Your Pictures of the “Super” Full Moon

The full Moon on March 19, 2011, as seen in Ankara, Turkey. Credit: Ra?id Tu?ra

[/caption]

How super was your full Moon on March 19, 2011? I was completely clouded out, but thankfully quite a few people have been kind enough to share their images. Here are a pictures sent in by readers, as well as via Twitter and Facebook. We’ve got images from all around the world, and even though the size of the Moon really wasn’t that much bigger than usual, (read here why not) it is great to see so many people getting out and looking up at the sky! Our lead image comes from Rasid Tugral in Ankara, Turkey.

This view of the March 19, 2011 full Moon was taken on West Kennet Avenue at the Avebury Stone Circle in Wiltshire. Credit: Pete Glastonbury
Perigee moonrise from Rothenfels, Germany. Credit: Daniel Fischer.

This one is from Daniel Fischer , who took a series of images of the Perigee moonrise sequence from Rothenfels, Germany.

Perigee Moon. Credit: Jason Major

Jason Major from Lights in the Dark created this image from a combination of two exposures from his Nikon D80 and 200mm telephoto.

The full super moon. Credit: Peter Riesett
The full moon is seen as it rises near the Lincoln Memorial, Saturday, March 19, 2011, in Washington. The full moon tonight is called a "Super Perigee Moon" since it is at it's closest to Earth in 2011. The last full moon so big and close to Earth occurred in March of 1993. Photo Credit: (NASA/Bill Ingalls)

moon from Tim Burgess on Vimeo.

Supermoon through the trees. Credit: Adam Schaefer
‘I took a few shots of the moon during last week and collected three of them to the same picture adding color lines to help the viewer to compare the size of the moon when it is nearing to its perigree status. All the shots have been taken in Laukaa, Central Finland with Sony Alpha700 dslr -camera equipped with 300mm minolta telephoto lens and 2x tele converter, hand held, manual focus. Unfortunately, the night 19.3.2011 was here cloudy, so I couldn't take photos then.’ Credit: Jukka Seppala, Teacher, nature photographer, Vihtavuori, Central Finland
Full Moon over Florida, sent in by cmurray6.
'I see the Supermoon a rising, I see trouble on the way ....' taken with an iPhone and a 3.5-inch scope: Credit: Bill Dillon
The Moon over the San Francisco, CA Bay Area. Credit: Diane Garber
The Moon and an old coal fired power station in Fremantle, Western Australia. Credit: Donna Oliver Rockingham, Western Australia

This gorgeous shot, was sent in by Donna Oliver from western Australia, take a bit of creative license. She says: “The goal was not to shoot the moon as such but to take advantage of the additional light. Obviously on a long exposure, the moon would not look this good, so I shot the moon, then added it. You can see star movement if you look carefully. I made the moon extra large as my interpretation of the Super Moon.”

'The Moon rising behind a couple of palm trees with cows grazing in the foreground. As you can see in the image, the bottom half of the moon has a different tint due to the earths atmosphere.' Credit: Tom Connor, Parrish, FL
SuperMoon taken from Alpha Ridge, March 19, 2011. Credit: James Willinghan
Moon over New Orleans. Credit: Peter Jansen
Moon over Cape Town, South Africa. Equipment: Canon 400D, Sigma 170-500 lens 'The Moon was definitely at its best. I did not try any new tricks as I wanted to compare the "supermoon" with my previous attempts. Phocussing was definitely much easier. My exposure was just right to show up the ejecta rays of the impact craters, Tycho and Copernicus as well.' Credit: Carol Botha
The Moon over Gulf Islands National Seashore near Navarre Beach, Florida. Credit: Mindi Meeks. Click the image to see more in a series taken by Mindi.
A 'side by side' comparison of 4 different shots taken over the period of 30 hours before 'SuperMoon'. It shows the progression of Moon in it's orbit until the closest point. Credit: Ramiz Qureshi, from Karachi, Pakistan.
This one is pretty creative: Saturdays "Supermoon" compared to the size of an apogee moon (2008). The 'big one' was taken yesterday (March 19, 2011). It is compared to the full moon fotographed at 20.4.2008. The same camera and optics was used (Canon EOS 40 D and Canon 100-400L IS @400mm). In 2008 moon distance was 406,000km, Saturday only 357,000km. Credit: Hans Schremmer Niederkrüchten Germany
The Moon over Teneriffa, Canary Islands. Camera: Atik 314 E, Astrotrac and 70/420 tube. Credit: Vesa K.
'I took this in my garden this evening about 9pm using my Tokina 500mm mirror lens. More detail than I was expecting to be honest,' said photographer Dave Green. Click the image to see his Flickr page.
'Supermoon was scared to shows its face to me.' Credit: Euan McIntosh
Full moon over Bassett, Virginia, 03/19/2011. Credit: Essie Hollandswort
Image of the Full Moon at perigee, taken from Tabuk, Kingdom of Saudi Arabia, on March 19th., 2011 at 20.05UT using a Canon 30D camera set at 1/800sec and 1000ASA. The camera was attached to an 80mm refractor of 500mm focal length and a x3 teleconverter giving an effective focal length of 1,500mm. Credit: Colin Henshaw.
The full Moon over England. Credit: Jerry T Krzyzanowski. Click the image to see his gallery.
This Super Moon image was taken in Pointe-Claire,Canada. The Super Moon is right behind Mercier bridge, one of the key bridge that ties the Montreal island to the south shore. Credit: Jean-Guy Corbeil, Beaconsfield, Québec
Full Moon over Lake Ontario, beside Hamilton, Ontario (Canada). Credit: Nona Clark

