Keck Uses Adaptive Optics for the First Time

Image credit:: Keck

The 10-metre Keck II observatory took an important step forward recently when it began observations with its new adaptive optics system. The system uses a laser to create a fake star about 90 kilometres up in the sky – a computer can then use this to calculate how to remove the effect of atmospheric disturbances. Adaptive optics have been used on smaller telescopes, but this is the first time it’s been employed on a telescope as large as the mighty Keck II; it took nine years to adapt the observatory.

A major milestone in astronomical history took place recently at the W.M. Keck Observatory when scientists, for the first time, used a laser to create an artificial guide star on the Keck II 10-meter telescope to correct the blurring of a star with adaptive optics (AO). Laser guide stars have been used on smaller telescopes, but this is their first successful use on the current generation of the world’s largest telescopes. The resulting image (Figure 1), captured by the NIRC2 infrared camera, was the first demonstration of a laser guide star adaptive optics (LGS AO) system on a large telescope. When complete, the LGS AO system will mark a new era of astronomy in which astronomers will be able to see virtually any object in the sky with the clarity of adaptive optics.

“This is one of the most gratifying moments in all my years at Keck,” remarked Dr. Frederic Chaffee, director of the W.M. Keck Observatory the evening the observations were made. “Like any positive first light result, there is much to be done before the system can be considered operational. But also like any positive first light result, it shows that it can be done, and gives us great optimism that our goals are not impossible dreams, but are instead attainable realities.”

Adaptive optics is a technique that has revolutionized ground-based astronomy through its ability to remove the blurring of starlight caused by the earth?s atmosphere. Its requirement of a relatively bright “guide star” in the same field of view as the scientific object of study has generally limited the use of AO to about one percent of the objects in the sky.

To overcome this restriction, in 1994 the W.M. Keck Observatory began working with Lawrence Livermore National Labs (LLNL) to develop an artificial guide star system. By using a laser to create a ?virtual star,? astronomers can study any object in the vicinity of much fainter (up to 19th magnitude) objects with adaptive optics and reduce its dependence on bright, naturally occurring guide stars. Doing so will increase sky coverage for the Keck adaptive optics system from an estimated one percent of all objects in the sky, to more than 80 percent.

“This new capability of using a laser guide star with a large telescope has invited astronomers to start exploring the night sky in a much more comprehensive manner,” said Adam Contos, optics engineer at the W.M. Keck Observatory. “In the future, I would expect most major observatories to be installing similar systems to take advantage of this incredible enhancement to their AO capabilities.”

In January 2001, after more than seven years in development, the Keck and LLNL teams celebrated the completion of the Keck laser guide star system. The artificial star results when light from a 15-watt dye laser causes a naturally occurring layer of sodium atoms to glow about 90 km (56 miles) above the earth’s surface. It would take another two years of sophisticated research and design before the laser system could be integrated into the Keck II adaptive optics system.

In the early morning hours of September 20th, all subsystems finally came together to reveal the unique capability of the Keck LGS AO system and its potential to resolve extremely faint objects. The system locked on a 15th magnitude star, a member of a well-known T Tauri binary called HK Tau and revealed details of the circumstellar disk of the companion star. It was the first time an adaptive optics system on a very large telescope had ever used an artificial guide star to resolve a faint object.

A key challenge the LGS AO team faced was how successful the efforts would be to integrate and achieve good performance measurements for each required sub-system. Concerns about the power of the laser and its spot quality, operation of the laser traffic control system, the ability of the new sensors to lock on fainter guide stars, and being able to optimize the image quality through an accurate understanding of the aberrations that could not be measured by using the laser guide star, were all factored into the evening’s observing.

“First light was a superb team effort,” said Dr. Peter Wizinowich, team leader for the adaptive optics team at W.M. Keck Observatory. “It was very satisfying to have each of the many subsystems perform so well on our first attempt. To quote Virgil, ‘Audentes Fortuna Juvat,’ fortune favors the bold.”

The quality of the LGS AO first light images was extremely high. While locked on a 14th magnitude star, the Keck LGS AO system recorded “Strehl ratios” of 36 percent (at 2.1 micron wavelength, 30-second exposure time, Figure 3), compared to four percent for uncorrected images. Strehl ratios measure the degree to which an optical system approaches “diffraction-limited” perfection, or the theoretical performance limit, of the telescope.

Another performance metric, the “full width at half maximum” (FWHM), for this 14th magnitude star was 50 milli-arcseconds, compared to 183 milli-arcseconds for the uncorrected image. FWHM measurements help astronomers determine the actual edges of an object, where the detection may be imprecise or difficult to determine. The measurement of 50 milli-arcseconds is about equivalent to being able to distinguish a pair of car headlights in New York while standing in Los Angeles.

