Weekend SkyWatcher’s Forecast: March 19-21, 2010

Greetings, fellow SkyWatchers! As one hemisphere warms, another cools… and so our passion for astronomy can sometimes wax and wane. Why not rekindle your viewing spirit by enjoying some lunar targets this weekend? If you don’t think identifying lunar features with a small pair of binoculars is exciting – then think on this: Using the most simple form of optics, you are viewing details on a distant world that’s a quarter of a million miles away! So what are you waiting for? Get out your binoculars and get ready to enjoy… and I’ll see you in the backyard.

March 19, 2010 – We begin our binocular and small telescope explorations tonight by looking near the center of the lunar terminator to identify and take a closer look at Mare Fecunditatis. Its expanse covers 1463 kilometers in diameter. The combined area of this mare is equal in size to the Great Sandy Desert in Australia—and almost as vacant in interior features. It is home to glasses, pyroxenes, feldspars, oxides, olivines, troilite and metals in its lunar soil, which is called regolith. Studies show the basaltic flow inside of the Fecunditatis basin perhaps occurred all at once, making its chemical composition different from other maria. The lower titanium content means it is between 3.1 and 3.6 billion years old. Stretching out across an area about equal in size to the state of California, the Sea of Fertility’s western edge is home to features we share terrestrially – grabens. These down-dropped areas of landscape between parallel fault lines occur where the crust is stretched to the breaking point. On Earth, these happen along tectonic plates, but on the Moon they are found around basins. The forces created by lava flow increase the weight inside the basin, causing a tension along the border which eventually fault and cause these areas. Look closely along the western shore of Fecunditatis where you will see many such graben features. They are also bordered by parallel fault lines and are quite similar to such terrestrial features as Death Valley in the western United States.

Now aim towards the earthen shore of Mare Fecunditatus and identify the flat, bright oval of a previous study, Langrenus. This is an opportunity to challenge yourself by identifying two small craters just slightly northwest of the mare’s central point – Messier and Messier A – named for the famous French comet hunter – Charles Messier. Scan along the terminator over Mare Fecunditatis about 1/3 its width from west to east for a pair of emerging bright rings. These twin craters will be difficult in binoculars, but not hard for even a small telescope and intermediate power. The easternmost crater is somewhat oval in shape with dimensions of 9 by 11 kilometers. At high power, Messier A to the west appears to have overlapped a smaller crater during its formation and it is slightly larger at 11 by 13 kilometers. For a challenging telescopic note, you’ll find another point of interest to the northwest. Rima Messier is a long surface crack which runs diagonally across Mare Fecunditatis’ northwestern flank and reaches a length of 100 kilometers. Keep the Messiers in mind, for in a few days you will see a pair of “rays” extending out from them.

March 20, 2010 – On the lunar surface tonight, let’s begin with a look at Mare Serenitatus – the “Serene Sea”. On its northeast shore, binoculars will have no trouble spotting the shallow ring of crater Posidonius. Almost flat from eons of lava flows, this crater shows numerous variations in texture along its floor in small telescopes. This huge, old, mountain-walled plain is considered a class V crater and could be as much as 3 billion years old. Spanning 84 by 98 kilometers, you can plainly see Posidonius is shallow – dropping only 2590 meters below the surface. Tonight it will resemble a bright, elliptical pancake on the surface to smaller optics with its ring structure remaining conspicuous to binoculars throughout all lunar phases. However, a telescope is needed to appreciate the many fine features found on Posidonius’ floor. Power up to observe the stepped, stadium-like wall structure and numerous resolvable mountain peaks joining its small, central interior crater. It has its own interior rimae that is especially prominent to the east and a smashing view of trio Posidonius O, I and B on the north crater rim. Adding crater Chacornac to the southeast makes things even more interesting! Did you spot the small punctuation of Daniell to the north?

Now, look a bit south of and east of Posidonius and almost parallel to the terminator for a curious feature known as the Serpentine Ridge, or more properly as Dorsa Smirnov and the accompanying Dorsa Lister. Can you detect the very tiny crater Very in its center? This thin, white line wanders across the western portion of Mare Serenitatus for a distance of about 134 kilometers. In some places it rises as high as 305 meters above the smooth sands. This lunar “wrinkle” is an amazing 10 kilometers wide! Power up in a telescope. The northern portion of the Serpentine Ridge is Dorsa Smirnov until it branches west and becomes Dorsa Lister. If the shadow play is good at your time, you might be lucky enough to resolve Dorsum Nicol, which connects the two. Only about 51 kilometers long, Dorsum Nichol will appear almost as a circular, crater-like feature – but it isn’t. As part of the Mare Serenitatis / Mare Tranquilitatis border, it’s not much more than a just an area where the two distinct lava flows cooled and contracted, causing the surface to heave up, but you’ll also find it’s connected to the Rima Plinius as well.