Check out these two from Tavi Greiner on her blog, A Sky Full of Stars: In this one, the Moon rises over a boat on the Shallotte River, just a few hundred yards from the Atlantic Ocean.

And in this one, the Moon appears captured by the rigging, and even almost appears to have lit the ropes on fire.

Google Lunar X-Prize’s ‘college team’ gaining steam, attention and support

The Google Lunar X-PRIZE team, Omega Envoy, consists primarily of college students and is working to land a rover on the lunar surface. Image Credit: ESI

[/caption]
ORLANDO – The Google Lunar X-PRIZE (GLXP) recently announced the 29 official teams that will be vying for the $30 million grand prize. One group in particular stands out amongst the list however – Omega Envoy. This team is comprised primarily by college students from the University of Central Florida, working on engineering and other degrees. However, while they may be relatively young, they have drawn the attention of the media, numerous sponsors, NASA and the space industry.

NASA has inked a deal with the tiny band of potential explorers to purchase data from their spacecraft. The space agency awarded the Innovative Lunar Demonstration Data contract to Omega Envoy. This contract is worth up to $10 million. However, while this contract and the growing list of sponsors is impressive, the feat that the team is trying to accomplish is daunting. What they are attempting to do, only nations have done before.

The GLXP requires that to win, the team must safely land a robot on the lunar surface, have it travel 1,500 feet and send back both images and data to Earth. Given the fact that, to date, only the U.S. and Russia have accomplished this before – this is no small task.

Different views of Omega Envoy's proposed lunar rover. Image Credit: ESI

The Google Lunar X-PRIZE is another effort by the X-PRIZE Foundation. The impetus behind this organization is to accelerate space exploration efforts much in the same way that the Orteig Prize accelerated air travel in the 20th Century. That prize was a paltry (by today’s standards) $25,000 for the first person to fly non-stop from New York to Paris (or vice-versa). Its winner, Charles Lindbergh, would go down in history as one of the most famous aviators of all time. It is with this premise in mind that the X-PRIZE Foundation works to inspire today’s explorers and innovators.

The Omega Envoy team under Earthrise Space Inc., has been growing, gaining experience and the attention of major aerospace players - including NASA. Photo Credit: ESI

For the original Ansari X-PRIZE it took an established (if somewhat outside of the mainstream) aerospace company with years of experience to finally accomplish the objectives laid out. Scaled Composites, renowned for their kit aircraft; successfully sent a manned spacecraft into sub-orbital space, returned safely and then sent the same spacecraft, SpaceShipOne; back into space within the required two weeks.

The non-profit organization that oversees all aspects of Omega Envoy, Earthrise Space Inc. (ESI), works to provide services to private companies, government agencies, as well as educational institutions that currently have the resources to explore space and are looking for low cost products that will accomplish their requirements. They feel that this will enhance the accessibility of technology and increase educational interest amongst the workforce that drives the space.

“Aside from the GLXP, ESI intends to continuously schedule lunar deliveries for scientific payloads and robotics,” said Earthrise Space Institute’s Project Director Ruben Nunez. “Other mission objectives for Omega Envoy entail the visual feedback of a scientific payload that will analyze the lunar terrain.”