Throughout the evening, the laser guide star held steady and bright, shining at an approximate magnitude of 9.5, about 25 times fainter than what the human eye can see, but ideal for the Keck adaptive optics system to measure and correct for atmospheric distortions.

Additional work is underway before the Keck LGS AO system can be considered fully operational. The Keck LGS AO system will be available for limited shared risk science next year, with full deployment to the Keck user community in 2005.

“Even with just this first test, astronomers are already clamoring to use the laser guide star system to study distant galaxies with an unprecedented resolution and power,” said Dr. David Le Mignant, adaptive optics instrument scientist at the W.M. Keck Observatory, California Association for Research in Astronomy. “By next year, adaptive optics will be used to study the rich formation history of early galaxies.”

The importance of this breakthrough to worldwide astronomy was summed up by Dr. Matt Mountain, the director of the Gemini Observatory, which operates twin 8-meter telescopes, one on Mauna Kea and one on Cerro Pachon in Chile: “This is a critical milestone for all ground-based astronomy, not just for our current generation of eight to 10-meter class telescopes, but also for our dreams of 30-meter telescopes.”

Team members responsible for the Keck LGS AO system are Antonin Bouchez, Jason Chin, Adam Contos, Scott Hartman, Erik Johansson, Robert Lafon, David Le Mignant, Chris Neyman, Paul Stomski, Doug Summers, Marcos van Dam, and Peter Wizinowich, all from the W.M. Keck Observatory, California Association for Research in Astronomy. The team gave special thanks to their collaborators at LLNL: Dee Pennington, Curtis Brown and Pam Danforth.

The laser guide star adaptive optics system was funded by the W.M. Keck Foundation.

The W.M. Keck Observatory is operated by the California Association for Research in Astronomy, a scientific partnership of the California Institute of Technology.

Original Source: Keck News Release

SCUBA 2 is in Development

Image credit: PPARC

The Canadian Federation for Innovation announced today that it will be contributing $12.3 million CDN for the development of the SCUBA 2 project – an instrument that will be able to detect objects in the sub-millimetre wavelengths (in between radio and infrared). SCUBA 2 will be faster, imaging objects in hours instead of weeks, and it will be much more sensitive, allowing it to look further into space. Sub-millimetre astronomy is a newer field of research, which allows astronomers to penetrate clouds of obscuring dust to look at comets, the birthplace of stars, and distant galaxies.

Astronomers are poised to take another giant leap into some of the coldest regions of space following the announcement that Canada will join the UK in developing a new generation camera for the James Clerk Maxwell Telescope (JCMT) in Hawaii – the world’s largest telescope for studying astronomy at sub-millimetre wavelengths.

The announcement today (26 September 2003) of a grant of ?5.5 million (12.3 million Canadian Dollars) from the Canadian Foundation for Innovation will contribute to the development of a new instrument, SCUBA 2. The UK, through the Particle Physics and Astronomy Research Council (PPARC) will also contribute some ?4 million to the development of the instrument with a further ?2.3 million coming from the JCMT partner Agencies contributions (UK, Canada and the Netherlands).

The project is lead by the UK Astronomy Technology Centre (UK ATC) at the Royal Observatory, Edinburgh. The new instrument will supersede the original groundbreaking Sub-millimetre Common User Bolometer Array (SCUBA) frequently cited as one of the most important ground-based astronomical instruments ever. SCUBA was also designed and constructed at the Royal Observatory, Edinburgh in collaboration with Queen Mary, University of London.

Professor Ian Halliday, Chief Executive of PPARC commented “SCUBA 2 will enable the JCMT to maintain its position as one of the world’s leading facilities in the exotic field of sub-millimetre astronomy. We are delighted that our Canadian colleagues have joined with us to spearhead its development.”

Dr Wayne Holland, SCUBA 2 Project scientist at the UK ATC said “To work in this challenging field requires special techniques and cutting-edge technology. With a much larger field of view and the capability to limit background ‘noise’, SCUBA 2 will map large areas of sky up to 1000 times faster than the current SCUBA camera. Sub-millimetre detectors must be cooled to a fraction of a degree above absolute zero (-273 decrees C). The UK ATC has considerable experience of producing electrical and optical systems that deliver a high level of performance at these extreme temperatures.”

Dr Adrian Russell, Director of the UK ATC said: “SCUBA 2 will be a second revolution in sub-millimetre astronomy and will build on the ground-breaking science that its predecessor SCUBA (1) has already delivered. The JCMT community will have access to a tremendously powerful tool which will not only carry out world class science, but will put them in an enviable position to exploit the new ALMA telescope when it comes online. ”

Sub-millimetre astronomy is a new and rapidly developing field that allows scientists to probe the composition of comets, the birthplaces of stars and the most distant galaxies. Sub-millimetre wavelengths lie between those of traditional radio astronomy and those of the newer but now fairly well understood infrared astronomy. Astronomers detect light at sub-millimetre wavelengths in order to penetrate clouds of cosmic dust.