March 21, 2010 – Tonight on the lunar surface, all of Mare Serenitatis and Mare Tranquillitatis will be revealed, and so it is fitting we should take an even closer look at both the “Serene” and “Tranquil” seas. Formed some 38 million years ago, these two areas of the Moon have been home to most of mankind’s lunar exploration. Somewhere scattered on the basalt landscape on the western edge of Tranquillitatis, a few remains of the Ranger 6 mission lie tossed about, perhaps forming a small impact crater of their own. Its eyes were open, but blinded by a malfunction…forever seeing nothing. To the southwest edge lie the remnants of the successful Ranger 8 mission which sent back 7137 glorious images during the last 23 minutes of its life. Nearby, the intact Surveyor 5 withstood all odds and made space history by managing to perform an alpha particle spectrogram of the soil while withstanding temperatures considerably greater than the boiling point. Not only this, but it also took over 18,000 pictures!

Now let’s go to the southwest edge of Tranquillitatis and visit with the Apollo 11 landing area. Although we can never see the “Eagle” telescopically, we can find where it landed. For telescopes and binoculars the landing area will be found near the terminator along the southern edge of Mare Tranquillitatis. No scope? No problem. Find the dark round area on the lunar northeastern limb – Mare Crisium. Then locate the dark area below that – Mare Fecundatatis. Now look mid-way along the terminator for the dark area that is Mare Tranquillitatis. The bright point west where it joins Mare Nectaris further south is the target for the first men on the Moon. We were there! Telescopically, start tracing the western wall of Tranquillitatis and looking for the small circles of craters Sabine and Ritter which are easily revealed tonight.

Once located, switch to your highest magnification. Look in the smooth sands to the east to see a parallel line of three tiny craters. From west to east, these are Aldrin, Collins, and Armstrong – the only craters to be named for the living. It is here where Apollo 11 touched down, forever changing our perception of space exploration.

“That’s one small step for [a] man, one giant leap for mankind.”

Until next week? Ask for the Moon… But keep on reaching for the stars!

This week’s awesome images are (in order of appearance): Crescent Moon and Venus In the Trees courtesy of Mike Romine, Mare Fecunditatus courtesy of Virtual Moon Atlas, Craters Messier and Posidonius courtesy of Damien Peach, “Serpentine Ridge” and Six Day Moon courtesy of Peter Lloyd, Lunar History Area courtesy of Virtual Moon Atlas and “Footstep” courtesy of NASA. We thank you so much!

Weekend SkyWatcher’s Forecast: March 5-7, 2010

Greetings, fellow SkyWatchers! Are you ready for the weekend? Then let’s spend it “stellar” as we take a look at a great series of open galactic star clusters. Gathering a few photons will enrich both the spirit and the mind! If you’re ready for some history, science and challenges, then follow me…

March 5, 2010 – This date celebrates the 1512 birth of Gerardus Mercator. Mercator was the cartographer who created the Mercator map projection, the series of parallels and meridians drawn as straight lines to allow an accurate ratio of latitude to longitude. Mercator also designed the first celestial globe in 1551.

Tonight let’s take in a galactic star cluster! Find the area easily by aiming binoculars about halfway between Alpha Orionis and Gamma Geminorum (RA 06 13 42 Dec +12 48 06). Look for a faint pair of stars known as K Orionis, but don’t confuse them with slightly brighter Xi and Nu. Concentrate on the northernmost of the K pair, and you’ll pick up a slight condensation of faint stars— NGC 2194. While this Herschel ‘‘400’’ target is sufficiently bright to see in small optics, its true beauty shines in larger telescopes. This rich, young concentration of stars is over 3,700 light-years away and is less than 9,000 years old. Photometric studies of this neophyte cluster show it to be metal-poor for its age, but NGC 2194 is definitely a very pleasing sprinkling of stars to enjoy on a winter’s night!

Are you ready for an open cluster that’s suited for all optics? Then let’s take on NGC2287. Located about two finger-widths south of Alpha Canis Majoris (RA 06 46 00 Dec +20 46 00), only an open cluster this bright could stand up against brilliant Sirius. From a dark-sky location, your unaided eye can even spot this magnitude 4.5 star vault as a hazy patch. Aristotle saw it as early as 325 BC! Officially discovered by Hodierna, we know it best by the designation Messier Object 41.


Even from 2,300 light-years away, the cluster’s brightest star, an orange giant, stands out clearly from the stellar nest. With large aperture, you’ll notice other K-type stars, all very similar to Sol. Although small scopes and binoculars won’t reveal too much color, you might pick up on the blue signature of young, hot stars. NGC 2287 could be anywhere from 190 to 240 million years old, but its stars shine as brightly now as they did in Aristotle’s day!