This illustration displays what Omega Envoy's lunar lander craft might look like. Image Credit: ESI

Through the Google Lunar X-PRIZE and government contracts such as the contract with NASA, it is hoped that this initiative will enable the creation of a new economic system to support lunar exploration as well as Technology Readiness Level (TRL) advancement of innovative, commercial space systems.

“I am fortunate in that I had the opportunity to witness what Omega Envoy is capable of producing when I field tested their prototype rover during the 2009 FMARS (Flashline Mars Arctic Research Station) Expedition,” said Joseph Palaia 4Frontiers’ Vice President. “There is little doubt in my mind that this team is fully capable of accomplishing the objectives laid out in the GLXP.”

One of the Omega Envoy team members, Joseph Palaia; took a prototype of the rover to be field tested during the 2009 FMARS Expedition. Photo Credit: Joseph Palaia

The Supermoon Illusion

You’ve probably all seen it before, a huge Full Moon sitting on the horizon and you wonder why it looks much bigger than at other times? It isn’t, really; it’s an illusion.

And now, if you have heard about the close approach of the moon, or so called “Supermoon” on March 19th and are concerned about the disasters and mayem it may cause, there is no need to worry. And surely, when this so-called “Supermoon” occurs on March 19th — at its closest approach to Earth in two decades — people will indeed report that the Moon looks much bigger than normal. But it won’t really be much bigger in the sky at all. It’s all an illusion, a trick of the eye.

The moon does have an effect on the Earth with its gravity affecting ocean tides and even land to a lesser extent, but the moon on the 19th won’t interact with our planet any differently than any other time it’s been at its closest (also known as perigee).

If anything we may get slightly stronger tides, but nothing out of the ordinary.

The Moon orbits the Earth in an elliptical orbit, meaning that it is not always the same distance from the Earth. The closest the Moon ever gets to Earth (called perigee) is 364,000km, and the furthest is ever gets (Apogee) is around 406,000km (these figures vary, and in fact this Full Moon on March 19, 2011 will see a slightly closer approach of 357,000km).

So the percentage difference in distance between the average perigee and the average apogee is ~10%. That is, if the Full Moon occurs at perigee it can be up to 10% closer (and therefore larger) than if it occurred at apogee.

This is quite a significant difference, and so it is worth pointing out that the Moon does appear to be different sizes at different times throughout the year.

Moon at Perigee and Apogee Credit NASA

But that’s NOT what causes the Moon to look huge on the horizon. Such a measly 10% difference in size cannot account for the fact that people describe the Moon as “huge” when they see it low on the horizon.

What’s really causing the Moon to look huge on such occasions is the circuitry in your brain. It’s an optical illusion, so well known that it has its own name: the Moon Illusion.

If you measure the angular size of the Full Moon in the sky it varies between 36 arc minutes (0.6 degrees) at perigee, and 30 arc minutes (0.5 degrees) at apogee, but this difference will occur within a number of lunar orbits (months), not over the course of the night as the Moon rises. In fact if you measure the angular size of the Full Moon just after it rises, when it’s near the horizon, and then again hours later once it’s high in the sky, these two numbers are identical: it doesn’t change size at all.

So why does your brain think it has? There’s no clear consensus on this, but the two most reasonable explanations are as follows:

  1. When the Moon is low on the horizon there are lots of objects (hills, houses, trees etc) against which you can compare its size. When it’s high in the sky it’s there in isolation. This might create something akin to the Ebbinghaus Illusion, where identically sized objects appear to be different sizes when placed in different surroundings.

Ebbinghaus Illusion – the two orange circles are exactly the same size

  1. When seen against nearer foreground objects which we know to be far away from us, our brain thinks something like this: “wow, that Moon is even further than those trees, and they’re really far away. And despite how far away it is, it still looks pretty big. That must mean the Moon is huge!”.

These two factors combine to fool our brains into “seeing” a larger Moon when its near the horizon compared with when it’s overhead, even when our eyes – and our instruments – see it as exactly the same size.