The vast majority of light from young galaxies in the distant universe is absorbed by dust, and is only observable by astronomers at sub-millimetre wavelengths. The quantity of dust in young galaxies reveals whether stars formed gradually, or mainly in sudden bursts, in the early history of the Universe.

SCUBA 2 will actually have two cameras – each operating simultaneously at a different wavelength in the sub-millimetre band. The 6400 pixels in each camera will cover an 8 x 8 arc-minute patch of sky (about a third of the full moon) or some 16 times the area of the existing SCUBA instrument. The improved sensitivity and imaging power will mean that observations that now take weeks of telescope time with SCUBA will be made in only a few tens of minutes.

Original Source: PPARC News Release

SIRTF Takes First Images

Image credit: NASA

The last of the Great Observatories, NASA’s Space Infrared Telescope Facility, gathered first light from two of its instruments: the infrared array camera and the multi-band imaging photometer. These tests are part of the observatory’s two-month in-orbit checkout, which will be followed by a one-month verification phase. Operators will continue to fine-tune SIRTF’s focus and test out another instrument later this month. Once it’s finally ready for scientific duty, SIRTF will study galaxies and stars in the infrared spectrum and search for signs of planetary disks forming around young stars to help us understand how our own solar system formed.

NASA’s Space Infrared Telescope Facility has switched on two of its onboard instruments and captured some preliminary star-studded images. The space observatory was launched from Cape Canaveral, Fla., on August 25.

The images were taken as part of an operational test of the infrared array camera. It will take about a month to fully focus and fine-tune the telescope and cool it to optimal operating temperature, so these early images will not be as sharp or polished as future pictures.

“We’re extremely pleased, because these first images have exceeded our expectations,” said Dr. Michael Werner, the Space Infrared Telescope Facility project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “We can’t wait to see the images and spectra we’ll get once the telescope is cooled down and instruments are working at full capacity.”

The most striking image is available on the Internet at the following websites:

http://sirtf.caltech.edu/news/releases/ssc2003-03/

The telescope’s dust cover was ejected on Aug. 29, and its aperture door opened on Aug. 30. The spacecraft is operating in normal mode, and all systems are operating nominally. The team is very pleased with the rapid progress of the observatory and all of its onboard systems, said Project Manager David Gallagher of JPL.

In addition to the infrared array camera, the multi-band imaging photometer instrument was also switched on for the first time in a successful engineering test. The spacecraft’s pointing calibration and reference sensor detected light from a star cluster. The third instrument, the infrared spectrograph, will be turned on later this month.

These operations are part of the mission’s two-month in-orbit checkout, which will be followed by a one-month science verification phase. After that, the science mission will begin a quest to study galaxies, stars and other celestial objects, and to look for possible planetary construction zones in dusty discs around other stars.

JPL, a division of the California Institute of Technology in Pasadena, manages the Space Infrared Telescope Facility for NASA’s Office of Space Science, Washington, D.C. More information about the Space Infrared Telescope Facility is available at http://sirtf.caltech.edu/. For more information about NASA on the Internet, visit http://www.nasa.gov.

Source: NASA Press Release

Detector Will Measure the Mass of Neutrinos

Image credit: PPARC

On August 14, a new detector designed to determine the mass of neutrinos began operations in an old mine in Minnesota, USA. The Main Injector Neutrino Oscillation Search (MINOS) detector is 30-metres long and consists of 486 massive octagonal plates, each of which is 8-metres across. MINOS will initially measure neutrinos coming from Sun, but in August 2004 it will measure man-made neutrinos created in a laboratory more than 700 km away. If the experiment is successful it will help solve the mystery of dark matter, which some astronomers believe comes from the mass of neutrinos.

Today, (August 14th), sees the start of data collection on the Main Injector Neutrino Oscillation Search (MINOS) detector, situated in the Soudan iron mine, Minnesota, USA. UK particle physicists, working within an international collaboration, will use the MINOS detector to investigate the phenomenon of neutrino mass – a puzzle that goes to the heart of our understanding of the Universe.

Neutrinos are pointlike, abundant particles with very little mass. They exist in three types or ‘flavours’ and recent experiments (including those at SNO – the Sudbury Neutrino Observatory) have demonstrated that neutrinos are capable of oscillating between these flavours (electron, tau and muon). This can only happen if one or more of the neutrino flavours does have mass, in contradiction to the Standard Model of particle physics.

The MINOS detector will start measurements of cosmic ray showers penetrating the Earth. It is situated in the Soudan Mine, Minnesota. The 30-metre-long detector consists of 486 massive octagonal planes, lined up like the slices of a loaf of bread. Each plane consists of a sheet of steel about 8 metres high and 2 ? cm thick, covered on one side with a layer of scintillating plastic that emits light when struck by a charged particle.