March 6, 2010 – If you see sunshine today, then celebrate the 1787 birth on this date of Joseph Fraunhofer—a trailblazer in modern astronomy. His field? Spectroscopy. Fraunhofer developed scientific instruments and specialized in the area of applied optics. While designing the achromatic objective lens for a telescope, he saw the spectrum of sunlight as it passed through a thin slit and the dark emission lines. Fraunhofer recognized that they could be used as wavelength standards, so he began measuring, labeling the most prominent with the letters still used today. His skill in optics, mathematics, and physics led Fraunhofer to design and build the very first diffraction grating. You’ve probably seen these little rainbows hundreds of times in your life without even realizing what they are. Would you like to create your own grating? Take a piece of ordinary clear cellophane (a bit of clean food wrapping is fine) and scratch it lightly a few times in one direction only with a piece of sandpaper. Hold it adjacent to a bright light source and tilt it until you see hundreds of hair-fine lines of color. Yes, it’s crude. . . but it works! Did Fraunhofer’s telescope designs also succeed? Of course! His achromatic objective lens is still used in modern telescopes.

Tonight journey south of Orion to Lepus and its brightest star—Alpha. Named Arneb, this double star resides about 900 light-years away. Its wide separation of 35.500 means it’s probably not a true physical pair, but the 11th magnitude disparate companion is a nice challenge. For binoculars and small scopes, hop due east of Alpha about a finger-width for brilliant multiple-star system and open cluster NGC2017. The gravitationally bound stars in this small open cluster are a well-studied source of radio and infrared emission. NGC2017 produces a dense wind from a thin HII region hidden within it, which may come from a loose distribution of gas and dust. Power up, and the primary colorful members begin to split into disparate pairs as the combination of aperture and magnification increases resolution. It’s a much underrated jewel box!

March 7, 2010 – Today we celebrate two notable births. The year 1837 is Henry Draper’s, first to photograph the stellar spectrum; and 1792 is the year Sir William Herschel’s only child—John—was born. John Herschel began his astronomical career in 1816 when he built his first telescope. His path led him to eventual British knighthood for furthering his father’s work, and to South Africa to complete his father’s survey by cataloging the stars, nebulae, and other objects of the southern skies. In his own words, ‘‘He that on such quest would go must know not fear or failing.’’ John returned to England in 1838, published his work, fathered 12 children, named the moons of Saturn and Uranus, and expanded the field of photography. He was a prodigious author, and you’ll even find examples of his handiwork in the Encyclopedia Britannica!

Tonight let’s honor J. Herschel with a very beautiful open star cluster. Begin with Sirius and the southern upside down Y formation of Canis Major, whose crux is Delta. Hop northeast to Tau for open cluster NGC 2362 (RA 07 18 36 Dec 24 59 00). In binoculars, Caldwell 64 appears as two stars—Tau and the variable UW. At minor magnification, Tau shows a slight nebulosity, the many unresolved stars surrounding it. Now power up with a telescope and behold the ‘‘ Mexican Jumping Star!’’ This rich, 4,600 light-years distant gathering contains about 40 members and is one of the youngest of known star clusters. Many resolvable stars haven’t yet reached the main sequence!


Still pulling together, the cluster is estimated to be less than a million years old. The central star—Tau—is a true member and one of the most intrinsically luminous stars known. This group may last as long as the Pleiades but will pull apart long before reaching the Hyades’’ age. Tau’s immense stellar winds will blow away any accretion around the smaller stars. Magnify as much as skies will allow. As individual stars begin to resolve in and out around its bright central member, you can see how it got its nickname!

Now head for the eastern star, Eta Canis Majoris. Aim your binoculars about one field further south. Difficult for northern observers, this collection is visible unaided in the Southern Hemisphere. Collinder 140 (RA 07 23 18 Dec 32 04 00) is around magnitude 3.5 and is a rich open cluster. Located around 1,000 light-years away, and estimated to be 22 million years old, even small optics will enjoy this large, jewel-like collection of stars, which includes the double Dunlop 47 among its many binary systems. Studied for its unusual patterns of stellar evolution, Collinder 140 is worth some of your study time as well!

Until next week? Keep rockin’ the night away….

This week’s awesome cluster images are from the Palomar Sky Survey, Courtesy of Caltech. Thank you so much!

Double Spaceship Sighting Alert!

Space shuttle Endeavour will undock from the ISS on late Friday (7:54 p.m. EST) or early Saturday (00:54 GMT) depending where you live, providing an opportunity to see the two spaceships flying in tandem. This is an incredible sight, and as the shuttle program comes to a close, one that will happen only about four more times. Early morning sightings are favored for those in the northern hemisphere. The two spacecraft will be seen as separate but closely-spaced points of light. The ISS is bigger, so will appear as the brighter object trailing the smaller Endeavour as they move across the sky. Double flybys will continue until the shuttle lands, currently scheduled for late Sunday or early Monday, with the two getting farther apart each day. Of course, your viewing ability will depend on cloud cover. Above, you can watch the ceremony as the shuttle crew returned to Endeavour and closed the hatches from the ISS.