Source: “Moon Illusion” on Dark Sky Diary Special thanks to Steve Owens

NASA Lunar Reconnaissance Orbiter Delivers Treasure Trove of Data

LOLA data give us three complementary views of the near side of the moon: the topography (left) along with new maps of the surface slope values (middle) and the roughness of the topography (right). All three views are centered on the relatively young impact crater Tycho, with the Orientale basin on the left side. The slope magnitude indicates the steepness of terrain, while roughness indicates the presence of large blocks, both of which are important for surface operations. Lunar topography is the primary measurement being provided, while ancillary datasets are steadily being filled in at the kilometer scale. Credit: NASA/LRO/LOLA Science Team

[/caption]

NASA’s Lunar Reconnaissance Orbiter (LRO) has completed its initial phase of operations during the exploration phase which lasted one year from Sept. 15, 2009 through Sept. 15, 2010 and has now transitioned to the science phase which will last for several more years depending on the funding available from NASA, fuel reserves and spacecraft health. The exploration phase was in support of NASA’s now cancelled Project Constellation

To mark this occasion NASA released a new data set that includes an overlap of the last data from the exploration phase and the initial measurements from the follow on science mapping and observational phase.

This is the fifth dataset released so far. All the data is accessible at the Planetary Data System (PDS) and the LROC website and includes both the raw data and high level processed information including mosaic maps and images.

LRO was launched on June 18, 2009 atop an Atlas V/Centaur rocket as part of a science satellite duo with NASA’s Lunar Reconnaissance Orbiter & Lunar Crater Observation and Sensing Satellite (LCROSS) from Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

After achieving elliptical orbit, LRO underwent a commissioning phase and the orbit was lowered with thruster firings to an approximately circular mapping orbit at about 50 km altitude.

LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. Payload fairing in background protects the spacecraft during launch and ascent. Credit: Ken Kremer
LRO was equipped with 7 science instruments that delivered more than 192 terabytes of data and with an unprecedented level of detail. Over 41,000 DVDs would be required to hold the new LRO data set.

“The release of such a comprehensive and rich collection of data, maps and images reinforces the tremendous success we have had with LRO in the Exploration Systems Mission Directorate and with lunar science,” said Michael Wargo, chief lunar scientist of the Exploration Systems Mission Directorate at NASA Headquarters in Washington according to a NASA statement.

The new data set includes a global map produced by the onboard Lunar Reconnaissance Orbiter Camera (LROC) that has a resolution of 100 meters. Working as an armchair astronaut, anyone can zoom in to full resolution with any of the mosaics and go an exploration mission in incredible detail because the mosaics are humongous at 34,748 pixels by 34,748 pixels, or approximately 1.1 gigabytes.

Browse the Lunar Reconnaissance Orbiter Camera (LROC) Image Gallery here:

The amount of data received so far from LRO equals the combined total of all other NASA’s planetary missions. This is because the moon is nearby and LRO has a dedicated ground station.

Topographic map from LRO data. Credit: NASA

Data from the other LRO instruments is included in the release including visual and infrared brightness, temperatures maps from Diviner; locations of water-ice deposits from the Lyman-Alpha Mapping Project (LAMP) especially in the permanently shadowed areas and new maps of slope, roughness and illumination conditions from the Lunar Orbiter Laser Altimeter team.

Additional new maps were generated from data compilations from the Lunar Exploration Neutron Detector (LEND), the Cosmic Ray Telescope for the Effects of Radiation and the Miniature Radio Frequency (mini RF) instruments

The combined result of all this LRO data is to give scientists the best ever scientific view of the moon.

“All these global maps and other data are available at a very high resolution — that’s what makes this release exciting,” said Goddard’s John Keller, the LRO deputy project scientist. “With this valuable collection, researchers worldwide are getting the best view of the moon they have ever had.”

Slope image. Credit: NASA
The Atlas V/Centaur carrying NASA's Lunar Reconnaissance Orbiter & Lunar Crater Observation and Sensing Satellite hurtles off Launch Complex 41 at Cape Canaveral Air Force Station in Florida on June18, 2009. Credit: NASA/Tom Farrar, Kevin O'Connell

Source: NASA Press Release

Just to be Clear: The Moon Did Not Cause the Earthquake in Japan

Apparrent size difference at Perigee and Apogee

[/caption]

We’re getting a lot of visitors to our site today, many searching for information about earthquakes, tsunamis, and the ‘SuperMoon’ phenomenon. Just to be clear, the Moon did not cause the earthquake in Japan. Several scientists have posted articles online today clarifying the topic, and all of them, in no uncertain terms, agree that the the upcoming perigee of the Moon — where it is closer than usual in its orbit to Earth — had nothing to do with the earthquake and ensuing tsunami. Tammy discussed this yesterday, but as we often do, we’ll also point you in the direction of an article by astronomer Phil Plait about this topic, and another by Ben Goldacre, who completely debunks an article that appeared in the Daily Mail about the possibility of a connection between the two events.

