, Geiger counter, etc) collapses, or decoheres, or that the states are no longer entangled (all technical terms), and we see only a dead cat or cat very much alive.

There are several ways to get your mind around what’s going on – or several interpretations (you guessed it, yet another technical term!) – with names like Copenhagen interpretation, many worlds interpretation, etc, but the key thing is that the theory is mute on the interpretations … it simply says you can calculate stuff using the equations, and what your calculations show is what you’ll see, in any experiment.

Fast forward to some time after Schrödinger – and Einstein, Podolsky, and Rosen – had died, and we find that tests of the EPR paradox were proposed, then conducted, and the universe does indeed seem to behave just like schrodinger’s cat! In fact, the results from these experimental tests are used for a kind of uncrackable cryptography, and the basis for a revolutionary kind of computer.

Keen to learn more? Try these: Schrödinger’s Rainbow is a slideshow review of the general topic (California Institute of Technology; caution, 3MB PDF file!); Schrodinger’s cat comes into view, a news story on a macroscopic demonstration; and Schrödinger’s Cat (University of Houston).

Schrodinger’s cat is indirectly referenced in several Astronomy Cast episodes, among them Quantum Mechanics, and Entanglement; check them out!

Sources: Cornell University, Wikipedia

What is the Boltzmann Constant?

There are actually two Boltzmann constants, the Boltzmann constant and the Stefan-Boltzmann constant; both play key roles in astrophysics … the first bridges the macroscopic and microscopic worlds, and provides the basis for the zero-th law of thermodynamics; the second is in the equation for blackbody radiation.

The zero-th law of thermodynamics is, in essence, what allows us to define temperature; if you could ‘look inside’ an isolated system (in equilibrium), the proportion of constituents making up the system with energy E is a function of E, and the Boltzmann constant (k or kB). Specifically, the probability is proportional to:


where T is the temperature. In SI units, k is 1.38 x 10-23 J/K (that’s joules per Kelvin). How Boltzmann’s constant links the macroscopic and microscopic worlds may perhaps be easiest seen like this: k is the gas constant R (remember the ideal gas law, pV = nRT) divided by Avogadro’s number.

Among the many places k appears in physics is in the Maxwell-Boltzmann distribution, which describes the distribution of speeds of molecules in a gas … and thus why the Earth’s (and Venus’) atmosphere has lost all its hydrogen (and only keeps its helium because what is lost gets replaced by helium from radioactive decay, in rocks), and why the gas giants (and stars) can keep theirs.

The Stefan-Boltzmann constant (?), ties the amount of energy radiated by a black body (per unit of area of its surface) to the blackbody temperature (this is the Stefan-Boltzmann law). ? is made up of other constants: pi, a couple of integers, the speed of light, Planck’s constant, … and the Boltzmann constant! As astronomers rely almost entirely on detection of photons (electromagnetic radiation) to observe the universe, it will surely come as no surprise to learn that astrophysics students become very familiar with the Stefan-Boltzmann law, very early in their studies! After all, absolute luminosity (energy radiated per unit of time) is one of the key things astronomers try to estimate.

Why does the Boltzmann constant pop up so often? Because the large-scale behavior of systems follows from what’s happening to the individual components of those systems, and the study of how to get from the small to the big (in classical physics) is statistical mechanics … which Boltzmann did most of the original heavy lifting in (along with Maxwell, Planck, and others); indeed, it was Planck who gave k its name, after Boltzmann’s death (and Planck who had Boltzmann’s entropy equation – with k – engraved on his tombstone).

Want to learn more? Here are some resources, at different levels: Ideal Gas Law (from Hyperphysics), Radiation Laws (from an introductory astronomy course), and University of Texas (Austin)’s Richard Fitzpatrick’s course (intended for upper level undergrad students) Thermodynamics & Statistical Mechanics.


What is Beta Radiation?

Beta radiation is radiation due to beta particles, which are electrons (or, sometimes, positrons); mostly, when you come across the words ‘beta radiation’, what is meant is what is produced by beta decay (radioactive decay which produces beta particles … either electrons or positrons).

Within a few years of Becquerel’s discovery of radioactivity (in 1896), its heterogeneous nature was discovered … and the three (then) known components given the memorable names alpha radiation, beta radiation, and gamma radiation. And, in 1900, Becquerel showed that beta radiation was composed of particles which have the same charge-to-mass ratio as electrons (which had been discovered only a few years’ earlier). The realization – by Irène and Frédéric Joliot-Curie, in 1934 – that some beta radiation is composed of positrons, rather than electrons, had to wait until positrons themselves were discovered (in 1932).