To find out if you’ll be able to see spaceships in your area, there are a few different sites to check out:
Continue reading “Double Spaceship Sighting Alert!”

Astronauts Open New Window on the Universe

"Let there be light! Cupola windows open toward Sahara desert. Priceless!\" Tweeted ISS astronaut Soichi Noguchi.

[/caption]
“Let there be light! Cupola windows open toward Sahara desert. Priceless!” Tweeted ISS astronaut Soichi Noguchi from the ISS.

It’s the moment we’ve all been waiting for: the opening on the windows of the new Cupola on the International Space Station. And it was incredible.

“As expected, the view through window seven is absolutely spectacular,” ISS commander Jeff Williams said. “When we have the others around it open, it will give us a view of the entire globe. Absolutely incredible.”

Shutters are opened on the new Cupola on the ISS. Credit: NASA TV

The new $27 million bay window was uncovered during the third EVA of the STS-130 mission by spacewalkers Nick Patrick and Bob Behnken, who removed the protective launch covers and bolts. Then, from the inside, each of the seven shutters was cranked opened and closed one at a time, to test the view — and the shutters. In case there were any problems, the astronauts out on EVA could help close the shutters.

Later, all the shutters were opened at once for the full view. “I don’t think space station’s ever going to be the same after this,” Mission Control radioed to the ISS.

The new observation deck will allow astronauts unprecedented 360-degree views of Earth and space, while providing a new location for robotic operations where astronauts inside the ISS can actually watch directly what they doing with the CanadArm2 on the ISS, instead of completely relying on computer inputs and camera views. The Cupola is attached to the nadir, or Earth–facing port of the new Tranquility node, a $380 million addition to the station that was delivered to the ISS on the current space shuttle mission.

Built by the Italian space agency, the Cupola is 1.5 meters (5 feet) tall and about 3 meters (10 feet) in diameter. Six rectangular windows encircle the dome, with a large circular window in the middle.

Mission managers said at a press conference last week that the windows will remain shuttered most of the time to protect the 4-pane fused silica glass from micrometeroid strikes. The large central window shutter may be allowed to opened more frequently since it is facing towards Earth and away from potential incoming space debris.

Nancy peeks through a model of the Cupola that was at Kennedy Space Center. Image by Robin Hobson.

A model of the Cupola was set up at the press room at Kennedy Space Center. I asked about the windows and the potential of problems if they are hit by micrometeroids, and was told that if the windows are dinged or significantly damaged, they can be repaired or replaced on orbit. There are spare window assemblies built, but they aren’t currently on the ISS nor are there plans to bring them up, for now. For minor damage, the shutters would be closed until the repairs could be done. For major damage, the Cupola has a hatch, so there is the potential to close off Cupola, but mission managers said that option has a very low likelihood of occurring.

Asteroid Might be Visible to Naked Eye on Feb. 17

Asteroid Vesta as seen by NASA's Hubble Space Telescope. Image credit: NASA/ESA/U of Md./STSci/Cornell/SWRI/UCLA

[/caption]
An asteroid could be visible with binoculars, or even the naked eye on Wednesday, February 17, 2010. No, it’s not coming close to Earth, although this second most massive object in the asteroid belt will be at its closest point to Earth in its orbit, about 211,980,000 kilometers (131,700,000 miles) away. Asteroid Vesta – one of the asteroids that the Dawn spacecraft will visit – will be at opposition on Wednesday, meaning it is opposite the sun as seen from Earth, and is closest to us. Vesta is expected to shine at magnitude 6.1, and that brightness should make it visible for those with clear skies and a telescope, but perhaps even those blessed with excellent vision and little or no light pollution. Vesta will be visible in the eastern sky in the constellation Leo, and will continue to be visible — although less so — in the coming months.

What makes this space rock so prominent these days? Along with its relative proximity at this point, a full half of the asteroid is being bathed by sunlight when seen from Earth, making it appear brighter. Another attribute working in the observer’s favor is that Vesta has a unique surface material that is not as dark as most main belt asteroids – allowing more of the sun’s rays to reflect off its surface.

For more info about observing Vesta, check out this article from Sky & Telescope.

If you get lucky enough to see Vesta, and want to learn more about it, check out this info on the Dawn mission website. Dawn is currently motoring its way through the asteroid belt, will begin its exploration of Vesta in the summer of 2011.

Source: JPL

Weekend SkyWatcher’s Forecast – February 12-14, 2010

Greetings, fellow SkyWatchers! What better way to celebrate a snow-bound weekend than by having a look at the “Eskimo”! While we’re at it, we’ll take a look at an awesome open cluster suitable for all optics and take an adventure towards one of the best supernovae remnants in the night sky. Along the way, we’ll explore some of the history and mystery behind these objects, so dust off your optics and I’ll see you in the backyard….