In addition, Dr. Jim Garvin, chief scientist at NASA’s Goddard Space Flight Center, has provided some answers to questions about the ‘supermoon’ phenomenon, below:

Question: What is the definition of a supermoon and why is it called that?

Garvin: ‘Supermoon’ is a situation when the moon is slightly closer to Earth in its orbit than on average, and this effect is most noticeable when it occurs at the same time as a full moon. So, the moon may seem bigger although the difference in its distance from Earth is only a few percent at such times.

It is called a supermoon because this is a very noticeable alignment that at first glance would seem to have an effect. The ‘super’ in supermoon is really just the appearance of being closer, but unless we were measuring the Earth-Moon distance by laser rangefinders (as we do to track the LRO [Lunar Reconnaissance Orbiter] spacecraft in low lunar orbit and to watch the Earth-Moon distance over years), there is really no difference. The supermoon really attests to the wonderful new wealth of data NASA’s LRO mission has returned for the Moon, making several key science questions about our nearest neighbor all the more important.

Question: Are there any adverse effects on Earth because of the close proximity of the moon?

Garvin: The effects on Earth from a supermoon are minor, and according to the most detailed studies by terrestrial seismologists and volcanologists, the combination of the moon being at its closest to Earth in its orbit, and being in its ‘full moon’ configuration (relative to the Earth and sun), should not affect the internal energy balance of the Earth since there are lunar tides every day. The Earth has stored a tremendous amount of internal energy within its thin outer shell or crust, and the small differences in the tidal forces exerted by the moon (and sun) are not enough to fundamentally overcome the much larger forces within the planet due to convection (and other aspects of the internal energy balance that drives plate tectonics). Nonetheless, these supermoon times remind us of the effect of our ‘Africa-sized’ nearest neighbor on our lives, affecting ocean tides and contributing to many cultural aspects of our lives (as a visible aspect of how our planet is part of the solar system and space).

Lunar Farside Gets Highest Resolution Look Yet from LRO

The lunar farside as never seen before! LROC WAC orthographic projection centered at 180° longitude, 0° latitude. Credit: NASA/GSFC/Arizona State University.

[/caption]

The first time humans were able to catch a glimpse of the far side of the Moon was back in 1959 when the Soviet Luna 3 spacecraft sent back 29 grainy images taken during its successful loop around the Moon. “What a surprise – the farside was a different world, geologically,” said Mark Robinson, principal investigator for the camera on board the Lunar Reconnaissance Orbiter. “Unlike the widespread maria on the nearside, basaltic volcanism was restricted to a relatively few, smaller regions on the farside, and the battered highlands crust dominated.”

Since then, just a handful of spacecraft have taken images of the far side of the Moon, but now, Robinson has had a hand in creating the most detailed view yet of the farside of the Moon. A mosaic of the far side released today is comprised of over 15,000 Wide Angle Camera images acquired between November 2009 and February 2011.


“This WAC mosaic provides the most complete look at the morphology of the farside to date, and will provide a valuable resource for the scientific community,” Robinson wrote on the LROC website. “And it’s simply a spectacular sight!”

And how!

Every month, as LRO circles the Moon, the WAC gathers images to provide nearly complete coverage of the Moon under unique lighting. This mosaic knits together images all with similar lighting. As an added bonus the orbit-to-orbit image overlap provides stereo coverage, and even more images will be released on March 15.

“As the mission progresses, and our knowledge of the lunar photometric function increases, improved and new mosaics will be released!” Robinson said. “Work your way around the Moon with these six orthographic projections constructed from WAC mosaics.”

Click here for more stunning, high resolution views of the Moon.

Source: LROC

March 19, 2011… “SuperMoon” or “SuperHype”?

Full Moon Schedules
Credit: JPL/NASA

[/caption]

I mean no disrespect for those who enjoy the study of astrology. Some of the greatest astronomers of the past were also astrologers. To practice either line requires a deep understanding of our solar system, its movements and the relationship to the celestial sphere. The only thing I have difficulty swallowing is how a perfectly normal function could wreak havoc on planet Earth. Does an astrological prediction of an upcoming “Extreme SuperMoon” spell impending disaster – or is it just one more attempt to excite our natural tendencies to love a good gloom and doom story? That’s what I set about to find out…

On March 19, 2011 the Moon will pass by Earth at a distance of 356,577 kilometers (221,567 miles) – the closest pass in 18 years . In my world, this is known as lunar perigee and a normal lunar perigee averaging a distance of 364,397 kilometers (226,425 miles) happens… well… like clockwork once every orbital period. According to astrologer, Richard Nolle, this month’s closer than average pass is called an Extreme SuperMoon. “SuperMoon is a word I coined in a 1979 article for Dell Publishing Company’s HOROSCOPE magazine, describing what is technically termed a perigee-syzygy; i.e. a new or full Moon (syzygy) which occurs with the Moon at or near (within 90% of) its closest approach to Earth (perigee) in a given orbit.” says Richard. “In short, Earth, Moon and Sun are all in a line, with Moon in its nearest approach to Earth.”