Some fun facts about beta radiation:

* beta radiation is in between alpha and gamma in terms of its penetrating power; typically it goes a meter or so in air

* like all kinds of radioactive decay, beta decay occurs because the final state of the nucleus (the one decaying) has a lower energy than the initial one (the difference is the energy of the emitted beta particle and neutrino)

* beta decay involves only the weak interaction (or force), unlike alpha and gamma decay

* the key to the specifics of beta decay is the emission of a neutrino (or antineutrino), postulated by Pauli (in 1931) and combined into a model by Fermi, in 1934 (though it wasn’t until 1956 that the neutrino was detected, and the 1960s for the existence of carriers of the weak force – the three bosons W, W+, and Z0 – to be hypothesized).

* beta radiation has the characteristics we observe it to have because key constants in the weak interaction have the values they have (no theory in physics predicts what those values are … yet); had those values been just a teensy bit different in the early universe, we would not be here today (this is part of an idea called the anthropic principle).

Here are some of the Universe Today stories that are related to beta radiation New Insights on Magnetars, Superstrings Could Be Detectable As They Decay, and Don’t ‘Supermassive’ Me: Black Holes Regulate Their Own Mass.

Two Astronomy Cast episodes are well worth a listen, as they provide further insights into beta radiation The Strong and Weak Nuclear Forces, and Nucleosynthesis: Elements from Stars.

Sources: EPA, Wikipedia

What is Absolute Temperature?

If you measure temperature relative to absolute zero, the temperature is an absolute temperature; absolute zero is 0.

The most widely used absolute temperature scale is the Kelvin, symbolized with a capital K, which uses Celsius-scaled degrees (there’s another one, the Rankine, which is related to the Fahrenheit scale). We write temperatures in kelvins without the degree symbol; absolute zero is 0 K.

Another name for absolute temperature is thermodynamic temperature. Why? Because absolute temperate is directly related to thermodynamics; in fact it is the Zeroth Law of Thermodynamics that leads to a (formal) definition of (thermodynamic) temperature.

Roughly speaking, the temperature of an object (or similar, like the gas in a balloon) measures the kinetic energy of the particles (atoms, molecules, etc) of the matter it’s made up of … in an average sense, and macroscopically. Note that blobs of matter have far more energy than just the kinetic energy of the atoms in the blob – there’s the energy that holds the atoms together in molecules (if there are any), the binding energy of the nuclei (unless the blog is pure hydrogen, with no deuterium), and so on; none of these energies are counted in the blob’s temperature.

You might think that at absolute zero a substance would be in its lowest possible energy state, especially if it is a pure compound (or isotopically pure element). Well, it isn’t quite that simple … leaving aside zero point energy (something quite counter-intuitive, from quantum mechanics), there’s the fact that many solids have several different, stable crystal structures (even at 0 K), but only one with minimal energy. Then there’s helium, which is a liquid at 0 K (the solid phase of a substance has a lower energy than the corresponding liquid phase), unless under pressure.

The Kelvin is one of the International System of Units (SI) base units (there are seven of these), and is defined with reference to the triple point of water (“The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water” is the 1967/8 definition; the current one – adopted in 2005 – expands on this to take account of isotropic variations).

Why is it called the Kelvin? Because William Thompson – Lord Kelvin – was the first to describe an absolute temperature scale, in a paper he wrote in 1848; he also estimated absolute zero was -273o C.

Project Skymath has a nice introduction to absolute temperature.

Some Universe Today material you may find interesting: Absolute Zero, Coldest Temperature Ever Created, and Planck First Light.

Sources: Wikipedia, Hyperphysics

What is Alpha Radiation?

Alpha radiation is another name for the alpha particles emitted in the type of radioactive decay called alpha decay. Alpha particles are helium-4 (4He) nuclei.

Radioactivity was discovered by Becquerel, in 1896 (and one of the units of radioactivity – the becquerel – is named after him); within a few years it was discovered (Rutherford gets most of the credit, though others contributed) that there are actually three kinds of radioactivity, which were given the exciting names alpha (radiation), beta (radiation), and gamma (radiation; there are some other, rare, kinds of radioactive decay, the most important being positron, or positive beta). Rutherford (with some help) worked out that alpha radiation is actually the nuclei of helium … by allowing alpha radiation to go through the thin walls of an evacuated glass tube, and later analyzing the gas in the tube spectroscopically).