“MINOS can separate neutrino interactions from their antimatter counterparts – the antineutrinos.” explains UK MINOS spokesperson, Jenny Thomas from University College London. “The data taken now from neutrinos produced in cosmic ray cascades may provide new insight into why the Universe is made of more matter than antimatter. At least, for the first time we will be able to compare the characteristics of neutrinos and anti-neutrinos coming from the atmosphere.”

However, MINOS has more ambitious plans in place for August 2004. Whilst most experiments like SNO measure neutrinos coming from the Sun, when complete, MINOS will instead study a beam of man-made neutrinos, all of the same type or ‘flavour’ – the muon neutrino flavour. This beam will be created at Fermi National Accelerator Laboratory (Fermilab) and sent straight through the Earth to Soudan – a distance of 735 kilometres. No tunnel is needed because neutrinos interact so rarely with matter. A detector is currently being built just outside Fermilab, known as the ‘near’ detector, similar but smaller than the now operational MINOS detector, known as the ‘far’ detector. The ‘near’ detector will act as a control, studying the beam as it leaves Fermilab, then the results will be compared with those from the ‘far’ detector to see if the neutrinos have oscillated into electron or tau neutrinos during their journey.

A million million neutrinos will be created at Fermilab each year, but only 1,500 will interact with the nucleus of an atom in the far detector and generate a signal; the others will pass straight through.

“The realisation that neutrinos oscillate, first demonstrated by the Super Kamiokande experiment in Japan, has been one of the biggest surprises to emerge in particle physics since the inception of the Standard Model more than 30 years ago.” says Jenny Thomas. “The MINOS experiment will measure the oscillation parameters of these neutrinos to an unprecedented accuracy of a few percent; an amazing feat considering neutrinos can usually pass directly through the Earth without interacting at all and that their inferred masses are estimated to be less than 1eV. (The weight ratio of a neutrino to a 1kg bag of sugar is the same as the ratio of a grain of sand to the weight of the earth!). The parameter measurement will open up an entire new field of particle physics, to understand what effect on the universe this tiny neutrino mass has.”

Within two years of turning on the neutrino beam, MINOS should produce an unequivocal measurement of the oscillation of muon neutrinos with none of the uncertainties associated with the atmospheric or solar neutrino source. If indeed the findings are positive, then a new era in particle physics will begin. Theorists will have to incorporate massive neutrinos into the Standard Model, which will have exciting implications. Furthermore cosmologists will have a strong candidate for the ‘missing mass’ of the Universe (which dynamical gravitational measurements show must exist). The experimental side will be just as exciting as we plan new experiments to measure precisely how the different neutrinos change their flavour.

Original Source: PPARC News Release

Largest Robotic Telescope Begins Operations

The Liverpool Telescope, the world’s largest robotic observatory, began operations this week. The 2-metre telescope is operated from Liverpool John Moores University, but it’s actually located in the Canary Islands, and run remotely. The telescope is especially suited to watching astronomical objects which change over time, such as Gamma Ray Bursts, supernovae, asteroids and comets. 5% of its time has been donated to the National Schools’ Observatory program, allowing school children to perform astronomy research.

Palomar Begins a New Sky Survey

Image credit: Caltech

The Palomar Observatory has begun a new survey of the sky, and will explore the Universe from our solar system out to distant quasars, 10 billion light-years away. The survey will be done with the refurbished 48-inch Oschin telescope with a newly attached digital CCD camera – the largest ever built with 112 separate detectors. The researchers plan to publish images gathered by the telescope onto the web so that other astronomers can search the data for near-earth asteroids, Kuiper Belt objects, supernovae and other objects.

A major new sky survey has begun at the Palomar Observatory. The Palomar-QUEST survey, a collaborative venture between the California Institute of Technology, Yale University, the Jet Propulsion Laboratory, and Indiana University, will explore the universe from our solar system out to the most distant quasars, more than 10 billion light-years away.

The survey will be done using the newly refurbished 48-inch Oschin Telescope, originally used to produce major photographic sky atlases starting in 1950s. At its new technological heart is a very special, fully digital camera. The camera contains 112 digital imaging detectors, known as charge-coupled devices (CCDs). The largest astronomical camera until now has had 30 CCDs. CCDs are often used for digital imaging ranging from common snapshot cameras to sophisticated scientific instruments. Designed and built by scientists at Yale and Indiana Universities, the QUEST (Quasar Equatorial Survey Team) camera was recently installed on the Oschin Telescope. “We are excited by the new data we are starting to obtain from the Palomar Observatory with the new QUEST camera,” says Charles Baltay, Higgins Professor of Physics and Astronomy at Yale University. Baltay’s dream of building a large electronic camera that could capture the entire field of view of a wide-field telescope is now a reality. The survey will generate astronomical data at an unprecedented rate, about one terabyte per month; a terabyte is a million megabytes, an amount of information approximately equivalent to that contained in two million books. In two years, the survey will generate an amount of information about equal to that in the entire Library of Congress.