Opinions aside, it is a scientific fact when the Moon is at perigee there is more gravitational pull, creating higher tides or significant variations in high and low tides. In addition, the tidal effect of the Sun’s gravitational field increases the Moon’s orbital eccentricity when the orbit’s major axis is aligned with the Sun-Earth vector. Or, more specifically, when the Moon is full or new. We are all aware of Earth’s tidal bulges. The average tidal bulge closely follows the Moon in its orbit, and the Earth rotates under this tidal bulge in just over a day. However, the rotation drags the position of the tidal bulge ahead of the position directly under the Moon. It produces torque… But is it above average torque when the Moon is closer? It you ask a geologist, they’ll tell you no. If you ask an astronomer, they’ll tell you that just about any cataclysmic Earth event can be related to stars. But if you ask me, I’ll tell you that you should draw your own opinion. Even the American Meteorlogical Society states: “Tidal forces contribute to ocean currents, which moderate global temperatures by transporting heat energy toward the poles. It has been suggested that in addition to other factors, harmonic beat variations in tidal forcing may contribute to climate changes.”

Credit: Richard Nolle
“SuperMoons are noteworthy for their close association with extreme tidal forces working in what astrologers of old used to call the sublunary world: the atmosphere, crust and oceans of our home planet – including ourselves, of course. From extreme coastal tides to severe storms to powerful earthquakes and volcanic eruptions, the entire natural world surges and spasms under the sway of the SuperMoon alignment – within three days either way of the exact syzygy, as a general rule.” says Nolle. “Obviously it won’t be the case that all hell will break loose all over the world within a few days either side of the SuperMoons. For most of us, the geocosmic risk raised by SuperMoon alignments will pass with little notice in our immediate vicinity. This is a rather roomy planet, after all. But the fact remains that a SuperMoon is planetary in scale, being a special alignment of Earth, Sun and Moon. It’s likewise planetary in scope, in the sense that there’s no place on Earth not subject to the tidal force of the perigee-syzygy.”

If you take the time to really look at Nolle’s work, you’ll find that he does not believe earthquakes and volcanic eruptions go wandering all over the planet. They happen in predictable locations, like the infamous “Ring of Fire” around the Pacific plate. “If you’re in (or plan to be in) a place that’s subject to seismic upheaval during a SuperMoon stress window, it’s not hard to figure out that being prepared to the extent that you can is not a bad idea. Likewise, people on the coast should be prepared for extreme tidal surges. Severe storms on the other hand can strike just about anywhere, so it behooves us all to be ready for rough weather when a SuperMoon alignment forms.”

Does this mean I’m about to buy into astrology? Not hardly. But what I do believe in is respect for other’s work and opinions. It’s very obvious that Nolle has done his astronomy homework – as well as paying close attention to current political and social situations. “That said, there’s no harm in making sensible preparations for this year’s SuperMoons.” quips Richard. “The worst that can happen, if the worst doesn’t happen, is that you end up with a stock of fresh batteries and candles, some extra bottled water and canned goods, maybe a full tank of gas and an evacuation bag packed just in case. (The US Department of Homeland Security has a detailed evacuation kit inventory that, to quote them, “could mean the difference between life and death”.) And maybe you’ll think twice about being in transit and vulnerable to the weather hazards and delays that are so common during SuperMoon alignments. These are the kind of sensible precautions that can make a big difference if the worst does come to pass.”

What do I believe will happen during an Extreme SuperMoon? I think if we aren’t having two snowstorms followed by a nocturnal tornado and then chased down by a week of flooding in Ohio, that the March Worm Moon will appear to be about 30% brighter and about 15% larger than a “normal” full Moon. If I were an astrophotographer, I’d be getting out my camera (and hip waders) to do a few comparison shots with upcoming full Moons. But considering all things are equal?

I think I’ll just stay home.

Be sure to visit Richard Nolle’s page SuperMoon for more insight!

When Will We Return to the Moon and Who Will it Be?