Friday, February 12, 2010 – Today is unofficially Physicist’s Day! We’ll begin by celebrating three notable births on this date, starting in 1893 with Marcel Minnaert, solar physicist. Minnaert’s innovative techniques in solar spectrophotometry aided the discovery of structure in the Sun’s outer layers. Next is 1918 and Julian Schwinger, a physicist big on electromagnetic field theory, who shared the Nobel Prize for work in quantum electrodynamics. Last is the 1936 birth of Fang Lizhi, who published his work on the Big Bang theory in 1972. Even in exile from Communist China, he continues to express his belief in freedom of intellectual expression and continues his work in theoretical cosmology.

Tonight we’ll time-travel back 5,000 years as we head for NGC 2392. Located about two fingerwidths southeast of Delta Geminorum (RA 07 29 10 Dec +20 54 42), this beauty is a planetary nebula commonly known as the ‘‘Eskimo.’’ Discovered in 1787 by Sir William Herschel, a small telescope will see it as a fuzzy green star, while aperture will reveal definite annulus around its central stellar point. A steady night helps to reveal details, and a nebula filter lights it up! NGC 2392 is so complex that it is not yet fully understood. As with Minnaert’s solar work, we know the glowing gases are the outer layers of its central star, shed 10,000 years ago, while the inner ribbons of light (called filaments) are areas where particles are being pushed away by the strong stellar wind. Even now, we still can’t quite explain the unusual outer filaments! It won’t look like a Hubble image in your telescope, but you can still marvel at a unique mystery—seeing its light as it was when ‘‘physicists’’ began using the first ‘‘computer’’—the newly invented abacus!

February 13, 2010 – We salute Johan Ludvig Emil Dreyer, who was born on this date in 1852. At age 30, Danish astronomer Dreyer became director of the Armagh Observatory—not a grand honor, considering the observatory was so broke it couldn’t afford to replace its equipment. Like all good directors, Dreyer somehow managed to get a new 1000 refractor but no funds for an assistant to practice traditional astronomy. However, J.L.E. was dedicated and within 6 years had compiled all observations known to him into one unified work called the New General Catalogue of Nebulae and Clusters of Stars (NGC). Originally containing 7,840 objects, and supplemented in 1895 and 1908 with another 5,386 designations, the NGC remains the standard reference catalog. Although Dreyer’s personal observations included such nebulous descriptions as ‘‘a vault of stars,’’ modern astronomers continue to use his abbreviations as a kind of shorthand.

Honor Dreyer tonight by discovering one of his catalog objects suited for all optics—NGC2287. Located about two finger-widths south of Alpha Canis Majoris (RA 06 46 00 Dec +20 46 00), only an open cluster this bright could stand up against brilliant Sirius. From a dark-sky location, your unaided eye can even spot this magnitude 4.5 star vault as a hazy patch. Aristotle saw it as early as 325 BC! Officially discovered by Hodierna, we know it best by the designation Messier Object 41. Even from 2,300 light-years away, the cluster’s brightest star, an orange giant, stands out clearly from the stellar nest. With large aperture, you’ll notice other K-type stars, all very similar to Sol. Although small scopes and binoculars won’t reveal too much color, you might pick up on the blue signature of young, hot stars. NGC 2287 could be anywhere from 190 to 240 million years old, but its stars shine as brightly now as they did in Aristotle’s day. . .and Dreyer’s!

February 14, 2010 – On this date in 1747, astronomer James Bradley presented his evidence of Earth’s wobble, called nutation. The study took 19 years, but won Bradley the Copley Medal! In 1827, George Clark was born. The name might not ring a bell, but it was indeed a bell—melted down—that he used to create his first brass telescope. George’s family went on to produce the finest—and largest—telescopes of their time. In 1898 one of my personal heroes, Fritz Zwicky came along, his name synonymous with the theory of supernovae. The Swiss-born Caltech professor was also a salty character, often intimidating his colleague Walter Baade and referring to others as ‘‘spherical bastards.’’ Although Zwicky was reportedly difficult to work with (geez… wonder why?), he was also brilliant—predicting the phenomenon of gravitational lensing. An unsung genius!

Tonight we’ll look at a supernova remnant as we venture to the Crab Nebula. Finding M1 is easy: it can be seen with as little as 7x magnification. Locate Zeta Tauri (about halfway between Orion’s ‘‘head’’ and the southernmost bright star in Auriga) and aim about 1 degree northwest (RA 05 34 31 Dec +22 00 52). Viewing M1 with small optics helps to understand why Charles Messier decided to compile his famous catalog. Unaware of its earlier discovery, Messier located a fuzzy object near the ecliptic and assumed it was the return of Halley’s Comet. Considering his primitive telescope, we can’t fault his observation. But Chuck was a good astronomer. When he realized the object wasn’t in motion, he began compiling a log of things not to be confused with comets—the famous Messier objects. Enjoy looking at this spectacular deep-sky jewel, and we’ll study it in depth another time. Of course, Zwicky may have cursed me for saying that observing without science is an ‘‘empty brain exercise and therefore a waste of time.’’ But on the date of his birth, I took his advice. . . ‘‘Give me a topic and I’ll give you an idea!’’