A major new feature of the Palomar-QUEST survey will be many repeated observations of the same portions of the sky, enabling researchers to find not only objects that move (like asteroids or comets), but also objects that vary in brightness, such as the supernova explosions, variable stars, quasars, or cosmic gamma-ray bursts–and to do this at an unprecedented scale.

“Previous sky surveys provided essentially digital snapshots of the sky”, says S. George Djorgovski, professor of astronomy at Caltech. “Now we are starting to make digital movies of the universe.” Djorgovski and his team, in collaboration with the Yale group, are also planning to use the survey to discover large numbers of very distant quasars–highly luminous objects believed to be powered by massive black holes in the centers of young galaxies–and to use them to probe the early stages of the universe.

Richard Ellis, Steele Professor of Astronomy and director of the Caltech Optical Observatories, will use QUEST in the search for exploding stars, known as supernovae. He and his team, in conjunction with the group from Yale, will use their observations of these exploding stars in an attempt to confirm or deny the recent finding that our universe is accelerating as it expands.

Shri Kulkarni, MacArthur Professor of Astronomy and Planetary Science at Caltech, studies gamma-ray bursts, the most energetic stellar explosions in the cosmos. They are short lived and unpredictable. When a gamma-ray burst is detected its exact location in the sky is uncertain. The automated Oschin Telescope, armed with the QUEST camera’s wide field of view, is poised and ready to pin down the exact location of these explosions, allowing astronomers to catch and study the fading glows of the gamma-ray bursts as they occur.

Closer to home, Caltech associate professor of planetary astronomy Mike Brown is looking for objects at the edge of our solar system, in the icy swarm known as the Kuiper Belt. Brown is convinced that there big objects out there, possibly as big as the planet Mars. He, in collaboration with astronomer David Rabinowitz of Yale, will use QUEST to look for them.

Steve Pravdo, project manager for the Jet Propulsion Laboratory’s Near-Earth Asteroid Tracking (NEAT) Project, will use QUEST to continue the NEAT search which began in 2001. The QUEST camera will extend the search for asteroids that might one day approach or even collide with our planet.

The Palomar-QUEST survey will undoubtedly enable many other kinds of scientific investigations in the years to come. The intent is to make all of the copious amounts of data publicly available in due time on the Web, as a part of the nascent National Virtual Observatory. Roy Williams, member of the professional staff of Caltech’s Center for Advanced Computing Research, is working on the National Virtual Observatory project, which will greatly increase the scientific impact of the data and ease its use for public and educational outreach as well.

The QUEST team members from Indiana University are Jim Musser, Stu Mufson, Kent Honeycutt, Mark Gebhard, and Brice Adams. Yale University’s team includes Charles Baltay, David Rabinowitz, Jeff Snyder, Nick Morgan, Nan Ellman, William Emmet, and Thomas Hurteau. The members from the California Institute of Technology are S. George Djorgovski, Richard Ellis, Ashish Mahabal, and Roy Williams. The Near-Earth Asteroid Tracking team from the Jet Propulsion Laboratory consists of Raymond Bambery, principal investigator, and coinvestigators Michael Hicks, Kenneth Lawrence, Daniel MacDonald, and Steven Pravdo.

Installation of the QUEST camera at the Palomar Observatory was overseen by Robert Brucato, Robert Thicksten, and Hal Petrie.

Original Source: Caltech News Release

South African Observatory Nearing Completion

Image credit: SALT

The observatory that will house the largest optical telescope in the Southern hemisphere is nearing completion. The Southern African Large Telescope (SALT) is being built by a consortium of six countries at the southern edge of the Kalahari Desert in Africa. The 11-by-10 metre telescope is 18 months away from being done, but the structure of the observatory is nearly complete. The entire project will cost $18 million and be fully operational in late 2004.

A new observatory that promises to give Wisconsin astronomers unique access to the southern sky is now a prominent feature on a remote South African plateau.

The observatory that will house the largest optical telescope in the Southern Hemisphere, known as the Southern African Large Telescope (SALT), is now nearly complete, according to astronomers at UW-Madison. Although the telescope itself is still 18 months from completion, the mirror segments that will make up the 11-by-10-meter hexagonal primary mirror are starting to come together, says Matthew Bershady a UW-Madison professor of astronomy who is helping to oversee planning and construction of the new observatory.

“We are at a point where we have a structure that is nearly completed,” says Bershady of the observatory situated 220 miles from Cape Town on a mountain plateau at the southern end of the Kalahari Desert. “Now, we are starting to populate the (telescope) truss with glass.”

The $18 million SALT Observatory is being built by a consortium of government and academic institutions from six countries. In addition to UW-Madison, Rutgers and Carnegie Mellon universities, Germany’s University of Gottingen, the University of Canterbury in New Zealand, the United Kingdom Consortium, and the governments of Poland and South Africa are partners in the SALT consortium.