At the end of the movie “Apollo 13,” when the character of Jim Lovell says “I look up at the Moon and wonder, when will we be going back, and who will that be?” he probably didn’t have anything like the Google Lunar X PRIZE in mind. Similarly, when the GLXP was announced back in 2007, the founders had no idea that nearly 30 teams would be vying for the $30 million in incentive prizes to return to the Moon’s surface with a robotic craft.

Will Pomerantz, the former Senior Director of Space Prizes from the X PRIZE Foundation recalled an advisory committee meeting several years ago before the prize was announced. “We went around the room and asked everyone to estimate how many teams are going to compete in this,” Pomerantz said. “The answers ranged from zero on the low end to maybe a dozen or fifteen at the absolute max and that probably came either for myself or from Peter Diamandis, our founder. The fact that we have almost thirty blows us away, and we couldn’t be more thrilled.”

The X PRIZE Foundation recently announced the official roster of 29 teams that will attempt to send a robot to the Moon that travels at least 500 meters and transmit video, images, and data back to the Earth. The organization says this signifies a “new era of exploration’s diverse and participatory nature.”

The teams are headquartered all over the world — seventeen different headquarter nations — and most of the teams are actually multinationals, so team members are working in almost seventy different countries on every continent except for Antarctica.

“This is going to be the first time anything has been on the lunar surface since the final Soviet robotic mission in 1976,” Pomerantz said and those of us in the states really haven’t seen any data directly from the lunar surface since 1972, so we think that there’s at a ton to be learned scientifically, but also there’s a huge inspirational factor there for people to be able to see those images again.”

Of course, the robotic missions being designed are much less complicated and expensive than a human mission to the Moon.

Synergy Moon's spherical rover. Credit: GLXP

The concepts range from snake-like robots that slither along the surface to ball-shaped vehicles that can shift their mass internally move along the lunar surface to small robotic vehicles – “not too much bigger than the cell phone you’ve got your pocket,” Pomeranzt said – to rovers that look very much NASA- or ESA-designed vehicles. Others won’t rove at all, but reignite their engines to take off and fly to another location. This may allow them to explore totally different types of terrain that is totally inaccessible to a rover.

The landing sites that the various teams are shooting for differ as well. “Essentially everyone is going on the near side for obvious communication reasons,” Pomerantz said. “Almost everyone is going in a fairly low latitude and going in the equatorial zones.”

There are bonus prizes of several million additional dollars for teams that can go to particular sites, such the South Pole, where they could possibly confirm the findings at the LCROSS impact site, or if they go back to visit one of the Apollo landing sites or one of the sites of a non-human mission.

“I know that causes some concern for some people,” Pomerantz said. “People very rightly want to make sure that we are being respectful of those treasured historical sites. But I think it is important to recognize that no one values those sites more than the men and women around the world who are dedicating their careers to getting back to the surface of the Moon. They absolutely understand that those are our valuable treasures that need to be respected but they also understand that there’s an enormous amount to be gained from going back and respectfully revisiting the. There is some very interesting science that we can do by going back and seeing how the site and how those materials have changed over the past forty years.”

Why offer a prize to return to the Moon?

“We want to open the space frontier in the way similar to what we did it for the first X PRZE, the Ansari X PRIZE,” Pomerantz said. “We want to make space exploration and lunar exploration in particular radically cheaper. We think when you create a much lower price point, when you bring the price of missions down to a tenth to what it historically has been or even a hundredth of what it historically has been, you’re opening it up to a huge variety of new customers, new science communities, new industries that just can’t exist at the current price points.”

All the teams have to come up with their own funding.

“This is really a cash on delivery kind of model,” Pomerantz said. “But we don’t want to pay people to try. There are enough other people out there that are funding people to try new things. We want to reward people upon success. That means that no matter how crazy an idea might seem today, if it happens to be the best one, then we’ll reward it.”

Right now, the prize money is set to expire by the end of 2015, but the GLXP organizers are quite confident that at least one of the 29 teams will successfully reach the Moon before then. And obviously, NASA is confident, as well, as the space agency is offering a program called the Innovative Lunar Demonstration and Data Program, which is essentially $30 million dollars worth of data purchases from commercial efforts that reach the Moon.

“This is NASA saying for first time ever we are able to buy data about conducting lunar missions and about the Moon itself, rather than having to go out and pay for the acquisition of that data directly on the hopes that it will work,” Pomerantz said. “This is a great buy for NASA and I think they are getting a tremendous value and is a great way for teams to show their investors and supporters that, hey we’ve got a willing customer here. And NASA is not afraid of us; this isn’t an ‘us versus them competition.’ This is an area where our success is their success and vice versa.