Until next week? Dreams really do come true when you keep on reaching for the stars!

This week’s awesome stellar images are from Palomar Observatory, courtesy of Caltech. We thank you so much!

An XO For Valentine’s Day…

The planet XO-3b, and the star XO-3 positions - Credit : DSS survey

[/caption]Almost everyone the world over recognizes the letters X and O to represent a kiss and a hug, but this time the XO stands for Extrasolar Planet XO-3b. If you’d like an extra special “kiss and hug” for Valentine’s Day, then why not visit with Baraket Observatory on Februrary 13th as they present their live, on-line AstroCast of XO-3b transiting its parent star! This is definitely an event you won’t want to miss, so step inside for more information…

On February 13, 2010, Baraket Observatory will webcast (weather permitting) the transit of an extra solar planet named “XO-3b”. The event will be observed by using a highly sophisticated robotic telescope and a sensitive cooled CCD camera. The observatory will transfer live images of the transit as they’re being captured by the Bareket Internet EDU scope, while plotting its light curve through the site as the transit progress. This truly amazing process will give students and the general pubic a unique in side view to behind the observatory scenes, while presenting to the viewers how science is being done – all in real time. The event will be about 2 hours in duration, scheduled to take place at 19:00 UTC.

Live Astro-cast of the ExtraSolar Planet XO-3b Transit

Live Astro-cast of the ExtraSolar Planet XO-3b Transit (European Server)

The American Association of Variable Star Observers (AAVSO) is collaborating with Bareket Observatory on variable-object studies, of which transiting exoplanets are a key element. The AAVSO has calibrated nearby stars in each of the known transiting exoplanet systems to act as local standards against which you can compare the host star for variability. The AAVSO is also working with the XO project team to study other variable stars that they have discovered during their exoplanet survey. Exoplanet transits are hard to detect, since the dip is only one percent or so in brightness, but with care, any amateur observer with a CCD camera can watch the transit of a planet around another star. A transit means the extra solar planet acts very similar to Venus, in our own solar system, when it passed in front of our Sun (in a direct geometrical line between the sun and the Earth), featuring a “mini eclipse”. While Venus can be easily observed against the solar disc, the extended XO-3b planet only presented as a dim singular dot in the sky. While it’s total brightness only slightly vary during the extra solar planet transit, for a relatively short period of time. The drop in the brightness is proportional to the planet’s surface. Usually within a 1% for a gaseous giant (Such as Jupiter) and as low as 0.01% for an Earth–sized planet. Searching for extra solar planets by detecting their transit is well within the possibilities of many today’s Earth based observatories and now watching a transit electronically is like a dream come true!

Flowers and candy for Valentine’s Day? Sure, that’s nice… But if you want to win an astronomer’s heart, give ’em a big XO!

This project is a part of the Bareket observatory Live-@stro outreach programs.

Weekend SkyWatcher’s Forecast: February 5-7, 2010

Greetings, fellow SkyWatchers! If you’re not about to get buried under a blanket of snow, then why not spend some time out under blanket of stars with this weekend’s stellar project? This four star adventure is sure to warm you up. Need more? Then I’ll show you were to look for a comet and a “snow ball” of stars! Of course, we’ve got plenty to learn about the history and mystery of what we’re looking at, so whenever you’re ready? I’ll see you in the backyard…

Friday, February 5, 2010 – On this date in 1963, Maarten Schmidt measured the first quasar redshift, and in 1974, Mariner 10 took the first close-up images of Venus. This date in 1971 was also important for two men named Shepard and Mitchell, whose Apollo 14 module had just touched down in the Fra Mauro highlands. At 14:54 UTC, Alan Shepard stepped onto the surface and said, ‘‘It’s been a long way, but we’re here.’’

If you think these two Apollo astronauts traveled a long way, then let’s take a look at some stars that have been at if for a couple of million years! Near the heart of the Orion Nebula, two massive binary stars were involved in a head-on collision, exchanging stars. Iota Orionis became a new binary system, but two ‘‘runaways’’ left the scene of the accident at a speed of 200 kilometers per second. Tonight we’ll look at these two challenging stars – one to the north and one to the south.


North is AE Aurigae (RA 05 16 18 Dec +34 18 44). Its two-letter designation shows AE is a variable star, and it flirts with unaided visibility between magnitudes 5 and 6. On a dark night, you can usually spot AE hanging out on the northwestern perimeter of a spangle of stars about two finger-widths east of Iota Aurigae. With a distance of 1,450 light-years, it’s not surprising that its faint, but AE would be a full magnitude brighter if it wasn’t in a dust cloud! AE Aurigae is a hot star, and its simple spectrum and rapid movement against the interstellar medium make it ideal for studying these primal gases. Examined with a telescope at low magnification, you can enjoy the illumination created by the ‘‘Flaming Star’’!