Some fun facts about alpha radiation:

* alpha radiation is the least penetrating (of alpha, beta, and gamma); typically it goes no more than a few cm in air

* like all kinds of radioactive decay, alpha decay occurs because the final state of the nucleus (the one decaying) has a lower energy than the initial one (the difference is the energy of the emitted alpha particle, both its binding energy and its kinetic energy)

* alpha decay involves both strong and electromagnetic interactions (or forces), unlike beta and gamma decay

* the key to the specifics of alpha decay is the quantum effect called tunneling; Gamow worked this out, in 1928

* only heavier nuclides can undergo alpha decay; the lightest are light isotopes of tellurium

* alpha radiation played a star role in the development of our understanding of the nature of atoms … Rutherford, in 1909, aimed a beam of alpha radiation at a piece of thin gold foil, and counted the number of particles which were deflected at each angle; from this he deduced that the atom has a very small nucleus (with all the positive charge, and nearly all its mass).

For more background on alpha radiation, check out the Jefferson Lab’s What are alpha rays? How are they produced?.

There are many ways alpha radiation can turn up in Universe Today articles; for example, in NASA May Have to Revamp Science Plans Without RTGs, alpha radiation is essential to RTGs; and in Opportunity Rover Sidelined by Charged Particle Hit, alpha radiation is what’s used to help determine the elemental composition of samples.

Nucleosynthsis: Elements from Stars and Cosmic Rays are two Astronomy Cast episodes which also cover alpha radiation.

Source: Wikipedia

What is Cherenkov Radiation?

Cherenkov radiation is named after the Russian physicist who first worked it out in detail, in 1934, Pavel Alekseyevich Cherenkov (he got a Nobel for his work, in 1958; because he’s Russian, it’s also sometimes called Cerenkov radiation).

Nothing’s faster than c, the speed of light … in a vacuum. In the air or water (or glass), the speed of light is slower than c. So what happens when something like a cosmic ray proton – which is moving way faster than the speed of light in air or water – hits the Earth’s atmosphere? It emits a cone of light, like the sonic boom of a supersonic plane; that light is Cherenkov radiation.

The Cherenkov radiation spectrum is continuous, and its intensity increases with frequency (up to a cutoff); that’s what gives it the eerie blue color you see in pictures of ‘swimming pool’ reactors.

Perhaps the best known astronomical use of Cherenkov radiation is in ICATs such CANGAROO (you guessed it, it’s in Australia!), H.E.S.S. (astronomers love this sort of thing, that’s a ‘tribute’ to Victor Hess, pioneer of cosmic rays studies), and VERITAS (see if you can explain the pun in that!). As a high energy gamma ray, above a few GeV, enters the atmosphere, it creates electron-positron pairs, which initiate an air shower. The shower creates a burst of Cherenkov radiation lasting a few nanoseconds, which the ICAT detects. Because Cherenkov radiation is well-understood, the bursts caused by gamma rays can be distinguished from those caused by protons; and by using several telescopes, the source ‘on the sky’ can be pinned down much better (that’s what one of the Ss in H.E.S.S. stands for, stereoscopic).

The more energetic a cosmic ray particle, the bigger the air shower it creates … so to study really energetic cosmic rays – those with energies above 10^18 ev (which is 100 million times as energetic as what the LHC will produce), which are called UHECRs (see if you can guess) – you need cosmic ray detectors spread over a huge area. That’s just what the Pierre Auger Cosmic Ray Observatory is; and its workhorse detectors are tanks of water with photomultiplier tubes in the dark (to detect the Cherenkov radiation of air shower particles).

However I think the coolest use of Cherenkov radiation in astronomy is IceCube, which detects the Cherenkov radiation produced by muons in Antarctic ice … traveling upward. These muons are produced by rare interactions of muon neutrinos with hydrogen or oxygen nuclei (in the ice), after they have traveled through the whole Earth, from the Artic (and before that perhaps a few hundred megaparsecs from some distant blazer).

ICAT: imaging Cherenkov Air Telescope
CANGAROO: Collaboration of Australia and Nippon (Japan) for a Gamma Ray Observatory in the Outback
H.E.S.S.: High Energy Stereoscopic System
VERITAS: Very Energetic Imaging Telescope Array System
UHECR: ultra-high-energy cosmic ray

This NASA webpage gives more details of how ICATs work.

Quite a few Universe Today stories are about Cherenkov radiation; for example Astronomers Observe Bizarre Blazar with Battery of Telescopes, and High Energy Gamma Rays Go Slower Than the Speed of Light?.

Examples of Astronomy Casts which include this topic: Cosmic Rays, and Gamma Ray Astronomy.