Pomerantz is leaving the X PRIZE Foundation to begin work with Virgin Galactic. “I’ve loved every minute of being with the X PRIZE, but this was an opportunity just too good to pass up and I’m extremely excited about it even though I’m sad to be leaving X PRIZE.”

For more information about GLXP, see their website. See the complete roster of competing teams here.

Listen to an interview with Pomerantz on the 365 Days of Astronomy website.

Review: Apollo 12 On the Ocean of Storms

David M. Harland has detailed man's first precision landing on the moon in: Apollo 12 On the Ocean of Storms. Image Credit: Spinger/Praxis

[/caption]

As one chapter in manned space flight draws to a close, it is human nature to look back, to draw parallels and to remember similar points in time. A new offering from Springer-Praxis details man’s second landing on the surface of another world, the 1969 mission of Apollo 12. The book is entitled; Apollo 12 On the Ocean of Storms. Strangely, this is the first time that the full story of man’s first trip to the Ocean of Storms has ever been written down. The story in-and-of-itself is compelling, filled with peril, discovery and friendship.

President Nixon was at the launch, but a storm had blown in. The launch went ahead regardless and the Saturn V rocket thundered into the sky – where it was struck twice by lightning. The lightning traveled down the rocket’s plume and struck the pad. On board the Yankee Clipper (the Command Module in which the crew rode), fuel cells, inertial guidance platform and telemetry system went offline.

EECOM John Aaron in Mission Control, with the help of Lunar Module Pilot Alan Bean, saved the day by remembering an obscure procedure, and once in orbit the spacecraft was restored to full operation.

By setting down on the Moon close by an unmanned probe, Apollo 12 showed that precision lunar landings were possible, that microbes could survive for years inside such a robot in that harsh environment – and that friends can make the best crewmates.

This is just a tiny hint of the richly detailed story that is Apollo 12. When it came time to select an author to tell this tale, Springer tapped one of the best in the business – David M. Harland.

Harland is one of the most prolific, accurate authors in his field of expertise – aerospace history. As such, when he started to cover the Apollo era, fans were waiting with great anticipation for his chronicles covering the greatest era in human exploration.

The crew of Apollo 12, from left-to-right, Pete Conrad, Dick Gordon and Alan Bean. Photo Credit: NASA

“I wrote this book as part of my series on NASA’s Moon program. I started with Apollo 11, and will work sequentially with books devoted to each of the missions which landed on the Moon, explaining the planning, assembly of the vehicles, launch through to splash, and the scientific insight gained,” said Harland during a recent interview. “People tend to remember the Apollo 8 flight around the Moon at Christmas 1968, the Apollo 11 landing, and the aborted Apollo 13 mission. Yet the missions which followed Apollo 11 and landed on the Moon were far more than ‘flags and footprints’, they were scientific exploration – indeed as one of the astronauts said, ‘exploration at its greatest’. I’m delighted that Springer-Praxis has given me the freedom to write this series.”

Springer Praxis has developed a virtual library’s worth of books regarding space flight. Apollo 12 On the Ocean of Storms is a very worthy addition to this collection and can be found online at Amazon.com. The book includes 530 pages with dozens of historic, color images.

Alan Bean looks out on the moon's Ocean of Storms. David M. Harland has produced a vivid, detailed account of this amazing journey in Apollo 12 On the Ocean of Storms. Photo Credit: NASA

The Moon Just Got Bigger

Lunar Reconnaissance Orbiter Wide Angle Camera mosaic of the lunar nearside. Credit: NASA/GSFC/Arizona State University.

[/caption]

Take a gander at this brand new image of the Moon from the Lunar Reconnaissance Orbiter, which is one of the largest and highest resolution images ever compiled of the near-side of the Moon. For two weeks in mid-December 2010, LRO’s orbit allowed the spacecraft to remain looking straight down. Gathering over 1,300 images during this time, LRO’s imaging run allowed the team to compile a monstrous 24,000 x 24,000 pixel mosaic from the Wide Angle Camera (WAC), with a resolution of approximately 145 meters per pixel. The detail is nothing short of spectacular.

You can go the LROC website and see a 1400 X 1400 version, another 1400 X 1400 version with labels, and the full version that you can “Zoomify” and see incredible detail like never before.

Source: LROC website.