To the south is our runaway collision victim Mu Columbae. Draw an imaginary line due south from the Orion Nebula past Lepus, and you’ll encounter dim Mu (RA 05 45 59 Dec -32 18 23) just northeast of Alpha Columbae. Cruising along at 117 kilometers per second, this white-hot star sheds about one-tenth of a millionth of its mass every year. Holding a steady magnitude 5, and now 1,300 light-years distant, Mu is one of the very few of its type easily seen by the unaided eye. What can’t be seen, however, is the signature left by the star in the warm interstellar medium. Like footprints in the sand, high-resolution spectrographs show the moving star left a trail in its wake!

Are you ready to take on a more challenging traveler? Then why not seek out 11.8 magnitude Comet Tritton! Now cruising through the constellation of Aries (RA 1h 53.5m Dec 17° 39′), this faint fuzzy won’t be the easiest of targets to spot – but then it wouldn’t be a challenge, would it? Comet 157P Tritton was discovered by Keith Tritton (U. K. Schmidt Telescope Unit, Coonabarabran) on a deep IIIa-J exposure made with the 122-cm Schmidt telescope on February 11, 1978. Now, almost 32 years later to the date, it’s back again on its every 6.33 year journey around our Sun. Although it won’t reach perihelion until February 20, its original estimated return brightness was only expected to reach magnitude 16 and now it is far exceeding expectations. Don’t expect to see a flaming ball exhibiting a tail because that’s not going to happen… but congratulate yourself if you spot a diffuse, round area about the size of a small planetary nebula!

Saturday, February 6, 2010 – This date marks the 1991 fiery return of the Soviet space station Salyut 7. Launched in 1982, electrical and maneuvering problems plagued the mission, but cosmonauts were able to stay onboard for as long as 8 months before returning. Abandoned in 1986, equipment and supplies were transferred to the orbiting Mir. If you’d like to spot a space station, why not use a great tool like Heavens Above to let you know when and where to look for the ISS!

Tonight, our traveling project concludes at the tip of Orion’s sword – Iota Orionis – the third player in our ‘‘runaway’’ drama (RA 05 35 25 Dec -05 54 35).


Hatsya (Bright One of the Sword) is a spectroscopic binary resulting from the collision we studied yesterday. Iota consists of two powerful, white hot suns, orbiting less than one Astronomical Unit (AU) apart and nearly touching at one point during their monthly orbit – a powerful X-ray source! In binoculars, Hatsya appears in a charming collection of stars, while small telescopes reveal a colorful red/blue triple system. Surrounding Iota is a faint stardust nebula, NGC 1980, often mistaken as part of M42.

Now hop down to Lepus for a faint, round, fuzzy object that’s achievable in a small telescope or binoculars – Messier Object 79 (RA 05 24 10 Dec +24 31 27).

In small binoculars this small cluster is nothing more than a faint stellar snowball, but the true beauty of this object is revealed in large telescopes. Behold a globular cluster, one of many densely packed balls of stars that mainly congregate near our galactic center. Discovered by Pierre Mechain and cataloged by Messier in 1780, M79 is on the opposite side of our galaxy, and about 4,200 light-years away. Spanning 118 light-years, this starry sphere may not be an original member of our galaxy at all but an import. Although we can’t see it happening, the Canis Major Dwarf galaxy is slowly being incorporated into our own system, and M79 might very well be a product of this union! Thanks to Mechain and Messier’s careful notes, William Herschel later recovered M79 and resolved its stars. Although the practice of maintaining an astronomy diary isn’t for everyone, keeping simple records is very rewarding. Make note of the object’s appearance, equipment used, and sky conditions. Observing diaries just like those of Messier and Me´chain have led countless astronomers along the road of discovery to all the deep-sky objects we know today!

Sunday, February 7, 2010 – On this date in 1889, the Astronomical Society of the Pacific was born. In 1926 celebrated cosmonaut Konstantin Feoktistov, who flew Voskhod 1 and helped design Salyut and Mir, was born. Yet most noteworthy today is the 1824 birth of amateur astronomer William Huggins. By age 30, he’d built his own private observatory and through his studies made important contributions to astronomy. According to scientists Kirchoff and Bunsen, the chemical composition of minerals could be determined from their spectral signatures. The inquisitive Huggins began comparing mineral samples to the spectra of celestial objects. Although his experimental methods were crude by today’s standards, his calculations were perfect. Huggins proved the spectrum of the Orion Nebula was like that of a pure gaseous emission, while the spectrum of the Andromeda Nebula was similar to that of starlight – and this long before confirmation of its galactic nature!