UW-Madison’s contribution is a $3 million imaging spectrograph that is being built under the direction of astronomy Professor Kenneth H. Nordsieck. A spectrograph is a device that breaks light down into its constituent wavelengths, each of which has a different story to tell about the star or galaxy from which the light is gathered.

“We’re past the design stage now,” says Nordsieck of the 500-kilogram instrument that will be at the heart of the new observatory. “We’re cutting metal and polishing glass.”

The Wisconsin spectrograph will be the telescope’s primary scientific instrument. Positioned high above the huge segmented mirror at the prime focus of the telescope, the device will be capable of capturing spectra at a rate of 10 times a second.

To explain the importance of spectroscopy to astronomy, one spectrum – in the words of one astronomer – is worth a thousand pictures.

The device, says Nordsieck, will sample light in the near ultraviolet part of the electromagnetic spectrum: “This is light that our eyes can’t see, but it still gets through the atmosphere. It’s the same kind of light that causes sunburn.”

In addition, the spectrograph will be capable of doing polarimetry, measuring how light waves are scattered as they bounce off objects in space and are pushed and pulled by the immense magnetic fields of interstellar space. Polarimetry, Nordsieck says, helps reveal geometric information, giving astronomers insight into how starlight interacts with the objects it encounters.

“We will also have one of the first large Fabry-Perot devices,” he adds. “It is basically a tunable filter” capable of imaging a large part of the sky.

Fittingly, among the system of lenses to be included in the spectrograph will be a set made of sodium chloride – or salt.

Together, the large, segmented primary mirror and the novel scientific instrumentation will position SALT to break plenty of new ground in the southern skies.

“One of the big things this telescope will be tuned for are the Magellanic Clouds,” says Bershady. “They are important because they are the galaxies nearest to our own, and they offer the best opportunity to study stars and galaxies outside of the Milky Way. It’s always a good thing to look outside of your own immediate environment to find out how unique you are, if at all.”

The SALT construction schedule is right on time, Bershady adds. “That we haven’t slipped at all is amazing,” he says. “Our hope is to stay on track for first light in late 2004.”

Original Source: SALT News Release

New Camera Catches a Near Earth Object Already

Image credit: NASA

Even though it’s still in its initial commissioning trials, NASA’s Quasar Equatorial Survey (or Quest) camera system attached to the 1.2 metre Oschin telescope on Palomar Mountain has already bagged an asteroid. The 250-metre near-Earth object (NEO) 2003 NL7 was discovered on the evening of July 8 by the Quest system, and then later confirmed by several other observatories. Once Quest is fully operational, it should be 3 to 4 times better than the older equipment it replaced.

NASA astronomers in pursuit of near-Earth asteroids have already made a discovery with the newly installed Quasar Equatorial Survey, or ‘Quest,’ camera mounted in mid-April on Palomar Mountain’s 1.2-meter (48-inch) Oschin telescope.

“The Quest camera is still undergoing commissioning trials,” said Dr. Steven Pravdo, project manager for the Near-Earth Asteroid Tracking Project at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “But that doesn’t mean we can’t do some real science in the meantime. What we found was a near-Earth asteroid, estimated to be about 250 meters (820 feet) in size.”

The detection of the near-Earth object, 2003 NL7, occurred on the evening of July 8. It has been confirmed by follow-up measurements from three other observatories and subsequently certified by the official clearinghouse of the solar system’s smaller inhabitants, the Minor Planet Center. While 2003 NL7 has been labeled a near-Earth asteroid, it is considered non-hazardous, with a 2.97-year orbit of the Sun in which its closest approach to Earth’s orbit is about 25.1 million kilometers (15.6 million miles).

The Quest camera is being developed as a multi-purpose instrument by Yale and Indiana universities with Dr. Charles Baltay, chairman of Yale’s physics department, as the principal investigator. It is designed for use in detecting and characterizing quasars, near-Earth asteroids, trans-Neptunian objects, supernovas, and a large variety of other astrophysical phenomena, by scientists from Yale, JPL and the California Institute of Technology in Pasadena. The complex camera consists of 112 electronic chips known as charged coupled devices (CCDs) arranged over the Oschin telescope’s focal plane. This gives the Quest camera 161-megapixel capability. By comparison, a good store-bought digital camera would probably be in the four-megapixel range.

“When Quest becomes operational, it will be a significant advancement for the Near-Earth Asteroid Tracking team,” said Dr. Raymond Bambery, the Near-Earth Asteroid Tracking Project’s principal investigator. “We expect the new camera to increase the efficiency of detection of near-Earth asteroids by some 3 to 4 times that of the camera it replaced. This will make a major contribution to NASA’s goal of discovering more than 90 percent of near-Earth objects that are greater that 1 kilometer (.62 mile) in diameter by 2008.”

The Near-Earth Asteroid Tracking System is managed by JPL for NASA’s Office of Space Science, Washington, D.C. JPL is a division of Caltech. More information on the Near-Earth Asteroid Tracking Program is available at http://neat.jpl.nasa.gov/ .

Original Source: NASA/JPL News Release

Destroyed Australian Observatory to Be Rebuilt

Image credit: ANU

In early 2003 bushfires destroyed much of Australia’s Stromlo Observatory, including five telescopes and several support buildings. On Sunday, July 13, the Australian National University unveiled plans to rebuild the facilities on Mt Stromlo. In addition to building two new telescopes (including a two-metre robotic telescope), the University will also reconstruct several heritage buildings destroyed in the fire.

Bushfires in January destroyed more than $40 million worth of facilities and equipment at the Observatory, including five telescopes, workshops, an important heritage building and seven houses.

Mt Stromlo will resume its mantle as the home of Australian astronomy through the planned redevelopment, which includes the placement of two telescopes on Mount Stromlo and one at the ANU Siding Spring Observatory near Coonabarabran, reconstruction of heritage buildings and enhanced viewing facilities for the public, including a newvirtual reality theatre.

The redevelopment will ensure Mt Stromlo remains a world-class astronomy research and education facility, ANU Vice-Chancellor Professor Ian Chubb said. Funding for the redevelopment, including insurance claims, is yet to be finalised, so the plan allows for staged construction.

?Mt Stromlo is not just an icon of Australian science, it is the workplace of number of the world?s leading researchers,? Professor Chubb said.

?The January fires devastated the observatory, but it is time to look ahead to the new Stromlo.

?It is clear that a site with such heritage, renowned as a powerhouse of research and innovation around the world, must be re-equipped with world-class facilities. The University, the International scientific community and the Australian public would not and could not accept a second-class Stromlo.?

The planned redevelopment includes:
? The Advanced Instruments and Engineering Facility, which will replace the workshops destroyed in the blaze, offering expanded design and manufacture capabilities for precision optical instruments and a research and development program focusing on Extremely Large Telescopes

? A new robotically-controlled two-metre telescope, the Phoenix

? The world?s fastest sky-mapping telescope, the Skymapper, to be built at the ANU Siding Spring Observatory, but controlled from Mt Stromlo through a broadband link

? Restoration of the historic 1924 Admin building, to house a rebuilt library and offices

? Restoration of the historic 23cm Oddie Telescope

? Housing for Staff and Students

? A new virtual reality theatre, allowing visitors to fly through our universe in 3D

The Director of the Research School of Astronomy and Astrophysics, Professor Penny Sackett, said Mt Stromlo had opened the eyes of tens of thousands of Australians to science and served as a vital resource to international astronomy for decades ? and would continue to play this role in future.

?The fires destroyed much of our infrastructure, but left our most important asset intact ? our people,? Professor Sackett said.

?The day after fires, we committed to restoring Stromlo and its network of facilities as a pillar of Australian science.

?Three weeks after the fires, our staff were back at work on the mountain, working in two office buildings which were largely undamaged.

?We can not and we should not reconstruct a carbon copy of the old Stromlo. This new design is overwhelmingly oriented around meeting the needs of staff, students and visitors ? while also ensuring Stromlo retains its status as an internationally important observatory.

?For decades, Stromlo and Siding Spring have been operated as integrated observatories, combining the virtues of a control base close to ANU, close to the nation?s capital and accessible to the community with a primary observation base offering optimal astronomical and climatic conditions.

?The new design retains telescopes and the research hub at Stromlo, but provides even stronger integration with the University?s Siding Spring resources, ultimately providing a more powerful research facility for Australia.?

Original Source: ANU News Release

Gemini Pictures Rival Hubble

Image credit: Gemini

Thanks to its adaptive optics system and new imaging spectrograph, the Gemini observatory in Chile is producing images that rival those taken by the Hubble Space Telescope. One image of the Hickson Compact Group 87 (HGC87), a group of galaxies located 400 million light years away in the constellation of Capricornus, looks identical to that taken by Hubble. The seven-metre Gemini South is still being tested, but it’s expected to begin scientific operations in August, 2003.

Gemini Observatory’s new imaging spectrograph, without the help of adaptive optics, recently captured images that are among the sharpest ever obtained of astronomical objects from the ground.

Among the images and spectra acquired during recent commissioning of the Gemini Multi-Object Spectrograph (GMOS) on the 8-meter Gemini South Telescope, one image is particularly compelling. This Gemini image reveals remarkable details, previously only seen from space, of the Hickson Compact Group 87 (HCG87). HCG87 is a diverse group of galaxies located about 400 million light years away in the direction of the constellation Capricornus. A striking comparison with the Hubble Space Telescope Heritage image of this object, including resolution data, can be viewed at http://www.gemini.edu/media/images_2003-3.html.