Huggins was also the first amateur to measure the radial velocities of stars from their spectral shifts. Although most people assume only professional scientists can make such measurements, many of today’s amateurs (unpaid, but not unskilled!) have measured spectra. Tonight let’s look at a star whose radial velocity has been studied both professionally and personally – Kappa Orionis (RA 05 47 45 Dec -09 40 10).

Named Saiph, it’s the often-overlooked eastern ‘‘foot’’ of Orion. According to spectral analysis, this 722 light-year distant blue supergiant star is moving away from us at 21 kilometers per second. Roughly the same type, size, and distance as Rigel, it looks far fainter. But why? Oddly enough, Saiph has an extremely high temperature, burning more than 1,500 K hotter. Near the point where helium fusion replaces hydrogen fusion, the majority of its variable light output is in the ultraviolet band. And as Huggins once said: ‘‘It is remarkable that the elements diffused through the host of stars are some of the most closely connected with the living organisms of our globe.’’

Until next week? Dodge the snow flakes and dance in the starlight!

This week’s awesome image are (in order of appearance): AE Aurigae and Mu Columbae – Palomar Observatory, courtesy of Caltech, Comet Tritton rough finder chart courtesy of Heavens Above, Salyut 7 as seen from orbiting Soyuz courtesy of NASA, Iota Orionis and Messier 79 – Palomar Observatory courtesy of Caltech, William Huggins historical image and Kappa Orionis – Palomar Observatory, courtesy of Caletch. We thank you so much!

Journey Around A Black Hole – Epsilon Aurigae

Now that the Moon is absent from the early evening picture, are you ready to journey around a black hole? It’s not an easy observation, but it is one that doesn’t require highly specialized equipment and its not difficult to find. Can you identify Capella? Then let’s rock…

Using the map below to help you identify the constellation of Auriga, you won’t have any problem picking out the sixth brightest star in the northern hemisphere night – bright, yellowish-white Capella. While Alpa Aurigae is an interested spectroscopic binary star, it’s not our target. If your skies are fairly dark, look a few fingerwidths southwest for much dimmer Epsilon (the backward 3 on our map). Epsilon Aurigae is an eclipsing binary star, but one that has an extraordinarily long period -27.1 years. While it only drops .8 of a magnitude, it’s dark companion is a 10-12 solar mass black hole. According to studies done by Wilson and Cameron a ring of obscuring material surrounds the black hole and accounts for the magnitude drop. And it’s dropping now!

According to AAVSO Special Notice #192 prepared by Aaron Price: “Epsilon Aurigae continues to progress through its first eclipse since 1982-84. Visual and photometric observation means place it at around magnitude 3.7-3.8. Totality was likely reached sometime in January, but it will take some time to analyze the data to establish a specific date. Totality is expected to last about 15 months, but the system is not expected to remain quiet during this time. Small amplitude modulations are being detected which are likely not associated with the eclipse itself. However, their exact source is still debated. The amplitude of these modulations are at the limit of the average observer’s ability to detect visually. Therefore this may make a nice, challenging system to test your eyes. Right now, Epsilon Aurigae is well placed for observing high in the sky right after dusk.

In addition to these modulations, a mid-eclipse brightening of a few tenths of a magnitude have been reported in past eclipses. If confirmed, it would contribute significantly to our understanding of the structure of the eclipsing disk of material. The problem is this will happen next summer when epsilon Aurigae is near solar conjunction. So observations very early in the morning later this season will be very important. It may be a good idea to begin practicing twilight observations right now.”

What will it look like? Just a barely perceptible change in brightness, but observers interested in DSLR or photoelectric photometers may want to use this project as an entry point. A team of observers is working on a series of tutorials on the Citizen Sky web site. General information regarding the Epsilon Aurigae campaign and a series of online discussion forums can be found at the Citizen Sky web site. Information is also available to submit your observations to the American Association of Variable Star Observers (AAVSO), too!

Journey around a black hole… If you dare!

Epsilon Aurigae illustration is courtesy of Nico Camargo.

Huge Fireball Reported Over Ireland

We’re seeing reports popping up on the internet of a huge fireball spotted over Ireland at around 6pm local time on Feb. 3, 2010. There was a video posted to You Tube which claimed to be footage of the event, but it now seems that was old footage, so we have removed the embedded video. (We’ll post any new verified images or videos when they become available.) Any Irish readers out there see anything? The Irish Times said members of the public throughout the country have been reporting sightings of the fireball. The Times quoted Tommy David Moore from Astronomy Ireland: “A major explosion happened in the sky over Ireland. We think it’s a fireball, that’s a rock from space the earth has slammed into and they burn up as huge shooting stars. This one appears to have lit up the whole country. The phones here in Astronomy Ireland are going crazy.”
Continue reading “Huge Fireball Reported Over Ireland”