“Historically, the main advantage of large ground-based telescopes, like Gemini, is their ability to collect significantly more light for spectroscopy than is possible with a telescope in space,” said Phil Puxley, Associate Director of the Gemini South Telescope. He explains, “The Hubble Space Telescope is able to do things that are impossible from the ground. However, ground-based telescopes like Gemini, when conditions are right, approach the quality of optical images now only possible from space. One key area – spectroscopy of faint objects, which requires large apertures and fine image quality – is where large telescopes like Gemini provide a powerful, complementary capability to space-based telescopes.”

GMOS-South is currently undergoing commissioning on the 8-meter Gemini South Telescope at Cerro Pach?n, Chile. “GMOS-South worked right out of the box, or rather, right out of the 24 crates that brought the 2-ton instrument to Chile from Canada and the UK – just like its northern counterpart did when it arrived on Hawaii’s Mauna Kea,” says Dr. Bryan Miller, head of the commissioning team. “The GMOS program demonstrates the advantage of building two nearly identical instruments. Experience and software from GMOS-North have helped us commission this instrument more rapidly and smoothly than we could have done otherwise,” explains Dr. Miller. He adds, “Although the images from GMOS-South are spectacular, the instrument is primarily a spectrograph and that is where its capabilities are most significant for scientists.” GMOS-South is expected to begin taking science data in August 2003.

As a multi-object spectrograph, GMOS is capable of obtaining hundreds of spectra in one “snapshot.” The ability to deliver high-resolution images is a secondary function. “It used to take an entire night to obtain one spectrum,” explains Dr. Inger J?rgensen, who led the commissioning of the first GMOS instrument on the Frederick C. Gillett Gemini Telescope (Gemini North) over a year ago. “With GMOS, we can collect 50-100 spectra simultaneously. Combined with Gemini’s 8-meter mirror, we are now able to efficiently study galaxies and galaxy clusters at vast distances – distances so large that the light has traveled for half the age of the Universe or more before reaching Earth. This capability presents unprecedented possibilities for investigating how galaxies formed and evolved in the early Universe.”

GMOS achieves this remarkable sensitivity partly because of its technologically advanced detector, which consists of over 28 million pixels, and partly because of multiple innovative features of the Gemini dome and telescope that reduce local atmospheric distortions around the telescope. “When we designed Gemini, we paid careful attention to controlling heat sources and providing excellent ventilation,” said Larry Stepp, former Gemini Optics Manager. Stepp elaborates, “For example, we constructed 3-story-high vents on the sides of the Gemini enclosures. It is great to see this image that provides such a dramatic validation of our approach.”

“The twin Gemini Telescopes offer a unique advantage,” explains Director of the Gemini Observatory Dr. Matt Mountain. “Now that both telescopes are equipped with nearly identical GMOS instruments, we have created an unprecedented uniform platform to coherently study and take deep spectra of any object in the northern or southern sky at optical wavelengths.”

Upgrades to GMOS-South that will increase its variety of capabilities are planned even as the instrument is undergoing commissioning. An Integral Field Unit (IFU) on GMOS-South is anticipated to begin commissioning in early 2004. Jeremy Allington-Smith, leader of the IFU team at the University of Durham said, “GMOS-South will soon be fitted with an integral field unit like its sister on Gemini North. Made by the University of Durham, it uses more than a thousand optical fibers, tipped at each end with microscopic lenses, to dissect the object under study. This gives GMOS a 3-D view of the target, in which each pixel in the image is replaced by a spectrum. This innovation allows GMOS to make detailed maps of, for example, the motion of stars and gas in galaxies.”

GMOS was built as a joint partnership between Gemini, Canada and the UK. Separately, the U.S. National Optical Astronomy Observatory provided the highly capable detector subsystem and related software (http://www.noao.edu/usgp). It is anticipated that GMOS-South will be available for full scientific operations in August 2003 when astronomers from the seven-country Gemini partnership will begin using the instrument for a wide variety of scientific studies.

The Gemini Observatory is an international collaboration that has built two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located at Mauna Kea, Hawai`i (Gemini North) and the other telescope at Cerro Pach?n in central Chile (Gemini South), and hence provide full coverage of both hemispheres of the sky. Both telescopes incorporate new technologies that allow large, relatively thin mirrors under active control to collect and focus both optical and infrared radiation from space.

The Gemini Observatory provides the astronomical communities in each partner country with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the UK Particle Physics and Astronomy Research Council (PPARC), the Canadian National Research Council (NRC), the Chilean Comisi?n Nacional de Investigaci?n Cientifica y Tecnol?gica (CONICYT), the Australian Research Council (ARC), the Argentinean Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) and the Brazilian Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq). The Observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

Original Source: Gemini News Release